趙明烽,Lei Chen,鐘洋,熊金波,3
移動(dòng)邊緣群智感知?jiǎng)討B(tài)隱私度量模型與評(píng)價(jià)機(jī)制
趙明烽1,Lei Chen2,鐘洋1,熊金波1,3
(1. 福建師范大學(xué)數(shù)學(xué)與信息學(xué)院,福建 福州 350117;2. College of Engineering and Computing, Georgia Southern University, GA, 30458;3. 福建省網(wǎng)絡(luò)安全與密碼技術(shù)重點(diǎn)實(shí)驗(yàn)室,福建 福州 350117)
移動(dòng)邊緣群智感知中,用戶執(zhí)行感知任務(wù)采集數(shù)據(jù)所包含的隱私量是動(dòng)態(tài)變化且不直觀的,數(shù)據(jù)上傳亦缺乏隱私風(fēng)險(xiǎn)預(yù)警值,提出一種動(dòng)態(tài)隱私度量(DPM)模型。給出用戶參與感知任務(wù)所獲數(shù)據(jù)的結(jié)構(gòu)化表示并轉(zhuǎn)化成原始數(shù)值矩陣,引入隱私屬性偏好與時(shí)效性因素實(shí)現(xiàn)對(duì)該矩陣的權(quán)重疊加,以度量數(shù)據(jù)所含隱私的動(dòng)態(tài)變化,基于權(quán)重疊加后的矩陣合理計(jì)算用戶個(gè)性化隱私閾值,并進(jìn)行差分隱私處理。在此基礎(chǔ)上,設(shè)計(jì)一種隱私度量模型評(píng)價(jià)機(jī)制。仿真結(jié)果表明,模型是有效且合理的,根據(jù)所給范例,差分隱私處理后的數(shù)據(jù)效用達(dá)到0.7,隨噪聲水平增加,隱私保護(hù)程度(PDD)可顯著提升,適應(yīng)物聯(lián)網(wǎng)移動(dòng)邊緣群智感知范式。
動(dòng)態(tài)隱私度量;個(gè)性化隱私閾值;差分隱私;模型評(píng)價(jià);移動(dòng)邊緣群智感知
作為一種新穎的物聯(lián)網(wǎng)感知模式,移動(dòng)邊緣群智感知(MECS)[1]借助各式各樣的智能終端[2-3]、可穿戴設(shè)備協(xié)同完成一些泛在智慧型深度社會(huì)感知任務(wù),幫助推動(dòng)現(xiàn)代城市的立體功能延伸和功能耦合,高度響應(yīng)了國(guó)家政府和產(chǎn)業(yè)界對(duì)智慧城市建設(shè)[4-5]的號(hào)召。同時(shí),隨著第五代(5G)移動(dòng)通信網(wǎng)絡(luò)[6-7]的到來(lái)和“萬(wàn)物互聯(lián)”建設(shè)腳步的加快[8],人們對(duì)移動(dòng)應(yīng)用服務(wù)的需求量日益劇增,由此催生的海量移動(dòng)數(shù)據(jù)包含著用戶眾多的隱私信息。數(shù)據(jù)儼然已經(jīng)滲透到各個(gè)行業(yè)和領(lǐng)域,成為重要的生產(chǎn)要素。
在實(shí)際應(yīng)用中,感知用戶在感知活動(dòng)結(jié)束后需要上傳自己的感知數(shù)據(jù)來(lái)獲得相應(yīng)的報(bào)酬[9]。同時(shí),他們面臨著隱私泄露的安全隱患。感知用戶對(duì)自身參與感知任務(wù)所產(chǎn)生數(shù)據(jù)的隱私量沒(méi)有直觀的認(rèn)知。在采用隱私保護(hù)技術(shù)隱藏某些隱私信息之后[10],經(jīng)過(guò)處理的數(shù)據(jù)仍然會(huì)泄露隱私,例如-匿名技術(shù)無(wú)法抵抗同質(zhì)攻擊和背景知識(shí)攻擊[11]。如何確定隱私泄露的風(fēng)險(xiǎn)界限[12],以及數(shù)據(jù)的后續(xù)效用對(duì)任務(wù)報(bào)酬有多大影響,這些都是幫助用戶更好地管理自身隱私信息資產(chǎn)的重要因素。若不能有效地度量用戶參與感知任務(wù)的數(shù)據(jù)隱私及數(shù)據(jù)效用等[13-14],幫助用戶進(jìn)行更加理性的感知上傳行為,將會(huì)導(dǎo)致用戶對(duì)自身隱私泄露風(fēng)險(xiǎn)的錯(cuò)誤認(rèn)知,進(jìn)而產(chǎn)生消極的任務(wù)參與態(tài)勢(shì),導(dǎo)致應(yīng)用服務(wù)商獲得質(zhì)量低下的感知數(shù)據(jù)而無(wú)法提供優(yōu)良的移動(dòng)服務(wù),以此往復(fù)形成惡性循環(huán)。
數(shù)據(jù)隱私度量較為復(fù)雜,因其在不同環(huán)境中都具有鮮明的敏感特征和屬性,且在任務(wù)聯(lián)動(dòng)、時(shí)空變換情況下會(huì)對(duì)數(shù)據(jù)特性產(chǎn)生動(dòng)態(tài)影響。目前,國(guó)內(nèi)外針對(duì)MECS網(wǎng)絡(luò)中的隱私度量方法研究主要分為3種[15]:一是利用信息熵[16],根據(jù)隱私信息中所包含的不確定程度來(lái)度量隱私;二是基于概率統(tǒng)計(jì)的方法[17],利用概率分布信息來(lái)推斷隱私信息的可能性,以此度量隱私泄露的風(fēng)險(xiǎn);三是結(jié)合集對(duì)分析理論[18],一種將定性與定量相結(jié)合并解決確定與不確定性問(wèn)題的方法。上述方法存在一定的缺陷,且考慮因素單一。例如,基于信息熵的度量本質(zhì)是對(duì)信息混亂程度的界定,在對(duì)隱私風(fēng)險(xiǎn)泄露度量方面具有較好的效果,但在面臨MECS中多源數(shù)據(jù)類(lèi)型時(shí),不同用戶的數(shù)據(jù)分為敏感性或非敏感性,單一考慮信息混亂變化因素將無(wú)法適應(yīng)MECS范式的數(shù)據(jù);基于概率統(tǒng)計(jì)的方法則需要掌握一定程度的事件發(fā)生概率的先驗(yàn)信息,具有一定的局限性;基于結(jié)合集對(duì)分析理論的方法主要是針對(duì)兩數(shù)據(jù)集之間的關(guān)聯(lián)隱私信息的不確定性進(jìn)行度量,因此需要具有給定數(shù)據(jù)集的前提條件,對(duì)于MECS中數(shù)據(jù)的實(shí)時(shí)性等問(wèn)題無(wú)法進(jìn)行有效度量。由此,基于數(shù)據(jù)結(jié)構(gòu)化、概率論及高階矩陣范數(shù)等理論,本文考慮多隱私屬性、用戶隱私偏好權(quán)重和時(shí)間等多維因素,提出一種針對(duì)MECS范式數(shù)據(jù)的動(dòng)態(tài)隱私度量模型和評(píng)估機(jī)制。其主要貢獻(xiàn)總結(jié)如下。
(1)針對(duì)MECS服務(wù)中的用戶參與感知任務(wù)所產(chǎn)生數(shù)據(jù)設(shè)計(jì)一種動(dòng)態(tài)隱私度量模型,分析了多隱私屬性、用戶隱私屬性偏好以及時(shí)效性等隱私度量因素,以動(dòng)態(tài)度量用戶參與任務(wù)的數(shù)據(jù)隱私量,并提出一種面向用戶的個(gè)性化隱私閾值計(jì)算方式。
(2)基于拉普拉斯噪聲機(jī)制對(duì)所提模型進(jìn)行差分隱私處理,并提出一種動(dòng)態(tài)隱私度量模型評(píng)價(jià)機(jī)制,從隱私量、數(shù)據(jù)效用以及隱私保護(hù)程度等方面對(duì)模型效果與性能進(jìn)行綜合評(píng)估與分析。
(3)仿真實(shí)驗(yàn)結(jié)果表明,所提模型能夠有效刻畫(huà)用戶任務(wù)數(shù)據(jù)的隱私量變化,正確反映模型的數(shù)據(jù)效用和隱私保護(hù)程度之間的關(guān)系,且能證明個(gè)性化隱私閾值計(jì)算的有效性與合理性,并為用戶在上傳感知數(shù)據(jù)時(shí)提供客觀的隱私度量值和對(duì)應(yīng)的隱私泄露風(fēng)險(xiǎn)界限,且適合MECS范式。
關(guān)于利用信息熵的相關(guān)隱私度量方法,Shi等[19]針對(duì)社交網(wǎng)絡(luò)服務(wù)中保護(hù)圖形格式數(shù)據(jù)的隱私方法缺少評(píng)價(jià)標(biāo)準(zhǔn)的問(wèn)題,提出了一種利用復(fù)雜網(wǎng)絡(luò)中網(wǎng)絡(luò)靜態(tài)特征之一的網(wǎng)絡(luò)結(jié)構(gòu)熵進(jìn)行隱私度量的方法,且給出了隱私度量指標(biāo)(PMI)來(lái)度量圖結(jié)構(gòu)的隱私保護(hù)能力。在基于位置的服務(wù)中常常會(huì)因?yàn)槲恢眯畔⒈┞队脩舻募彝サ刂?、健康狀況以及購(gòu)物習(xí)慣等,Shaham等[20]針對(duì)該問(wèn)題,考慮了基于用戶連續(xù)位置變換而產(chǎn)生的新的邊信息,并提出了一種新的隱私度量方法——傳遞熵來(lái)研究隱私保護(hù)問(wèn)題,此外,還提出了一個(gè)貪心算法來(lái)提高虛擬生成算法的傳遞熵性能。在開(kāi)放和動(dòng)態(tài)計(jì)算環(huán)境中,度量隱私損失和信任獲得是一個(gè)有意義的課題,針對(duì)相關(guān)現(xiàn)有工作在度量過(guò)程中沒(méi)有考慮到隱私信息與動(dòng)態(tài)信任變化之間的關(guān)系,Gao等[21]提出了一種新的基于信息論的隱私度量方法,通過(guò)條件概率計(jì)算信息公開(kāi)時(shí)的隱私損失熵和信任收益熵,并通過(guò)調(diào)整熵的權(quán)重,靈活地應(yīng)用于不同的應(yīng)用中,實(shí)驗(yàn)結(jié)果表明該度量方法具有顯著性能,在實(shí)體之間進(jìn)行隱私信息交換時(shí),可以減少隱私損失,獲得更多的信任。針對(duì)云數(shù)據(jù)間的關(guān)聯(lián)性問(wèn)題,張宏磊等[22]引用條件熵提出了一種對(duì)云數(shù)據(jù)操作過(guò)程中的隱私信息泄露風(fēng)險(xiǎn)的度量方法,但只考慮了在攻擊者無(wú)相關(guān)背景知識(shí)條件下的隱私度量。針對(duì)這一問(wèn)題,文獻(xiàn)[23]基于條件熵、互信息等概念提出一種擁有背景知識(shí)攻擊者攻擊的隱私度量方法,并通過(guò)舉例位置隱私場(chǎng)景,構(gòu)建了具體的信息熵模型及隱私保護(hù)機(jī)制和攻擊者能力的度量及分析方法。針對(duì)移動(dòng)服務(wù)中用戶不得不向運(yùn)營(yíng)商披露個(gè)人信息而構(gòu)成的隱私威脅,文獻(xiàn)[24]基于信息熵和馬爾可夫鏈建立了移動(dòng)服務(wù)隱私安全風(fēng)險(xiǎn)評(píng)估模型,給出了合理的風(fēng)險(xiǎn)度量和評(píng)估方法。
對(duì)于基于概率統(tǒng)計(jì)的方法,馬蓉等[25]從隱私敏感屬性的角度考慮度量問(wèn)題,借助公眾屬性和個(gè)性化屬性等度量指標(biāo)以及歷史數(shù)據(jù)統(tǒng)計(jì),對(duì)時(shí)空感知數(shù)據(jù)進(jìn)行隱私度量,從而幫助選擇最佳用戶參與任務(wù)。Wang等[26]也從該角度提出了一種基于屬性的統(tǒng)計(jì)模型,可用于基于個(gè)人可識(shí)別信息的隱私暴露度量和隱私影響評(píng)估,涉及隱私屬性、隱私敏感性和屬性相關(guān)性3個(gè)重要因素。Liu等[27]則從用戶態(tài)度的角度對(duì)隱私進(jìn)行測(cè)量,基于個(gè)體的內(nèi)在和外在敏感度,提出了一種用于移動(dòng)參與式感知系統(tǒng)的個(gè)性化隱私測(cè)量方法(PriMe),實(shí)驗(yàn)結(jié)果表明PriMe提供了合理而準(zhǔn)確的結(jié)果,而參與者反過(guò)來(lái)也高度信任該系統(tǒng)。此外,根據(jù)隱私屬性值的概率分布,文獻(xiàn)[28-30]從基于貝葉斯概率的度量角度,提出了基于貝葉斯推理的度量隱私信息泄露的方法,通過(guò)分析和比較推測(cè)的信息與隱私信息之間的差異度來(lái)度量隱私信息泄露的風(fēng)險(xiǎn),兩者之間的差異度越小,隱私信息泄露風(fēng)險(xiǎn)越大。Zhang等[31]針對(duì)現(xiàn)有位置服務(wù)隱私保護(hù)機(jī)制(LPPM)缺乏隱私度量評(píng)估的問(wèn)題,提出了一種基于貝葉斯條件隱私的隱私度量模型,通過(guò)關(guān)于敵手估計(jì)誤差的條件隱私的一般定義來(lái)比較不同的基于位置服務(wù)(LBS)的隱私度量。為了改進(jìn)對(duì)車(chē)載自組織網(wǎng)絡(luò)(VANET)中暴露的隱私程度的度量,Han等[32]創(chuàng)建了一種以用戶為中心的隱私計(jì)算系統(tǒng),依賴于事件發(fā)生的概率提出了一個(gè)風(fēng)險(xiǎn)評(píng)估函數(shù)和一組決策權(quán)重來(lái)模擬決策意圖,并結(jié)合信息熵知識(shí)構(gòu)建了混合區(qū)自適應(yīng)動(dòng)態(tài)生成機(jī)制。對(duì)于一些匿名化技術(shù)忽視用戶的信息自主權(quán)問(wèn)題,Tesfay等[33]提出了一種基于組合概率數(shù)學(xué)模型和機(jī)器學(xué)習(xí)分類(lèi)器的以用戶為中心的隱私風(fēng)險(xiǎn)檢測(cè)和度量框架,使用戶能夠控制自己的數(shù)據(jù)發(fā)布。
對(duì)于集對(duì)分析理論的度量方法,文獻(xiàn)[34]基于該思想提出了一種集對(duì)分析隱私度量方法,通過(guò)對(duì)數(shù)據(jù)集之間的關(guān)聯(lián)關(guān)系進(jìn)行度量分析,考慮對(duì)相鄰數(shù)據(jù)子集的同一度、差異度和對(duì)立度特性進(jìn)行度量描述,且具體討論了數(shù)據(jù)庫(kù)隱私保護(hù)、位置隱私保護(hù)和軌跡隱私保護(hù)3種不同模式下隱私保護(hù)機(jī)制的集對(duì)分析方法實(shí)例。攻擊者可以利用大數(shù)據(jù)分析技術(shù)通過(guò)社交網(wǎng)絡(luò)發(fā)布的數(shù)據(jù)發(fā)現(xiàn)用戶的隱私,針對(duì)背景知識(shí)未定義情況下的隱私度量問(wèn)題,Huang等[35]借鑒集對(duì)分析理論,提出了一種新的網(wǎng)絡(luò)環(huán)境下的隱私度量方法,將個(gè)人隱私度量的結(jié)果分為確定值和不確定參數(shù)兩部分,其中,確定值可以反映隱私暴露程度,不確定參數(shù)可以反映背景知識(shí)的變化對(duì)隱私暴露程度的影響,從而令隱私分析可以在不斷變化的背景知識(shí)中進(jìn)行動(dòng)態(tài)調(diào)整。
綜上所述,目前關(guān)于隱私度量的工作比較豐富?,F(xiàn)有方案主要涉及對(duì)隱私敏感屬性、用戶個(gè)性化隱私偏好、數(shù)據(jù)關(guān)聯(lián)性、時(shí)空狀態(tài)變化等度量因素和標(biāo)準(zhǔn)的考量。然而,大多數(shù)方案均考慮單一的隱私度量標(biāo)準(zhǔn)或因素,對(duì)于適應(yīng)MECS網(wǎng)絡(luò)中同時(shí)具有復(fù)雜隱私屬性特征、隱私屬性偏好、時(shí)間變化等的感知數(shù)據(jù)隱私度量方法目前還比較匱乏。因此,從多方因素出發(fā)構(gòu)建新的動(dòng)態(tài)隱私度量模型對(duì)于適應(yīng)MECS范式類(lèi)型的感知數(shù)據(jù)非常重要。
由于任務(wù)類(lèi)型的關(guān)系,數(shù)據(jù)表中可能含有非數(shù)值型數(shù)據(jù),為了便于后續(xù)隱私敏感度的計(jì)算,采用非負(fù)數(shù)值映射方法,將數(shù)據(jù)表轉(zhuǎn)化為數(shù)值矩陣。該映射定義如下。
定義1 非負(fù)數(shù)值映射[36]
表1 任務(wù)全周期的結(jié)構(gòu)化數(shù)據(jù)形式表示
定義2 隱私屬性偏好向量
進(jìn)一步地,考慮到用戶的隱私偏好會(huì)隨時(shí)間遷移而變化,即隱私偏好是具有時(shí)效性的。換句話說(shuō),某一用戶對(duì)某一隱私屬性的重視程度會(huì)隨著時(shí)間的增加而改變。為了度量隱私屬性偏好的時(shí)效性,這里引入隱私屬性偏好函數(shù)。
定義3 隱私屬性偏好函數(shù)
特別地,有3類(lèi)隱私屬性偏好函數(shù)。
差分隱私[37]作為一種基于數(shù)據(jù)失真的隱私保護(hù)技術(shù),即通過(guò)對(duì)敏感數(shù)據(jù)添加隨機(jī)噪聲使數(shù)據(jù)結(jié)果與原始數(shù)據(jù)發(fā)生一定的偏差,其具有嚴(yán)格的數(shù)學(xué)證明,在達(dá)到隱私保護(hù)目的的同時(shí),也保持了一定的數(shù)據(jù)效用。
定義4 拉普拉斯分布[38]
它的逆累計(jì)分布函數(shù)為
從上述內(nèi)容可知,本文對(duì)任務(wù)感知數(shù)據(jù)進(jìn)行了結(jié)構(gòu)化表示和數(shù)值化、隱私偏好的度量和時(shí)效性的加入,且得到了動(dòng)態(tài)隱私閾值的概念和求解。接下來(lái),本文將對(duì)該模型構(gòu)建評(píng)估機(jī)制,從數(shù)據(jù)效用以及隱私保護(hù)程度等評(píng)估指標(biāo),考慮模型的隱私度量效果與有效性。
定義5 矩陣-范數(shù)
定義6 數(shù)據(jù)效用
實(shí)驗(yàn)在Intel?Core(TM) i7-1050U CPU@ 1.80 GHz,12 GB DDR4,1 TB hard disk的Windows 10硬件平臺(tái)上進(jìn)行,軟件配置主要有Python3.6、IDE PyCharm以及MATLAB R2018a。數(shù)據(jù)集采用的是共享單車(chē)用戶的移動(dòng)行為數(shù)據(jù),包括使用者性別、年齡、每次騎行的起點(diǎn)和目的地、開(kāi)始和結(jié)束時(shí)間、起點(diǎn)經(jīng)緯度、目的地點(diǎn)經(jīng)緯度等屬性。該數(shù)據(jù)集所包含的用戶是具有高度移動(dòng)特性的,且所產(chǎn)生的數(shù)據(jù)主要依賴自身攜帶設(shè)備裝載的傳感器,適用于MECS范式。
圖1 的隱私量隨時(shí)間的變化情況
圖2 隱私保護(hù)程度與數(shù)據(jù)效用隨噪聲增加的變化情況
Figure 2 Changes in the degree of privacy protection and data utility as noise increases
圖3 不同用戶的動(dòng)態(tài)隱私閾值和隱私保護(hù)程度關(guān)系
Figure 3 The relationship between the dynamic privacy threshold of different users and the degree of privacy protection
為了克服MECS范式中用戶對(duì)自身感知任務(wù)隱私的認(rèn)知不足,突破現(xiàn)有相關(guān)工作對(duì)隱私度量因素考慮較為單一性的問(wèn)題,本文提出了一種面向感知任務(wù)數(shù)據(jù)的動(dòng)態(tài)隱私度量模型??紤]多隱私屬性、用戶隱私屬性偏好和時(shí)效性等因素,給出了用戶個(gè)性化隱私閾值計(jì)算定義式。隨后,對(duì)所提模型設(shè)計(jì)了一種有隱私量、數(shù)據(jù)效用及隱私保護(hù)程度等多指標(biāo)的評(píng)估機(jī)制。通過(guò)大量的實(shí)驗(yàn)結(jié)果和數(shù)據(jù)分析,驗(yàn)證了所提動(dòng)態(tài)度量模型能夠有效進(jìn)行敏感數(shù)據(jù)的隱私量度量,且客觀反映出數(shù)據(jù)隱私保護(hù)效果和數(shù)據(jù)效用的變化,解釋了個(gè)性化隱私閾值計(jì)算式的合理性,為用戶感知數(shù)據(jù)的隱私動(dòng)態(tài)度量和隱私閾值個(gè)性化計(jì)算提供了方案和思路。
[1] XIONG J B, ZHAO M F, BHUIYAN M Z A, et al. An AI-enabled three-party game framework for guaranteed data privacy in mobile edge crowdsensing of IoT[J]. IEEE Transactions on Industrial Informatics, 2019: 1.
[2]XIONG J, CHEN L, BHUIYAN M Z A, et al. A secure data deletion scheme for IoT devices through key derivation encryption and data analysis[J]. Future Generation Computer Systems, 2020, 111: 741-753.
[3]YU S, WANG G, LIU X, et al. Security and privacy in the age of the smart internet of things: an overview from a networking perspective[J]. IEEE Communications Magazine, 2018, 56(9): 14-18.
[4]QI L, HU C, ZHANG X, et al. Privacy-aware data fusion and prediction with spatial-temporal context for smart city industrial environment[J]. IEEE Transactions on Industrial Informatics, 2020: 1.
[5]胡宇翔, 伊鵬, 孫鵬浩, 等. 全維可定義的多模態(tài)智慧網(wǎng)絡(luò)體系研究[J]. 通信學(xué)報(bào), 2019, 40(8): 1-12.
HU Y X, YI P, SUN P H, e al. Research on the full-dimensional defined polymorphic smart network[J]. Journal on Communications, 2019, 40(8): 1-12.
[6]LUO C, JI J, WANG Q, et al. Channel state information prediction for 5G wireless communications: a deep learning approach[J]. IEEE Transactions on Network Science and Engineering, 2020, 7(1): 227-236.
[7]喬康, 游偉, 王領(lǐng)偉, 等. 基于區(qū)塊鏈的5G 物聯(lián)網(wǎng)數(shù)據(jù)共享方案[J]. 網(wǎng)絡(luò)與信息安全學(xué)報(bào), 2020, 6(4): 45-55.
QIAO K, YOU W, WANG L W, et al. Data sharing scheme for 5G IoT based on blockchain[J]. Chinese Journal of Network and Information Security, 2020, 6(4): 45-55.
[8]AL-GARADI M A, MOHAMED A, AL-ALI A, et al. A survey of machine and deep learning methodsfor internet of things (IoT) security[J]. IEEE Communications Surveys & Tutorials, 2020, 22(3): 1646-1685.
[9]熊金波, 馬蓉, 牛犇, 等. 移動(dòng)群智感知中基于用戶聯(lián)盟匹配的隱私保護(hù)激勵(lì)機(jī)制[J]. 計(jì)算機(jī)研究與發(fā)展, 2018, 55(7): 1359.
XIONG J B, MA R, NIU B, et al. Privacy protection incentive mechanism based on user-Union matching in mobile crowdsensing[J]. Journal of Computer Research and Development, 2018, 55(7): 1359-1370.
[10]ZHANG Y, WANG P, HUANG H, et al. Privacy-assured FogCS: chaotic compressive sensing for secure industrial big image data processing in fog computing[J]. IEEE Transactions on Industrial Informatics, 2020.
[11]LIU C, TIAN Y, XIONG J, et al. Towards attack and defense views to-Anonymous using information theory approach[J]. IEEE Access, 2019, 7: 156025-156032.
[12]AL-ASMARI H A, SALEH M S. A conceptual framework for measuring personal privacy risks in facebook online social network[C]//International Conference on Computer and Information Sciences (ICCIS). 2019: 1-6.
[13]ZHAO Y, WAGNER I. On the strength of privacy metrics for vehicular communication[J]. IEEE Transactions on Mobile Computing, 2018, 18(2): 390-403.
[14]WAGNER I, ECKHOFF D. Technical privacy metrics: a systematic survey[J]. ACM Computing Surveys (CSUR), 2018, 51(3): 1-38.
[15]熊金波, 王敏燊, 田有亮, 等. 面向云數(shù)據(jù)的隱私度量研究進(jìn)展[J].軟件學(xué)報(bào), 2018, 29(7): 1963-1980.
XIONG J B, WANG M S, TIAN Y L, et al. Research progress on privacy measurement for cloud data[J]. Journal of Software, 2018, 29(7): 1963-1980.
[16]HUANG Z, YANG L, JIANG W. Uncertainty measurement with belief entropy on the interference effect in the quantum-like Bayesian networks[J]. Applied Mathematics and Computation, 2019, 347: 417-428.
[17]SONG H, LUO T, LI J. Common criterion of privacy metrics and parameters analysis based on error probability for randomized response[J]. IEEE Access, 2019, 7: 16964-16978.
[18]YAN F, XU K. A set pair analysis based layer of protection analysis and its application in quantitative risk assessment[J]. Journal of Loss Prevention in the Process Industries, 2018, 55: 313-319.
[19]SHI W, HU J, YAN J, et al. A privacy measurement method using network structure entropy[C]//Proceedings of the International Conference on Networking and Network Applications (NaNA). 2017: 147-151.
[20]SHAHAM S, DING M, LIU B, et al. Transition-entropy: a novel metric for privacy preservation in location-based services[C]//IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). 2019: 1-6.
[21]GAO F, HE J, PENG S, et al. A quantifying metric for privacy protection based on Information theory[C]//Proceedings of the 2010 Third International Symposium on Intelligent Information Technology and Security Informatics. 2010: 216-220.
[22]張宏磊, 史玉良, 張世棟, 等. 一種基于分塊混淆的動(dòng)態(tài)數(shù)據(jù)隱私保護(hù)機(jī)制[J]. 計(jì)算機(jī)研究與發(fā)展, 2016, 53(11): 2454-2464.
ZHANG H L, SHI Y L, ZHANG S D, et al. A privacy protection mechanism for dynamic data based on partition-confusion[J]. Journal of Computer Research and Development, 2016, 53(11): 2454-2464.
[23]彭長(zhǎng)根, 丁紅發(fā), 朱義杰, 等. 隱私保護(hù)的信息熵模型及其度量方法[J]. 軟件學(xué)報(bào), 2016, 27(8): 1891-1903.
PENG C G, DING H F, ZHU Y J, et al. Information entropy models and privacy metrics methods for privacy protection[J]. Journal of software, 2016, 27(8): 1891-1903.
[24]ZHANG T, ZHAO K, YANG M, et al. Research on privacy security risk assessment method of mobile commerce based on information entropy and markov[J]. Wireless Communications and Mobile Computing, 2020, 2: 1-11.
[25]馬蓉, 陳秀華, 劉慧, 等. 移動(dòng)群智感知中用戶隱私度量與隱私保護(hù)研究[J]. 信息網(wǎng)絡(luò)安全, 2018,18(8): 64-72.
MA R, CHEN X H, LIU H, et al. Research on user privacy measurement and privacy protection in mobile crowdsensing[J]. Netinfo Security, 2018,18(8): 64-72.
[26]WANG Y, LIU J. An attribtue-based statistic model for privacy impact assessment[C]// Proceedings of the 2016 International Conference on Collaboration Technologies and Systems (CTS). 2016: 619-621.
[27]LIU R, CAO J, VANSYCKEL S, et al. PriMe: human-centric privacy measurement based on user preferences towards data sharing in mobile participatory sensing systems[C]//Proceedings of the 2016 IEEE International Conference on Pervasive Computing and Communications (PerCom). 2016: 1-8.
[28]YAMAOKA Y, ITOH K. K-presence-secrecy: practical privacy model as extension of-anonymity[J]. IEICE Transactions on Information and Systems, 2017, 100(4): 730-740.
[29]GKOUNTOUNA O, TERROVITIS M. Anonymizing collections of tree-structured data[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(8): 2034-2048.
[30]LI X Y, ZHANG C, JUNG T, et al. Graph-based privacy-preserving data publication[C]// Proceedings of the 35th Annual IEEE International Conference on Computer Communications. 2016: 1-9.
[31]ZHANG X, GUI X, TIAN F, et al. Privacy quantification model based on the Bayes conditional risk in location-based services[J]. Tsinghua Science and Technology, 2014, 19(5): 452-462.
[32]HAN X, TIAN D, DUAN X, et al. Optimized anonymity updating in VANET based on information and privacy joint metrics[C]//Proceedings of the 8th ACM Symposium on Design and Analysis of Intelligent Vehicular Networks and Applications. 2018: 63-69.
[33]TESFAY W B, SERNA-OLVERA J. Towards user-centered privacy risk detection and quantification framework[C]//Proceedings of the International Conference on New Technologies, Mobility and Security (NTMS). 2016: 1-5.
[34]晏燕, 郝曉弘, 王萬(wàn)軍. 一種隱私保護(hù)度量的集對(duì)分析方法[J]. 武漢大學(xué)學(xué)報(bào)(工學(xué)版), 2015, 48(6): 883-890.
YAO Y, HAO X H, WANG W J. A set pair analysis method for privacy metric[J]. Engineering Journal of Wuhan University, 2015, 48(6): 883-890.
[35]HUANG W Q, XIA J F, YU M, et al. Personal privacy metric based on public social network data[J]. JPhCS, 2018, 1087(3): 032007.
[36]HE W, ZENG Y, LI G. A novel structural reliability analysis method via improved maximum entropy method based on nonlinear mapping and sparse grid numerical integration[J]. Mechanical Systems and Signal Processing, 2019, 133: 106247.
[37] HASSAN M U, REHMANI M H, CHEN J. Differential privacy techniques for cyber physical systems: a survey[J]. IEEE Communications Surveys & Tutorials, 2019, 22(1): 746-789.
[38]HE J, CAI L, GUAN X. Differential private noise adding mechanism and its application on consensus algorithm[J]. IEEE Transa- ctions on Signal Processing, 2020, 68: 4069-4082.
Dynamic privacy measurement model and evaluation system for mobile edge crowdsensing
ZHAO Mingfeng1,LEI Chen2,ZHONG Yang1,XIONG Jinbo1,3
1. College of Mathematics and Informatics, Fujian Normal University, Fuzhou 350117, China 2. College of Engineering and Computing, Georgia Southern University, GA 30458, USA 3. Fujian Provincial Key Laboratory of Network Security and Cryptology, Fuzhou 350117, China
To tackle the problems of users not having intuitive cognition of the dynamic privacy changes contained in their sensing data in mobile edge crowdsensing (MECS) and lack of personalized privacy risk warning values in the data uploading stage, a dynamic privacy measurement (DPM) model was proposed. A structured representation of data obtained by a user participating in a sensing task was introduced and was transformed it into a numerical matrix. Then privacy attribute preference and timeliness were presented to quantify the dynamic privacy changes of data. With this, personalized privacy thresholds of users based on the numerical matrix were reasonably calculated. Finally, differential privacy processing was performed on the numerical matrix, and a model evaluation system was designed for the proposed model. The simulation results show that the DPM model was effective and practical. According to the given example, a data utility of approximately 0.7 can be achieved, and the degree of privacy protection can be significantly improved as the noise level increases, adapting to the MECS of IoT.
dynamic privacy measurement, personalized privacy threshold, differential privacy, model evaluation, mobile edge crowdsensing
TP309.2
A
10.11959/j.issn.2096?109x.2021016
2020?09?16;
2020?12?14
熊金波,jbxiong@fjnu.edu.cn
國(guó)家自然科學(xué)基金(61872088, U1905211, 61872090);福建省自然科學(xué)基金(2019J01276);貴州省公共大數(shù)據(jù)重點(diǎn)實(shí)驗(yàn)室開(kāi)放課題(2019BDKFJJ004)
The National Natural Science Foundation of China (61872088, U1905211, 61872090), The Natural Science Foundation of Fujian Province, China (2019J01276), The Guizhou Provincial Key Laboratory of Public Big Data Research Fund (2019BDKFJJ004)
趙明烽,Lei Chen,鐘洋, 等. 移動(dòng)邊緣群智感知?jiǎng)討B(tài)隱私度量模型與評(píng)價(jià)機(jī)制[J]. 網(wǎng)絡(luò)與信息安全學(xué)報(bào), 2021, 7(1): 157-166.
ZHAO M F, LEI C, ZHONG Y, et al. Dynamic privacy measurement model and evaluation system for mobile edge crowdsensing [J]. Chinese Journal of Network and Information Security, 2021, 7(1): 157-166.
趙明烽(1996?),男,江蘇張家港人,福建師范大學(xué)碩士生,主要研究方向?yàn)橐苿?dòng)數(shù)據(jù)安全和隱私保護(hù)。
Lei Chen(1978? ),男,陜西西安人,美國(guó)佐治亞州南方大學(xué)副教授,主要研究方向?yàn)榫W(wǎng)絡(luò)安全、信息安全、云計(jì)算與大數(shù)據(jù)安全等。
鐘洋(1995?),男,湖南湘西人,福建師范大學(xué)碩士生,主要研究方向?yàn)榘踩疃葘W(xué)習(xí)。
熊金波(1981? ),男,湖南益陽(yáng)人,福建師范大學(xué)教授、博士生導(dǎo)師,主要研究方向?yàn)榫W(wǎng)聯(lián)自動(dòng)駕駛車(chē)輛的安全與隱私、物聯(lián)網(wǎng)安全、大數(shù)據(jù)安全、隱私保護(hù)。