刁衛(wèi)楠 朱紅菊 劉文革
摘 要:類胡蘿卜素是一種重要的天然色素,廣泛存在于動植物以及微生物體內,是人體維生素A的主要來源,對人類健康具有重要作用。在蔬菜作物中,不同種類和含量的類胡蘿卜素賦予其顏色的多樣性。植物類胡蘿卜素積累是一個復雜的過程。它與有色體發(fā)育有關,由多個結構基因和轉錄因子調控,還受環(huán)境因素影響。本文對蔬菜作物中類胡蘿卜素的合成代謝途徑及其影響因子進行概述,以期為蔬菜作物的外觀及營養(yǎng)品質改良提供理論依據。
關鍵詞:蔬菜作物;類胡蘿卜素;積累;顏色
中圖分類號:S63+S64+S65 文獻標志碼:A 文章編號:1673-2871(2021)01-001-08
Research progress on carotenoids in vegetable crops
DIAO Weinan, ZHU Hongju, LIU Wenge
(Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China)
Abstract: Carotenoid is an important natural pigment, which widely exists in animals, plants and microorganisms. It is the main source of human vitamin A and plays an important role in human health. The variety and content of carotenoids in vegetable crops are different, which endows them with color diversity. Carotenoid accumulation in plants is a complex process. It is related to the development of chromoplast, regulated by many structural genes and transcription factors, and also affected by environmental factors. In this paper, the pathway of carotenoid biosynthesis and its influencing factors in vegetables crops are systematically introduced, in order to provide theoretical basis for improving the appearance and nutritional quality of vegetable crops.
Key words:Vegetables crops; Carotenoids; Accumulation; Color
類胡蘿卜素是一類重要的天然色素的總稱,它是一種含有40個碳的類異戊烯聚合物, 即四萜化合物。最典型的類胡蘿卜素是由8個異戊二烯單位首尾相連形成。類胡蘿卜素的顏色因共軛雙鍵的數(shù)目不同而變化,共軛雙鍵的數(shù)目越多,顏色越偏向紅色[1]。類胡蘿卜素是體內維生素A的主要來源,由于人體自身不能合成類胡蘿卜素,必須通過外界攝入。當人體攝入類胡蘿卜素時,一些類胡蘿卜素被分解成維生素A前體,而缺乏維生素A的兒童可能有嚴重的視力問題,如夜盲癥[2]。類胡蘿卜素還具有抗氧化作用,其抗氧化能力對人類健康具有特別重要的意義。飲食中攝入類胡蘿卜素對一些廣泛而典型的現(xiàn)代文明疾病具有一定的預防和保護作用,可作為自由基清除劑,如預防多種退行性疾病、心血管疾病和癌癥等[3]。目前約700種天然類胡蘿卜素的化學結構已被鑒定,這些類胡蘿卜素與黃色、橙色、紅色等有關[4]。在蔬菜作物中,類胡蘿卜素的主要存在形式有β-胡蘿卜素、葉黃素、番茄紅素、β-隱黃質、八氫番茄紅素、六氫番茄紅素等,在多種蔬菜顏色形成方面占據重要地位,如在番茄、胡蘿卜、西瓜等蔬菜中豐富的類胡蘿卜素導致了其顏色多樣化。
1 蔬菜作物中類胡蘿卜素的積累
1.1 蔬菜作物中類胡蘿卜素的積累
大多數(shù)蔬菜中都富含類胡蘿卜素,如番茄、西瓜、甜瓜、胡蘿卜、馬鈴薯等,類胡蘿卜素種類和含量的不同導致了蔬菜作物顏色的多樣化。番茄被認為是研究類胡蘿卜素相關代謝過程的模式植物,類胡蘿卜素在不同顏色番茄中的種類和含量各不相同。研究表明,番茄果實中至少含有12種類胡蘿卜素,在其成熟果實中主要有番茄紅素、β-胡蘿卜素和葉黃素,其中番茄紅素占主導地位[5]??当I篬6]發(fā)現(xiàn),番茄黃肉突變體材料‘PI114490與已知的番茄r突變體‘LA3532中的類胡蘿卜素組成及含量相似,主要積累葉黃素和β-類胡蘿卜素。Nicolle等[7]對20個不同胡蘿卜品種中的類胡蘿卜素組分和含量研究發(fā)現(xiàn),在紫色和黃色品種中主要含有葉黃素和β-胡蘿卜素,在白色品種中幾乎不含類胡蘿卜素,橙色品種中主要是β-胡蘿卜素。玉米黃素、葉黃素、新黃質、紫黃質是黃肉馬鈴薯中主要存在的類胡蘿卜素,白肉馬鈴薯和黃肉馬鈴薯具有相似的類胡蘿卜素組分,但是由于類胡蘿卜素含量的不同導致其顏色不同[8-9]。西瓜中類胡蘿卜素種類豐富,Tadmor等[10]發(fā)現(xiàn),橙黃瓤西瓜中含有大量β-胡蘿卜素及少量的番茄紅素,紅瓤西瓜中積累了大量的番茄紅素;Bang等[11]發(fā)現(xiàn),在淡黃瓤果肉中主要含新黃質和紫黃質;Li等[12]發(fā)現(xiàn),在西瓜果皮中的色素主要是葉綠素,幾乎不含類胡蘿卜素。
1.2 類胡蘿卜素在蔬菜作物中積累的場所——有色體
質體是類胡蘿卜素代謝的場所,在控制胡蘿卜素生物活性、類胡蘿卜素穩(wěn)定性和色素多樣性方面起著關鍵作用。根據其不同的形態(tài)和功能,質體可分為若干亞型,包括前質體、黃質體、葉綠體、白色體和有色體[13]。不同類型的質體具有不同的合成和積累類胡蘿卜素的能力,不同質體的獨特功能決定了類胡蘿卜素代謝的調控網絡,從而導致植物器官中類胡蘿卜素的數(shù)量增多和種類多樣化。除原質體外,所有質體都有生產類胡蘿卜素的能力,在綠色植物組織中,類胡蘿卜素的生物合成主要發(fā)生在葉綠體內膜和類囊體雙層中。葉綠體雖然能夠積累大量的葉黃素、β-胡蘿卜素、紫黃質和新黃質,但葉綠體的綠色掩蓋了它們特有的黃色/橙色[14]。有色體主要在不同的水果和蔬菜中合成和積累多種類胡蘿卜素化合物,是大量合成和貯存類胡蘿卜素的主要質體,形成了合成和積累大量類胡蘿卜素的獨特機制[15]。
有色體具有多種形態(tài),主要來源于已有的葉綠體或其他非光合質體,如前質體、白色體。在大多數(shù)植物中,類胡蘿卜素類物質被認為是在有色體的脂蛋白隔離亞結構或質體球滴結構中產生的[16-17]。這些類胡蘿卜素隔離亞結構在有色體大量積累類胡蘿卜素中起著兩個作用:一個作用是促進新合成的類胡蘿卜素的分離,以穩(wěn)定貯存;另一個作用是避免類胡蘿卜素生物合成部位的最終產物過載,以實現(xiàn)連續(xù)生物合成[18-19]。根據貯存亞結構的變化,有色體被分為5種主要的類型,即球狀、結晶狀、膜狀、纖維狀、網狀和管狀[20]。球狀有色體的特征是質體球的堆積,大多數(shù)蔬菜作物,如辣椒中含有豐富的質體球滴結構[21]。晶狀有色體通常與晶體結構中β-胡蘿卜素和番茄紅素的超積累有關,典型的如番茄和胡蘿卜根中發(fā)現(xiàn)的有色體類型[22-23]。在同一有色體中經常發(fā)現(xiàn)不止一種類型的類胡蘿卜素隔離亞結構,袁平麗[24]發(fā)現(xiàn),在不同倍性的西瓜果肉中有色體以球狀、管狀等多種形態(tài)存在。有色體的形成是一個復雜的過程,有研究表明,有色體的發(fā)育與細胞膜增殖有關,而活性脂肪酸的生物合成和脂質代謝則是細胞膜增殖的關鍵。在番茄有色體發(fā)育過程中參與脂肪酸生物合成的有色體編碼基因accD的高水平表達,表明脂質的合成在有色體發(fā)育中具有重要作用[25]。在花椰菜中發(fā)現(xiàn)一個Or基因的功能與一個細胞過程有關,該過程觸發(fā)前質體或其他非彩色質體分化為有色體,從而積累類胡蘿卜素[26]。在馬鈴薯中進行Or基因的轉基因試驗也表明,Or基因確實控制著有色體的分化,并且通過對有色體形成的調控可以間接對植物類胡蘿卜素的積累產生深遠的影響[27]。此后,在對胡蘿卜的研究中發(fā)現(xiàn),Or基因的一個突變被認為影響了有色體的結構進而影響了類胡蘿卜素的合成與貯藏[28]。盡管許多因素和過程都影響和控制著有色體的分化和發(fā)育,目前關于控制有色體發(fā)育的相關基因和途徑在很大程度上仍未可知。
1.3 蔬菜作物中有色體與類胡蘿卜素積累的關系
有色體作為園藝作物花、果、根中合成和積累類胡蘿卜素的主要質體,在不同的植物器官中積累的類胡蘿卜素種類和含量各不相同。Zhang等[29]在西瓜中鑒定出一種屬于PHT4轉運蛋白家族中的Pi轉運蛋白ClPHT4;2,它可以在胞質和有色體之間轉運Pi,在有色體發(fā)育過程中起著重要作用,ClPHT4;2基因的高表達與不同西瓜材料中類胡蘿卜素含量的增加顯著相關。在西瓜果實成熟過程中,許多類胡蘿卜素球從塌陷的色素質體中釋放到細胞質中,并在有色的果肉細胞中積累,類胡蘿卜素在有色體發(fā)育過程中的高積累導致有色體破裂,這在西瓜瓤色發(fā)育過程中十分必要。Tzuri等[30]發(fā)現(xiàn),甜瓜中的一個‘Golden SNP導致CmOr蛋白中高度保守的精氨酸變成組氨酸,從而導致β-胡蘿卜素的積累。Chayut等[31]的進一步研究發(fā)現(xiàn)了一個CmOr無義突變(CmOr lowb),它降低了水果中β-胡蘿卜素的含量。Cmor-lowb在開花后30 d至成熟期間抑制了果實中有色體的形成和葉綠體的解體,表明Cmor調節(jié)了葉綠體向有色體的轉化,影響了類胡蘿卜素的含量。有色體在不同蔬菜作物中以不同的形態(tài)存在,且在同一作物同一器官中可能存在多種形態(tài)的有色體共同調控類胡蘿卜素的合成和貯藏。
2 蔬菜作物中類胡蘿卜素的合成途徑
2.1 類胡蘿卜素前體的合成
類胡蘿卜素的前體物質是異戊烯焦磷酸(IPP)和二甲基丙烯基二磷酸(DMAPP),前體物質的合成主要來自兩個途徑:2-C-甲基-D-赤藻糖醇-4-磷酸(2-C-Methyl-D-erythritol 4-phosphate,MEP)途徑和甲羥戊酸(MVA)途徑。MEP途徑是在植物細胞器質體中和真菌中發(fā)生,MVA途徑主要在植物細胞液中和細菌中發(fā)生,而在園藝植物中類胡蘿卜素的合成和積累主要發(fā)生在質體中,因此,在蔬菜作物中類胡蘿卜素前體主要通過MEP途徑合成[32-33]。MEP途徑即丙酮酸和3-磷酸甘油醛通過縮合反應生成1-脫氧-木酮糖-5-磷酸(DXP),并通過1-脫氧-D-木酮糖-5-磷酸合酶(DXS)和5-磷酸脫氧木酮糖還原異構酶(DXR)催化反應生成控制牻牛兒牻牛兒基焦磷酸(GGPP)合成的前體IPP和二甲基丙烯基二磷酸(DMAPP)。IPP和DMAPP通過縮合反應生成牻牛兒焦磷酸(C10),然后在牻牛兒牻牛兒基焦磷酸合成酶(GGPPS)的作用下生成牻牛兒牻牛兒基焦磷酸(GGPP)。
2.2 蔬菜作物中類胡蘿卜素的合成
目前關于類胡蘿卜素相關合成途徑已經比較清楚,筆者根據以往研究對類胡蘿卜素的合成通路進行了總結(圖1),從GGPP生成第一個類胡蘿卜素的物質八氫番茄紅素,再經脫氫、環(huán)化、羥基化、環(huán)氧化等轉變?yōu)槠渌惡}卜素[34]。即2分子的GGPP在質體中進行縮合反應,并在八氫番茄紅素合成酶(PSY)的作用下生成15-順式-八氫番茄紅素(phytoene),此為類胡蘿卜素生物合成的第一步,同時也是限速步驟,PSY是此過程中的限速酶。八氫番茄紅素在八氫番茄紅素脫氫酶(PDS)的作用下生成ζ-胡蘿卜素(ζ-carotene),然后在ζ-胡蘿卜素脫氫酶(ZDS)的催化作用下形成順式番茄紅素(cris-lycopene)。因為類胡蘿卜素在自然界中主要以反式結構存在,因此異構化作用也是類胡蘿卜素合成的關鍵一步,順式番茄紅素在類胡蘿卜素異構酶(Z-ISO,CRTISO)的催化下形成紅色的反式番茄紅素[35],其中CRTISO異構酶的活性取決于黃素腺嘌呤二核苷酸(FAD)結合基序,該基序與輔助因子(FADred)的還原形式結合,進而催化異構反應[36]。
番茄紅素環(huán)化是類胡蘿卜素合成過程中的一個重要分支點,反式番茄紅素在番茄紅素環(huán)化酶(LCYE和LCYB)的催化下進行環(huán)化反應分別生成α-胡蘿卜素和β-胡蘿卜素,該反應是類胡蘿卜素代謝的關鍵步驟,番茄紅素的環(huán)化產生了類胡蘿卜素的多樣性。在α支路上,α-胡蘿卜素在β-胡蘿卜素羥化酶(BCH)和ε-環(huán)羥化酶(ECH)等環(huán)羥化酶的共同催化作用下生成葉黃素[37]。在β支路上,β-胡蘿卜素經過一次BCH羥基化反應生成β-隱黃質,β-隱黃質再經羥基化生成玉米黃質,然后在玉米黃素環(huán)氧酶(ZEP)的作用下生成紫黃質,紫黃質在新黃質合成酶(NSY)的催化下生成新黃質,也是該支路上的最后一個產物,紫黃質和新黃質被認為是ABA合成的前體物質[38-39]。
3 蔬菜作物中類胡蘿卜素的合成調控
3.1 關鍵酶基因對蔬菜作物中類胡蘿卜素合成的調控
類胡蘿卜素的合成受到多方面的調控,在很多研究中發(fā)現(xiàn)其直接受到類胡蘿卜素相關合成基因和酶的直接調控。八氫番茄紅素合成酶(PSY)是類胡蘿卜素合成途徑上游中關鍵的調節(jié)酶,同樣也是一種重要的限速酶,在類胡蘿卜素合成中占據重要地位。在擬南芥中,ORANGE(OR)蛋白被證明是PSY的轉錄后調節(jié)因子,通過調節(jié)PSY的水平來控制類胡蘿卜素的合成[40];后來的研究發(fā)現(xiàn),OR通過保持PSY以適當?shù)恼郫B方式和防止PSY被Clp蛋白酶降解來調節(jié)PSY的水平和活性[41]。在番茄中發(fā)現(xiàn)3個PSY 基因(PSY1、PSY2、PSY3),PSY2是葉組織特異表達基因,參與葉中的類胡蘿卜素合成;PSY3則被認為是在脅迫條件下的根中起作用;而PSY1基因被定位在3號染色體上,在番茄成熟果實中上調表達,是PSY多基因家族中主要針對果實中類胡蘿卜素合成的基因,能夠促進番茄果實中番茄紅素的積累[42-43],同時也表明不同PSY亞型的表達譜表現(xiàn)出組織特異性。Nakkanong等[44]發(fā)現(xiàn),在南瓜中,PSY1基因在果實發(fā)育早期表現(xiàn)出較高的表達水平,這可能會觸發(fā)果實中的類胡蘿卜素積累的增加,導致果實類胡蘿卜素含量增加。對不同亞型的PSY蛋白活性及它們的氨基酸殘基的研究較少,Cao等[45]以番茄PSY亞型PSY1和PSY2為研究對象,通過定點突變分析和三維結構建模對PSY蛋白進行檢測,發(fā)現(xiàn)一個PSY核心結構中相鄰的芳香族化合物對PSY的高活性至關重要。
無色八氫番茄紅素經過八氫番茄紅素脫氫酶(PDS)、ξ-胡蘿卜素脫氫酶(ZDS)催化脫氫和類胡蘿卜素異構酶(CRITSO)催化異構形成紅色的反式番茄紅素。PDS和ZDS都是膜結合電子受體,在黃素結合基序處結合氧化還原活性輔因子,可以作為胡蘿卜素去飽和酶進行氧化還原進而調節(jié)類胡蘿卜素的生物合成[46]。在番茄中PDS被定位在3號染色體上,ZDS被定位在1號染色體上,且通過對PDS、ZDS進行沉默等發(fā)現(xiàn)PDS、ZDS的表達與類胡蘿卜素(尤其是番茄紅素)的積累成正相關[47-48]。
目前,自然界中的類胡蘿卜素大多以反式結構穩(wěn)定存在,類胡蘿卜素異構酶(CRITSO)是催化類胡蘿卜素順反轉化的關鍵酶,能夠將番茄紅素從順式構象異構為全反式構象。在番茄中,CRTISO 被定位在10號染色體上,該基因在tangerine突變體的定位中被發(fā)現(xiàn),其突變導致番茄果肉顏色由紅色變成橙色[49]。在西瓜中CRTISO基因主要在西瓜成熟果肉中表達,差異表達基因與果肉的顏色無明顯相關性,但對其CDSs序列分析的結果表明,CRTISO基因的自然突變可能調節(jié)了橙色果肉西瓜品種中原番茄紅素的積累[50]。Su等[51]發(fā)現(xiàn),在大白菜中BrCRTISO功能的缺失導致了大白菜內葉中原番茄紅素的積累、類胡蘿卜素代謝途徑中上游合成基因的上調和下游降解基因的下調,有助于促進大白菜內頭葉呈現(xiàn)出橙色。在黃瓜中橙色果肉的形成則可能是or基因或BCH1基因的調控[52]。通過對胡蘿卜中類胡蘿卜素生物合成基因與胡蘿卜中類胡蘿卜素含量與組分關系的研究發(fā)現(xiàn),總類胡蘿卜素含量和β-胡蘿卜素含量與ZEP、PDS和CRTISO基因表達顯著相關[53]。CRTISO方面的研究在一定程度上彌補了CRTISO在基因功能等方面的研究空白,但其相關功能仍需進一步挖掘。
類胡蘿卜素代謝過程中番茄紅素的環(huán)化是一個重要的分界點,LCYB是催化β-胡蘿卜素合成的酶,LCYE是催化α-胡蘿卜素生成的一類重要的酶。其中,LCYB基因在西瓜上被定位在4號染色體上,Bang等[54]對亮黃瓤與紅瓤西瓜中LCYB的cDNA全長序列進行比較,發(fā)現(xiàn)其編碼區(qū)存在3個單核苷酸多態(tài)性(SNP)位點,這些SNPs表現(xiàn)出與瓤色的表現(xiàn)型完全共分離,表明LCYB可能是亮黃瓤或紅瓤顏色的遺傳因子。豆峻嶺等[55]通過對無籽西瓜果實發(fā)育過程中番茄紅素合成代謝酶基因表達的分析發(fā)現(xiàn),LCYB在控制果實瓤色發(fā)育中具有重要作用。Wang等[56]發(fā)現(xiàn),LCYB基因可能在蛋白質水平上調控果實顏色的變化,并利用果肉顏色特異性CAPS標記,建立了一套新的西瓜紅、黃果色標記輔助選擇系統(tǒng)。LCYE和LCYB是兩種存在相互競爭關系的酶,Diretto等[57]發(fā)現(xiàn)在馬鈴薯中對LCYE基因進行沉默,能夠導致馬鈴薯中β-胡蘿卜素的增加。由此可見,番茄紅素環(huán)化酶在類胡蘿卜素的組成和含量中占據重要地位,可以通過調節(jié)相關環(huán)化酶基因來使類胡蘿卜素的代謝偏向某一通路或支路進而影響類胡蘿卜素的合成。
3.2 轉錄因子調控對蔬菜作物中類胡蘿卜素合成的調控
類胡蘿卜素相關轉錄因子的調控研究逐漸成為研究的一大熱點。目前已經發(fā)現(xiàn)很多轉錄因子直接或間接參與蔬菜中類胡蘿卜素的相關合成與代謝,主要有MYB家族、BBX家族、NAC家族、MADS-box家族、AP2/ERF家族等。MYB家族、BBX家族及NAC家族中的一些轉錄因子通過調節(jié)或結合類胡蘿卜素的相關合成基因來直接調控蔬菜作物中類胡蘿卜素的積累;MADS-box家族、AP2/ERF家族中的一些轉錄因子則是通過調節(jié)作物的成熟來間接影響類胡蘿卜素的合成(表1)。MADS-box家族的RIN轉錄因子目前在番茄中研究得比較深入,番茄rin果實突變體中乙烯合成不足導致有色體發(fā)育異常,RIN轉錄因子通過影響果實成熟來影響類胡蘿卜素的積累。rin (ripening inhibitor),nor(non-ripening) and Cnr(Colorless non-ripening)是番茄中常見的突變體,Wang等[58]對這些突變體的功能和遺傳相互作用進行研究,發(fā)現(xiàn)rin和nor在調控果實成熟過程中具有可加性,Cnr等位基因是rin和nor的上位性基因。在番茄中發(fā)現(xiàn)一種RIN-MC融合基因,該基因被翻譯為一種調控多種成熟基因表達的嵌合轉錄因子,該轉錄因子定位于細胞核內,能夠與其他MADS-box因子發(fā)生蛋白質相互作用,但RIN-MC融合基因在rin突變體中的可能功能尚不清楚[59]。
3.3 環(huán)境因素對蔬菜作物中類胡蘿卜素合成的影響
各種環(huán)境因素在植物生長過程中至關重要,在果實發(fā)育過程中也有著不可或缺的作用。李巖等[69]發(fā)現(xiàn),在番茄中紅光和紅藍組合光能夠通過提高番茄紅素生物合成關鍵酶基因GGPS和PSY1的轉錄水平和活性,促進果實中番茄紅素的合成;王曼曼等[70]發(fā)現(xiàn),番茄果實在著色期會受到高溫、低溫環(huán)境影響;高溫條件下可使番茄果實提早轉色,但同時也導致果實中的類胡蘿卜素含量一直維持在轉色期水平,嚴重影響果實中番茄紅素的積累,而溫度過低則會造成果實無法轉色,同時也發(fā)現(xiàn)光照對番茄果實中的類胡蘿卜素積累整體影響不大,但是高光條件能夠促進果實加速轉色。其他因素如種植地區(qū)、季節(jié)等因素都會影響植物果實中類胡蘿卜素的生成,袁平麗等[71]發(fā)現(xiàn)在河南新鄉(xiāng)、新疆昌吉兩地種植的西瓜中番茄紅素含量具有明顯差異。
在采后處理過程中,環(huán)境因素尤其是溫度對部分果蔬中類胡蘿卜素的積累也有很大影響。Pola等[72]在不同溫度下對辣椒進行采后處理,在30 ℃時辣椒中的葉綠素迅速降解并且變紅,在20 ℃時則呈橙紅色,并且在30 ℃時類胡蘿卜素含量較高,與類胡蘿卜素合成相關的基因(如PSY、LCYB等)表達上調。Alba等[73]發(fā)現(xiàn),光敏色素對番茄果實的成熟具有不同的調節(jié)作用,對收獲的成熟綠色果實進行短暫的紅光處理,可促進果實中番茄紅素含量的增加。采后處理在果蔬生產中占據重要地位,研究不同因素對果蔬中類胡蘿卜素含量的影響有助于為產品的貯藏及運輸?shù)忍峁﹨⒖肌?/p>
4 展 望
蔬菜的營養(yǎng)價值隨著人們對營養(yǎng)健康的關注被不斷挖崛,由于類胡蘿卜素種類的多樣性及其對人體的重要生理意義,與其相關的研究越來越深入。質體是類胡蘿卜素代謝的場所,不同的質體類型都對類胡蘿卜素的合成和積累具有很大的影響,可以通過調控質體的發(fā)生來影響類胡蘿卜素的相關合成和積累進而改善蔬菜品質。蔬菜作物中主要存在的質體類型是有色體,有色體的獨特能力為類胡蘿卜素的大量合成和積累提供了可能,越來越多的證據顯示質體中的隔離亞結構及球滴結構對類胡蘿卜素的生物合成和積累具有重要作用。功能基因組學相關工具的普及使人們對有色體的發(fā)育機制有了新的認識,目前有許多因素(如植物激素、糖)在蔬菜發(fā)育過程中調控有色體的分化,進而影響類胡蘿卜素積累,但具體調控機制仍不清楚,需要進一步深入研究。
隨著各種園藝作物基因組、轉錄組及代謝組等相關數(shù)據的逐漸完善,類胡蘿卜素合成途徑中相關的基因和酶也逐漸被廣泛研究,人們對類胡蘿卜素的研究也更加全面與深入,已經不單單局限于關鍵酶基因的克隆與驗證及各種化合物測定等方面。許多因子在不同水平上影響類胡蘿卜素的相關調控。目前對類胡蘿卜素的合成途徑已經有了比較清晰的認識,但對途徑中的關鍵酶基因的相關調控機制尚待進一步闡明。類胡蘿卜素通路基因的轉錄調控是園藝作物研究的重點,已被證明在調節(jié)類胡蘿卜素含量和成分方面具有重要意義。盡管目前已經發(fā)現(xiàn)許多與類胡蘿卜素調控相關的轉錄因子,但這些轉錄因子在其調控類胡蘿卜素的合成過程中處于什么地位,具體調控哪個類胡蘿卜素合成基因,或者通過什么途徑或物質來調控類胡蘿卜素合成基因,尚不清楚,有待深入研究。對類胡蘿卜素代謝、調節(jié)和類胡蘿卜素衍生物作用的認識仍在發(fā)展中。隨著類胡蘿卜素相關調控新基因及轉錄因子的不斷挖掘,將會為培育富含類胡蘿卜素的蔬菜新品種以及相關栽培技術等方面提供充分的依據,從而有效提高作物中類胡蘿卜素含量和穩(wěn)定性,以有利于改善人類營養(yǎng)和健康。
參考文獻
[1] 胡珂,李娜.倍受青睞的抗氧化家族:類胡蘿卜素[J].大學化學,2010,25(S1):94-98.
[2] SHERWIN J C,REACHER M H,DEAN W H,et al.Epidemiology of vitamin A deficiency and xerophthalmia in at-risk populations[J].Transactions of the Royal Society of Tropical Medicine and Hygiene,2012,106(4):205-214.
[3] FIEDOR J,BURDA K.Potential role of carotenoids as antioxidants in human health and disease[J].Nutrients,2014,6(2):466-488.
[4] GROTEWOLD E.The genetics and biochemistry of floral pigments[J].Annual Review of Plant Biology,2006,57:761-780.
[5] SRIVASTAVA S,SRIVASTAVA A K.Lycopene;chemistry,biosynthesis,metabolism and degradation under various abiotic parameters[J].Journal of Food Science and Technology,2015,52(1):41-53.
[6] 康保珊.番茄材料PI114490黃色果肉形成的分子分析[D].北京:中國農業(yè)大學,2014.
[7] NICOLLE C,SIMON G,ROCK E,et al.Genetic variability influences carotenoid,vitamin,phenolic,and mineral content in white,yellow,purple,orange,and dark-orange carrot[J].The Journal of the American Society for Horticultural Science,2004,129(4):523-529.
[8] HAYNES K G,CLEVIDENCE B A,RAO D,et al.Inheritance of carotenoid content in tetraploid × diploidpotato crosses[J].The Journal of the American Society for Horticultural Science,2011,136(4):265–272.
[9] BROWN C R,CULLEY D,YANG C-P,et al.Variation of anthocyanin and carotenoid contents and associated antioxidant values in potato breeding lines[J].The Journal of the American Society for Horticultural Science,2005,130(2):174-180.
[10] TADMOR Y,KING S,LEVI A DAVIS A,et al.Comparative fruit colouration in watermelon and tomato[J].Food Research International,2005,38(8/9):837-841.
[11] BANG H,DAVIS A R,KIM S,et al.Flesh color inheritance and gene interactions among canary yellow,pale yellow,and red watermelon[J].The Journal of the American Society for Horticultural Science,2010,135(4):362-368.
[12] LI B B,ZHAO S J,DOU J I,et al.Genetic mapping and development of molecular markers for a candidate gene locus controlling rind color in watermelon[J].Theoretical and Applied Genetics,2019,132(10):2741-2753.
[13] LOPEZ-JUEZ E,PYKE K A.Plastids unleashed:their development and their integration in plant development[J].International Journal of Developmental Biology,2005,49(5/6):557-577.
[14] SUN T,YUAN H,CAO H,et al.Carotenoid metabolism in plants:The role of plastids[J].Molecular Plant,2018,11(1):58-74.
[15] LI L,YUAN H,ZENG Y L,et al.Plastids and carotenoid accumulation[J].Subcellular Biochemistry,2016,79:273-293.
[16] DERU?RE J,R?MER S,D'HARLINGUE A,et al.Fibril assembly and carotenoid overaccumulation in chromoplasts:a model for supramolecular lipoprotein structures[J].The Plant Cell,1994,6(1):119-133.
[17] SCHWEIGGERT R,CARLE R.Carotenoid deposition in plant and animal foods and its impact on bioavailability[J].Critical Reviews in Food Science and Nutrition,2017,57(9):1807-1830.
[18] YUAN H,ZHANG J,NAGESWARAN D,et al.Carotenoid metabolism and regulation in horticultural crops[J].Horticulture Research,2015,2(1):102-109.
[19] LI L,YUAN H.Chromoplast biogenesis and carotenoid accumulation[J].Archives of Biochemistry and Biophysics,2013,539(2):102-109.
[20] EGEA I,BARSAN C,BIAN W,et al.Chromoplast differentiation:current status and perspectives[J].Plant Cell Physiology,2010,51(10):1601-1611.
[21] FREY-WYSSLING A,KREUTZER E.The submicroscopic development of chromoplasts in the fruit of Capsicum annuum L.[J].Journal of Ultrastructure Research,1958,1(4):397-411.
[22] ROSSO S W.The ultrastructure of chromoplast development in red tomatoes[J].Journal of Ultrastructure Research,1968,25(3):307-322.
[23] KIM J E,RENSING K H,DOUGLAS C J,et al.Chromoplasts ultrastructure and estimated carotene content in root secondary phloem of different carrot varieties[J].Planta,2010,231(3):549-558.
[24] 袁平麗.多倍體西瓜發(fā)育過程中番茄紅素變化及關鍵酶基因表達[D].北京:中國農業(yè)科學院,2012.
[25] KAHLAU S,BOCK R.Plastid transcriptomics and translatomics of tomato fruit development and chloroplast-to-chromoplast differentiation: chromoplast gene expression largely serves the production of a single protein[J].Plant Cell,2008,20(4):856-874.
[26] LU S,VAN ECK J,ZHOU X,et al.The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation[J].Plant Cell,2006,18(12):3594-36605.
[27] LOPEZ A B,VAN ECK J,CONLIN B J,et al.Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers[J].Journal of Experimental Botany,2008,59(2):213-223.
[28] ELLISON S L,LUBY C H,CORAK K E,et al.Carotenoid presence is associated with the Or gene in domesticated carrot[J].Genetics,2018,210(4):1497-1508.
[29] ZHANG J,GUO S G,REN Y,et al.High-level expression of a novel chromoplast phosphate transporter ClPHT4;2 is required for flesh color development in watermelon[J].New Phytologist,2017,213(3):1208-1221.
[30] TZURI G,ZHOU X,CHAYUT N,et al.A ‘golden SNP in CmOr governs the fruit flesh color of melon (Cucumis melo)[J].The Plant Journal,2015,82(2):267-279.
[31] CHAYUT N,YUAN H,OHALI S,et al.Distinct mechanisms of the ORANGE protein in controlling carotenoid flux[J].Plant Physiology,2017,173(1):376-389.
[32] EISENREICH W,BACHER A,ARIGONI D, et al. Biosynthesis of isoprenoids via the non-mevalonate pathway[J].Cellular and Molecular Life Sciences,2004,61(12):1401-1426.
[33] RODR?GUEZ-CONCEPCIóN M,BORONAT A.Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids.A metabolic milestone achieved through genomics[J].Plant Physiology,2002,130(3):1079-1089.
[34] NISAR N,LI L,LU S,et al.Carotenoid metabolism in plants[J].Molecular Plant,2015,8(1):68-82.
[35] CAZZONELLI C I,POGSON B J.Source to sink:regulation of carotenoid biosynthesis in plants[J].Trends Plant Science,2010,15(5):266-274.
[36] YU Q,GHISLA S,HIRSCHBERG J,et al.Plant carotene cis-trans isomerase crtiso a new member of the fadred-dependent flavoproteins catalyzing non-redox reactions[J].Journal of Biological Chemistry,2011,286(10):8666-8676.
[37] TIAN L,DELLAPENNA D,ZEEVAART J A.Effect of hydroxylated carotenoid deficiency on ABA accumulation in Arabidopsis[J].Physiologia Plantarum,2004,122(3):314-320.
[38] GóMEZ-GARCíA M D R,OCHOA-ALEJO N.Biochemistry and molecular biology of carotenoid biosynthesis in chili peppers (Capsicum spp.)[J].International Journal of Molecular Sciences,2013,14(9):19025-19053.
[39] LU S,LI L.Carotenoid metabolism:biosynthesis,regulation,and beyond[J].Journal of Integrative Plant Biology,2008,50(7):778-785.
[40] ZHOU X,WELSCH R,YANG Y,et al.Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(11):3558-3563.
[41] WELSCH R,ZHOU X,YUAN H,et al.Clp protease and OR directly control the proteostasis of phytoene synthase,the crucial enzyme for carotenoid biosynthesis in Arabidopsis[J].Molecular Plant,2018,11(1):149-162.
[42] GIULIANO G.Plant carotenoids:genomics meets multi-gene engineering[J].Current Opinion in Plant Biology,2014,19:111-117.
[43] FANTINI E,F(xiàn)ALCONE G,F(xiàn)RUSCIANTE S,et al.Dissection of tomato lycopene biosynthesis through virus-induced gene silencing[J].Plant Physiology,2013,163(2):986-998.
[44] NAKKANONG K,YANG J H,ZHANG M F.Carotenoid accumulation and carotenogenic gene expression during fruit development in novel interspecific inbred squash lines and their parents[J].Journal of Agricultural and Food Chemistry,2012,60(23):5936-5944.
[45] CAO H,LUO H,YUAN H,et al.A neighboring aromatic-aromatic amino acid combination governs activity divergence between tomato phytoene synthases[J].Plant Physiology,2019,180(4):1988-2003.
[46] NIEVELSTEIN V,VANDEKERCKHOVE J,TADROS M H,et al.Carotene desaturation is linked to a respiratory redox pathway in narcissus pseudonarcissus chromoplast membranes:involvement of a 23‐kDa oxygen‐evolving‐complex‐like protein[J].European Journal of Biochemistry,1995,233(3):864-872.
[47] MANN V,PECKER I,HIRSCHBERG J.Cloning and characterization of the gene for phytoene desaturase (Pds) from tomato (Lycopersicon esculentum)[J].Plant Molecular Biology,1994,24(3):429-434.
[48] FANTINI E,F(xiàn)ALCONE G,F(xiàn)RUSCIANTE S,et al.Dissection of tomato lycopene biosynthesis through virus-induced gene silencing[J].Plant Physiology,2013,163(2):986-998.
[49] ISAACSON T,RONEN G,ZAMIR D,et al.Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants[J].The Plant Cell,2002,14(2):333-342.
[50] JIN B,LEE J,KWEON S,et al.Analysis of flesh color-related carotenoids and development of a CRTISO gene-based DNA marker for prolycopene accumulation in watermelon[J].Horticulture,Environment,and Biotechnology,2019,60(3):399-410.
[51] SU T,YU S,WANG J,et al.Loss of function of the carotenoid isomerase gene BrCRTISO confers orange color to the inner leaves of chinese cabbage (Brassica rapa L.ssp.pekinensis)[J].Plant Molecular Biology Reporter,2014,33(3):648-659.
[52] WATERS B M,KIM H,AMUNDSEN K.New genetic sources for orange color in cucumber (Cucumis sativus L.) fruit flesh[J].BioRxiv,2019:1-12.
[53] JOURDAN M,GAGNE S,DUBOIS-LAURENT C,et al.Carotenoid content and root color of cultivated carrot:a candidate-gene association study using an original broad unstructured population[J].PLoS One,2015,10(1):e0116674.
[54] BANG H,KIM S,LESKOVAR D,et al.Development of a codominant CAPS marker for allelic selection between canary yellow and red watermelon based on SNP in lycopene β-cyclase (LCYB) gene[J].Molecular Breeding,2007,20(1):63-72.
[55] 豆峻嶺,劉文革,趙勝杰,等.三倍體無籽西瓜果實發(fā)育期番茄紅素合成代謝酶基因的表達[J].果樹學報,2014,31(4):589-595.
[56] WANG C,QIAO A,F(xiàn)ANG X,et al.Fine mapping of lycopene content and flesh color related gene and development of molecular marker-assisted selection for flesh color in watermelon (Citrullus lanatus)[J].Frontiers in Plant Science,2019,10:1-16.
[57] DIRETTO G,TAVAZZA R,WELSCH R,et al.Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase[J].BMC Plant Biology,2006,6(13):1-11.
[58] WANG R,LAMMERS M,TIKUNOV Y,et al.The rin,nor and Cnr spontaneous mutations inhibit tomato fruit ripening in additive and epistatic manners[J].Plant Science,2020,294:1-12.
[59] LI S,XU H,JU Z,et al.The RIN-MC fusion of MADS-Box transcription factors has transcriptional activity and modulates expression of many ripening genes[J].Plant Physiology,2018,176(1):891-909.
[60] WU M,XU X,HU X,et al.SlMYB72 regulates the metabolism of chlorophylls,carotenoids,and flavonoids in tomato fruit[J].Plant Physiology,2020,183(3):854-868.
[61] MENG Y,WANG Z,WANG Y,et al.The MYB activator WHITE PETAL1 associates with MtTT8 and MtWD40-1 to regulate carotenoid-derived flower pigmentation in Medicago truncatula[J].Plant Cell,2019,31(11):2751-2767.
[62] XIONG C,LUO D,LIN A,et al.A tomato B-box protein SlBBX20 modulates carotenoid biosynthesis by directly activating PHYTOENE SYNTHASE 1,and is targeted for 26S proteasome-mediated degradation[J].New Phytologist,2019,221(1):279-294.
[63] ZHU M,CHEN G,ZHOU S,et al.A new tomato NAC (N AM/A TAF1/2/C UC2) transcription factor,SlNAC4,functions as a positive regulator of fruit ripening and carotenoid accumulation[J].Plant and Cell Physiology,2014,55(1):119-135.
[64] MENG X,YANG D,LI X,et al.Physiological changes in fruit ripening caused by overexpression of tomato SlAN2,an R2R3-MYB factor[J].Plant Physiology and Biochemistry,2015,89:24-30.
[65] LI L,WANG X,ZHANG X,et al.Unraveling the target genes of RIN transcription factor during tomato fruit ripening and softening[J].Journal of the Science of Food and Agriculture,2017,97(3):991-1000.
[66] GRASSI S,PIRO G,LEE J M,et al.Comparative genomics reveals candidate carotenoid pathway regulators of ripening watermelon fruit[J].BMC Genomics,2013,14:781-801.
[67] KARLOVA R,ROSIN F M,BUSSCHER-LANGE J,et al.Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening(c)(w)[J].The Plant Cell,2011,23(3):923-941.
[68] LEE J M,JOUNG J G,MCQUINN R,et al.Combined transcriptome,genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation[J].The Plant Journal,2012,70(2):191-204.
[69] 李巖,王麗偉,文蓮蓮,等.紅藍光質對轉色期間番茄果實主要品質的影響[J].園藝學報,2017,44(12):2372-2382.
[70] 王曼曼,薛舒丹,吳廷全,等.光照和溫度調控對番茄果實中類胡蘿卜素合成的影響[J].分子植物育種,2020:https://kns.cnki.net/kcms/detail/46.1068.S.20200610.1655.012.html.
[71] 袁平麗,劉文革,李 智,等.兩種生態(tài)條件下西瓜果實番茄紅素含量比較[J].中國瓜菜,2017,30(7):4-7.
[72] POLA W,SUGAYA S,PHOTCHANACHAI S.Influence of postharvest temperatures on carotenoid biosynthesis and phytochemicals in mature green chili (Capsicum annuum L.)[J].Antioxidants (Basel),2020,9(3):203-216.
[73] ALBA R,CORDONNIER-PRATT M-M L,PRATT L H.Fruit-localized phytochromes regulate lycopene accumulation independently of ethylene production in tomato[J].Plant Physiology,2000,123(1):363-370.