麥逸辰,卜容燕,韓 上,雷之萌,李 敏,王 慧,程文龍,唐 杉,武 際,朱 林
添加不同外源氮對(duì)水稻秸稈腐解和養(yǎng)分釋放的影響
麥逸辰1,2,卜容燕2,韓 上2,雷之萌1,3,李 敏2,王 慧2,程文龍2,唐 杉2,武 際2※,朱 林1
(1. 安徽農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,合肥 230036;2. 安徽省農(nóng)業(yè)科學(xué)院土壤肥料研究所/養(yǎng)分循環(huán)與資源環(huán)境安徽省重點(diǎn)實(shí)驗(yàn)室,合肥 230031;3. 泰安市肥城市老城街道初級(jí)中學(xué),泰安 271601)
探究添加不同外源氮對(duì)水稻秸稈腐解規(guī)律和養(yǎng)分釋放特征的影響,為提高水稻秸稈養(yǎng)分利用提供理論依據(jù)。該研究采用室內(nèi)恒濕網(wǎng)袋培養(yǎng)法,設(shè)置4個(gè)處理:不添加外源氮(CK);添加尿素(PU);添加尿素硝酸銨(UAN);添加石灰氮(CaCN2)。結(jié)果表明:水稻秸稈腐解規(guī)律表現(xiàn)為0~5 d腐解速率最大,為0.39~0.47 g/d;5~30 d腐解速率較快,為0.12~0.16 g/d;30~150 d腐解緩慢并趨于平穩(wěn),腐解速率為0.045~0.050 g/d。與CK相比,添加外源氮可以顯著提高水稻秸稈的累積腐解率(< 0.05)。雖然秸稈累積腐解率在不同外源氮處理間差異不顯著,但是不同外源氮的添加對(duì)水稻秸稈不同時(shí)期的腐解特征有著顯著影響。主要表現(xiàn)在0~30 d PU、UAN和CaCN2處理水稻秸稈腐解速率分別為0.21、0.20和0.19 g/d,PU處理比UAN和CaCN2處理分別高5.00%和10.53%;在該時(shí)間段纖維素和半纖維素腐解率占累積腐解率的比例分別為63.65%和47.02%,這表明纖維素和半纖維素腐解主要集中在秸稈腐解前期,且PU處理對(duì)纖維素和半纖維素的促腐效果最佳。30~150 d PU、UAN和CaCN2處理腐解速率分別為0.046、0.046和0.050 g/d,CaCN2比PU和UAN處理高8.70%;在該時(shí)間段木質(zhì)素腐解率占累積腐解率的比例為82.45%,這表明木質(zhì)素腐解主要集中在秸稈腐解后期,且CaCN2處理對(duì)木質(zhì)素的促腐效果最佳。由此可見(jiàn)PU處理前期促腐效果最佳,CaCN2處理后期促腐效果最佳。綜合不同外源氮對(duì)水稻秸稈的促腐效應(yīng),建議不同種類(lèi)外源氮進(jìn)行配施,以達(dá)到最佳促腐效果。
尿素;腐解;水稻秸稈;尿素硝酸銨;石灰氮
中國(guó)是農(nóng)業(yè)生產(chǎn)大國(guó)。據(jù)統(tǒng)計(jì),中國(guó)糧食作物年產(chǎn)超過(guò)6億t[1],秸稈資源量年均約7億t[2]。作物秸稈含有豐富的營(yíng)養(yǎng)元素,秸稈總養(yǎng)分年產(chǎn)2 000萬(wàn)t左右,其中氮含量約700萬(wàn)t、磷含量約200萬(wàn)t、鉀含量約1 000萬(wàn)t[3]。秸稈還田不僅可以實(shí)現(xiàn)有機(jī)養(yǎng)分循環(huán)再利用、促進(jìn)作物生長(zhǎng)、替代化肥[4-5],還能改善土壤理化性質(zhì),培肥土壤[6-8]。秸稈大量還田后,如果不加速腐解,易造成土壤泡沫化,影響下茬作物生長(zhǎng)[9-10]。且大量秸稈還田易造成植物缺氮,導(dǎo)致作物減產(chǎn)[11-13]。因此探明秸稈腐解規(guī)律是提高秸稈還田利用效率的關(guān)鍵。
長(zhǎng)期研究結(jié)果表明調(diào)節(jié)還田秸稈C/N有利于促進(jìn)秸稈腐解和養(yǎng)分釋放,提高作物產(chǎn)量[14]。其主要措施是通過(guò)添加外源氮調(diào)節(jié)土壤和秸稈的C/N,提高微生物活性,以此促進(jìn)秸稈的腐解[15]。此外,秸稈還田后氮肥前移促進(jìn)了秸稈養(yǎng)分釋放,提高作物產(chǎn)量[16]。這是因?yàn)榻斩挶旧鞢/N較高,影響了土壤氮素供應(yīng)。秸稈化學(xué)組分不同,微生物分解物質(zhì)的速率也存在較大差異。例如豆科綠肥秸稈C/N值為15∶1~20∶1,這類(lèi)秸稈需要提升C/N以滿足微生物分解所需的碳源。而水稻秸稈、小麥秸稈等C/N值為50∶1~60∶1[17],因此合理調(diào)節(jié)還田秸稈C/N是促進(jìn)秸稈腐解的關(guān)鍵。
安徽省是水稻主產(chǎn)省份,其中水稻秸稈生物量最大,占全省秸稈資源總量的1/3以上,其氮、磷、鉀養(yǎng)分總量為51.1萬(wàn)t,占全省秸稈總養(yǎng)分量的40%左右,遠(yuǎn)高于其他秸稈養(yǎng)分總量[18]。安徽稻作區(qū)多數(shù)進(jìn)行兩熟制種植,水稻收獲后至下一茬作物播種存在茬口緊張的現(xiàn)象。且水稻秸稈C/N較高,富含半纖維素和木質(zhì)素,短期內(nèi)不易腐解,影響下茬作物生長(zhǎng)。因此促進(jìn)水稻秸稈腐解是當(dāng)前亟需解決的問(wèn)題。添加外源氮是促進(jìn)秸稈腐解的重要措施,以往的研究表明氮素類(lèi)型是影響促腐效果的重要因素。尿素是一種固態(tài)酰胺態(tài)氮肥,可以快速水解為銨態(tài)氮供微生物利用,促進(jìn)微生物的繁殖,有利于微生物對(duì)秸稈的分解作用[19];尿素硝酸銨是近年發(fā)展迅速的液態(tài)肥料,為水溶性銨態(tài)氮,可以直接滲入秸稈并被吸收,對(duì)加快秸稈養(yǎng)分釋放效果明顯[20];氰氨態(tài)氮是一種遲效氮肥,施入土壤后在水分的作用下生成強(qiáng)氧化鈣和氰氨,其中氰氨通過(guò)水解作用再轉(zhuǎn)化為尿素,然后通過(guò)進(jìn)一步水解生成碳酸銨,對(duì)秸稈有機(jī)質(zhì)的分解和改良pH的效果明顯[21]。前人的研究主要針對(duì)適宜外源氮添加的比例,較少考慮不同種類(lèi)外源氮對(duì)秸稈腐解的影響。所以本研究采用模擬培養(yǎng)的方法,通過(guò)添加不同的外源氮,對(duì)比研究水稻秸稈腐解規(guī)律以及養(yǎng)分釋放規(guī)律,深入分析不同種類(lèi)外源氮對(duì)水稻秸稈的促腐效果,以期篩選出最適宜的氮源,為秸稈資源高效利用提供理論依據(jù)。
本試驗(yàn)采用室內(nèi)恒溫恒濕網(wǎng)袋培養(yǎng)法,試驗(yàn)于安徽省農(nóng)業(yè)科學(xué)院開(kāi)展。供試土壤基礎(chǔ)理化性質(zhì):有機(jī)質(zhì)16.77 g/kg,全氮1.18 g/kg,有效磷8.22 mg/kg,速效鉀109.02 mg/kg,pH值5.57。供試水稻秸稈養(yǎng)分含量:全碳399.1 g/kg,全氮10.2 g/kg,全磷1.0 g/kg,全鉀21.2 g/kg。秸稈有機(jī)組分含量:纖維素496.3 g/kg,半纖維素149.6 g/kg,木質(zhì)素189.8 g/kg。
試驗(yàn)共設(shè)置4個(gè)處理:1)不添加外源氮(CK);2)添加尿素(PU,固態(tài)酰胺態(tài)氮);3)添加尿素硝酸銨(UAN,水溶態(tài)酰胺態(tài)氮);4)添加石灰氮(CaCN2,氰胺態(tài)氮)。每個(gè)處理設(shè)3次重復(fù),即每個(gè)處理每次取樣設(shè)置3盆供采樣分析。采用室內(nèi)尼龍網(wǎng)袋翻埋法,網(wǎng)袋規(guī)格為25 cm×15 cm,孔徑0.048 mm。秸稈剪成2~3 cm小段,風(fēng)干后將其裝入網(wǎng)袋并封緊袋口,埋于20 cm×25 cm的塑料桶中,每桶裝8 kg土壤。網(wǎng)袋距離土層表面5 cm。每盆埋1袋,每袋裝25 g秸稈。按照0.05 g N/kg土的比例進(jìn)行添加[22-23]。將外源氮與塑料桶中土壤充分混勻,供試土壤田間持水量為38.6%,參考楊蘇、王婧等[24-25]的培養(yǎng)試驗(yàn),本試驗(yàn)采用恒濕恒溫培養(yǎng),其中培養(yǎng)濕度為田間持水量的60%,即土壤濕度為23.2%。培養(yǎng)溫度為25 ℃。試驗(yàn)周期為150 d,分別在第0、5、10、30、60、90、120、150天進(jìn)行破壞性取樣,每個(gè)處理每次取樣設(shè)置3盆重復(fù)供采樣分析,整個(gè)培養(yǎng)周期8次取樣,因此每個(gè)處理共設(shè)置24盆。每次取樣前2 d不再進(jìn)行水分補(bǔ)充,在取樣當(dāng)天輕輕移出網(wǎng)袋上方的土壤,然后取出網(wǎng)袋,取樣后用清水輕輕地沖刷網(wǎng)袋表面的土壤,60 ℃烘干備用[26]。
將培養(yǎng)后取出的網(wǎng)袋里面的秸稈取出烘干至水分完全蒸發(fā),利用失重法測(cè)定秸稈殘留量。即培養(yǎng)后秸稈烘干重量。樣品經(jīng)過(guò)粉碎后測(cè)定秸稈全碳、全氮、全磷、全鉀含量并計(jì)算其養(yǎng)分釋放率。全碳采用外加熱-重鉻酸鉀容量法測(cè)定;全氮采用半微量開(kāi)氏定氮法測(cè)定;全磷采用鉬銻抗比色法測(cè)定;全鉀采用火焰光度計(jì)法測(cè)定[27]。纖維素、半纖維素、木質(zhì)素采用定量分析程序法測(cè)定[28]。中性洗滌劑去除秸稈可溶性糖類(lèi),用2 mol/L的鹽酸水解測(cè)定半纖維素,濾液用地衣酚法由木糖標(biāo)準(zhǔn)曲線測(cè)定纖維素含量,剩余濾渣經(jīng)丙酮清洗并由硫酸水解過(guò)濾,濾液采用蒽酮定糖法由葡萄糖標(biāo)準(zhǔn)曲線測(cè)定纖維素含量,濾渣550 ℃灰化后稱(chēng)質(zhì)量測(cè)定木質(zhì)素含量。田間持水量采用毛細(xì)吸滲法測(cè)定[29]。
秸稈腐解率(decomposition rate of straw,%)和秸稈腐解速率(accelerating decomposition rate of straw,g/d)由式(1)和式(2)計(jì)算。
秸稈腐解率=(0-)/0×100% (1)
秸稈腐解速率=(M-M+1)/(T-T+1) (2)
式中0表示培養(yǎng)前秸稈質(zhì)量,g;表示秸稈殘留量,g;M表示培養(yǎng)時(shí)刻的秸稈質(zhì)量,g;M+1表示培養(yǎng)+1時(shí)刻的秸稈質(zhì)量,g;T表示時(shí)刻的培養(yǎng)天數(shù),d;T+1表示+1時(shí)刻的天數(shù),d。
碳養(yǎng)分釋放率(nutrient release rate of carbon,%)(氮、磷和鉀養(yǎng)分釋放率計(jì)算方法與碳養(yǎng)分相同),纖維素累積腐解率(cumulative decomposition rate of cellulose,%)(半纖維素、木質(zhì)素含量計(jì)算方法與纖維素相同)由式(3)和式(4)計(jì)算。
碳養(yǎng)分釋放率=(0-)/0×100% (3)
纖維素累積腐解率=(0-)/0×100% (4)
式中0表示培養(yǎng)前秸稈碳養(yǎng)分含量,g/kg;表示剩余秸稈碳養(yǎng)分含量,g/kg;0表示培養(yǎng)前秸稈纖維素含量,g/kg;表示剩余秸稈纖維素含量,g/kg。
水稻秸稈、有機(jī)組分(纖維素、半纖維素、木質(zhì)素)腐解率用一級(jí)動(dòng)力學(xué)方程[30-33](first order kinetic equation)由式(5)表示。
=·(1-e-b·t) (5)
式中為時(shí)刻累積腐解率,%;為最大腐解率,%;為平均腐解速率,%/d;為腐解天數(shù),d。
采用Excel 2010進(jìn)行數(shù)據(jù)分析,Origin 2019進(jìn)行一級(jí)動(dòng)力學(xué)方程擬合、圖形繪制,SPSS 24.0軟件進(jìn)行方差分析、多重比較(Duncan)(<0.05)。
由圖1可知,水稻秸稈累積腐解率呈現(xiàn)先快后慢的特征。水稻秸稈腐解規(guī)律表現(xiàn)為0~5 d秸稈腐解速率最快,達(dá)到0.39~0.47 g/d,累積腐解率為7.25%~8.79%;5~30 d秸稈腐解速率較快,為0.12~0.16 g/d,累積腐解率為10.95%~14.94%;30~150 d腐解速率放緩,腐解速率0.045~0.050 g/d,累積腐解率為15.48%~19.90%。在150 d的培養(yǎng)試驗(yàn)中,CK、PU、UAN和CaCN2處理平均腐解速率分別為0.070、0.076、0.077和0.078 g/d,累積腐解率分別為39.24%、42.61%、43.23%和43.70%。0~5 d PU處理水稻腐解速率比UAN和CaCN2處理分別高16.56%和21.38%;5~30 d PU處理水稻秸稈腐解速率比UAN和CaCN2處理分別高2.74%和7.14%;30~150 d CaCN2處理比PU和UAN處理均高11.76%,添加外源氮顯著提高了水稻秸稈腐解速率,促進(jìn)了水稻秸稈累積腐解率(<0.05)。從水稻秸稈不同時(shí)期腐解特征上分析可知,不同外源氮處理間差異顯著。主要表現(xiàn)在0~5 d PU處理腐解速率最快,5~30 d三個(gè)處理間差異不明顯,但均顯著高于CK??偟膩?lái)說(shuō),在0~30 d PU、UAN和CaCN2處理水稻秸稈腐解速率分別為0.21、0.20和0.19 g/d,PU處理比UAN和CaCN2處理分別高5.00%和10.53%;30~150 d PU、UAN和CaCN2處理腐解速率分別為0.046、0.046和0.050 g/d,CaCN2比PU和UAN處理高8.70%。
根據(jù)一級(jí)動(dòng)力學(xué)方程=·(1-e-b·t)(表1)可知,不同處理間秸稈最大腐解率(值)表現(xiàn)為CaCN2>PU>UAN>CK。其中CaCN2最大腐解率(值)最高,為43.12%,分別比PU、UAN和CK處理高0.082%、0.10%、0.13%。其次是PU處理,比UAN和CK處理高0.021%、0.042%。
表1 不同外源氮處理下水稻秸稈腐解率一級(jí)動(dòng)力學(xué)方程擬合
2.2.1 不同外源氮處理碳素釋放特征
150 d培養(yǎng)周期內(nèi),CK、PU、UAN和CaCN2處理碳素平均釋放速率分別為1.08、1.22、1.26和1.20 g/d;如圖2所示,累積釋放率分別為40.66%、45.70%、47.31%和44.91%。方差分析表明添加外源氮在腐解前期和后期顯著增加了水稻秸稈碳素釋放速率和累積釋放率,這與平均釋放速率規(guī)律相似。不同外源氮的添加對(duì)水稻秸稈不同時(shí)期的碳釋放有顯著影響,主要表現(xiàn)為0~5 d不同外源氮處理差異顯著。外源氮促腐作用明顯,其中UAN腐解速率最高,為10.76 g/d。5~30 d各處理腐解速率差異較小。30~150 d外源氮處理皆具有顯著促腐效果,但處理間差異不明顯。比較不同時(shí)期各處理碳素釋放情況發(fā)現(xiàn)0~30 d添加外源氮處理間差異顯著(<0.05),30~120 d處理間差異不顯著,120 d后,外源氮處理碳素釋放速率較高。
2.2.2 不同外源氮處理氮素釋放特征
如圖3所示,150 d培養(yǎng)周期內(nèi),CK、PU、UAN和CaCN2處理氮素平均釋放速率分別為0.030、0.033、0.035和0.033 g/d;累積釋放率分別為44.76%、48.75%、51.31%和49.03%。PU和UAN處理0~5 d促腐效果明顯。5~30 d UAN處理累積腐解率最高,30 d后CaCN2處理腐解增速較快??傮w而言,與CK相比,添加外源氮促進(jìn)了水稻秸稈氮素釋放。比較不同時(shí)期各處理氮素釋放情況發(fā)現(xiàn)0~30 d PU和UAN處理釋放速率顯著高于CaCN2,30~120 d CaCN2處理氮素釋放速率顯著高于其他處理。120 d后,UAN處理氮素釋放較快。
2.2.3 不同外源氮處理磷素釋放特征
水稻秸稈磷素釋放特征與累積腐解率相似(圖4)。150 d各處理累積釋放率分別為40.46%、45.94%、46.80%和45.83%。不同處理0~5 d磷素釋放速率最快,5~30 d為快速釋放期,30~120 d為緩慢釋放期,120~150 d釋放速率較上一階段有所上升,添加外源氮處理磷素的釋放速率高于CK處理。比較不同時(shí)期各處理磷素釋放規(guī)律,發(fā)現(xiàn)0~5 d處理間差異不顯著,5~30 d PU和CaCN2處理促腐效果較好,120~150 d UAN處理釋放速率最高。
2.2.4 不同外源氮處理鉀素釋放特征
水稻秸稈鉀素釋放處理間無(wú)明顯差異(圖5),90 d時(shí)幾乎完全釋放。CK、PU、UAN和CaCN2處理累積釋放率分別為94.10%、94.37%、94.61%、94.89%。0~30 d 4個(gè)處理鉀素釋放速率提升,30 d時(shí)釋放率占總量的66.20~76.12%,其中CaCN2最快,CK次之,UAN和PU稍慢,釋放速率分別為0.54、0.48、0.47和0.47 g/d。30~60 d 各處理釋放速率降低,但PU和UAN處理速率較高,為0.090 g/d。60~90 d 4個(gè)處理釋放速率皆有所提升,處理間差異不明顯,并且在90 d的時(shí)候鉀素釋放率趨于最大值。
2.3.1 不同外源氮處理纖維素腐解特征
如圖6所示,CK、PU、UAN和CaCN2處理纖維素平均腐解速率為0.034、0.039、0.038、0.038 g/d,累積腐解率為39.10%、43.99%、43.15%、43.12%,外源氮0~30 d促腐作用顯著。水稻秸稈纖維素腐解規(guī)律表現(xiàn)為0~30 d快速腐解,30~90 d腐解稍慢,90~150 d腐解速率加快。在三個(gè)時(shí)間段,纖維素腐解率占累積腐解率的比例平均為63.65%、20.51%和15.84%,纖維素腐解在0~30 d占比最大。對(duì)比分析三個(gè)不同外源氮添加處理可知,在秸稈腐解前期,0~5 d PU和UAN處理纖維素腐解速率最大,最有利于促進(jìn)纖維素的腐解。5~30 d PU和CaCN2腐解速率較高,促腐效果明顯。
2.3.2 不同外源氮處理半纖維素腐解特征
水稻秸稈半纖維素腐解特征與纖維素腐解特征相似,外源氮處理有明顯促腐效果(圖7)。150 d外源氮處理平均腐解速率為0.010~0.011 g/d,腐解率為39.49%~40.07%。不同外源氮處理半纖維素腐解率表現(xiàn)為0~30 d快速腐解,30~90 d腐解稍慢,90~150 d腐解速率加快。在3個(gè)時(shí)間段,半纖維素腐解率占累積腐解率的比例平均為47.02%、21.48%和31.50%。其中PU和UAN處理在前期的腐解速率最快,CaCN2處理在試驗(yàn)中期腐解速率顯著高于其他處理。
2.3.3 不同外源氮處理木質(zhì)素腐解特征
水稻秸稈木質(zhì)素腐解規(guī)律在不同處理間具有明顯差異(圖8)。CK、PU、UAN和CaCN2平均腐解速率為0.010、0.013、0.013、0.014 g/d,累積腐解率表現(xiàn)為29.47%、39.49%、38.60%、41.51%。木質(zhì)素腐解率表現(xiàn)為0~30 d腐解較慢,30~90 d腐解速率大幅提升,90~150 d速率降低。三個(gè)時(shí)間段木質(zhì)素腐解率占累積腐解率的比例平均為17.55%、56.72%和25.73%。對(duì)比分析不同時(shí)間段木質(zhì)素的腐解速率可以發(fā)現(xiàn),木質(zhì)素在30 d后腐解速率提高,外源氮促腐作用顯著,CaCN2全程顯著促進(jìn)木質(zhì)素腐解,30~150 d木質(zhì)素腐解率占累積腐解率的比例為82.45%。
采用一級(jí)動(dòng)力學(xué)方程對(duì)不同外源氮處理下水稻秸稈纖維素、半纖維素、木質(zhì)素腐解特征進(jìn)行擬合,均達(dá)到顯著水平(表2)。根據(jù)結(jié)果可知,纖維素腐解速率最大,其次是半纖維素,木質(zhì)素最低。添加PU、UAN、CaCN2處理的纖維素最大腐解率(值)分別比CK處理高13.23%、10.65%、11.29%,其中PU處理效果最優(yōu);添加PU、UAN、CaCN2處理有利于提高半纖維素的最大腐解率(值),分別比CK處理高6.40%、5.89%、4.74%;添加外源氮均增加木質(zhì)素腐解率,其中CaCN2處理對(duì)木質(zhì)素的促腐效果最佳。
表2 不同外源氮處理下水稻秸稈木質(zhì)素、纖維素、半纖維素一級(jí)動(dòng)力學(xué)擬合方程相關(guān)參數(shù)
注:表中**表示不同處理之間差異極顯著(< 0.01)。
Note: The table**shows that the difference between different treatments is very significant (< 0.01).
本試驗(yàn)結(jié)果表明,不同處理間水稻秸稈腐解過(guò)程表現(xiàn)為前期快速腐解,后期腐解速率放緩并趨于平穩(wěn)的趨勢(shì)。本研究中水稻秸稈150 d內(nèi)的累積腐解率為39.24%~43.70%。這與國(guó)內(nèi)外其他相關(guān)研究結(jié)果相似[33-34]。武際等[26]利用埋袋法研究發(fā)現(xiàn),秸稈腐解均經(jīng)歷了快速腐解期、腐解減緩期和腐解緩慢期。究其原因可能是在腐解的前期,秸稈中如糖類(lèi)、氨基酸、有機(jī)酸等非結(jié)構(gòu)性、易分解物質(zhì)快速釋放[35],同時(shí)也為土壤微生物提供大量的營(yíng)養(yǎng)物質(zhì),增加土壤微生物的多樣性和活性,加速水稻秸稈分解[36]。隨著易分解物質(zhì)被消耗殆盡,剩余一些難分解的物質(zhì),從而減緩了秸稈后期的腐解速率[37]。與前人的研究結(jié)果相似,養(yǎng)分釋放率總體表現(xiàn)為鉀素釋放率顯著高于碳、氮、磷[31-32]。這與營(yíng)養(yǎng)元素在秸稈中存在的形態(tài)有關(guān)[38]。鉀以離子態(tài)存在,易于浸提釋放,而碳、氮、磷三種元素以有機(jī)化合物形式為主,膠結(jié)程度高,養(yǎng)分釋放能力較弱[39]??偟膩?lái)說(shuō),水稻秸稈中氮、碳和磷素的釋放規(guī)律和腐解規(guī)律趨勢(shì)一致,均表現(xiàn)為前期快速腐解,后期腐解速率放緩并趨于平穩(wěn)的趨勢(shì),150 d養(yǎng)分累積釋放率在40%~50%左右。
添加外源氮可以調(diào)節(jié)秸稈和土壤C/N,增加微生物的多樣性和活性,提升微生物對(duì)秸稈的分解能力,促進(jìn)了水稻秸稈腐解[37],因此提高土壤氮素水平是促進(jìn)秸稈腐解和養(yǎng)分釋放的重要手段。本研究中,添加外源氮后水稻秸稈腐解率明顯增加,這和曾莉等[13]的研究結(jié)果一致。不同外源氮促腐表現(xiàn)不同,在水稻秸稈腐解前期PU處理促腐效果最佳,而在水稻秸稈腐解后期CaCN2處理促腐效果最佳。究其原因可能和不同外源氮形態(tài)及氮素釋放改變微生物群落結(jié)構(gòu)影響土壤環(huán)境有關(guān)[40-41]。對(duì)比分析三種不同形態(tài)的外源氮發(fā)現(xiàn),PU為固體酰胺態(tài)氮,可以通過(guò)脲酶快速水解為銨態(tài)氮供微生物利用,UAN為水溶性銨態(tài)氮可以直接滲入秸稈被吸收[42],因此PU和UAN可以快速釋放氮素調(diào)節(jié)土壤C/N促進(jìn)水稻秸稈腐解。CaCN2施入土壤后在水分的作用下生成強(qiáng)氧化鈣和氰氨,氰氨通過(guò)水解作用再轉(zhuǎn)化為尿素,最后通過(guò)進(jìn)一步水解生成碳酸銨[43],因此CaCN2中氮素釋放速度較慢,是一種遲效氮肥。除了氮素釋放速率存在差異以外,不同外源氮施入土壤后對(duì)土壤化學(xué)性質(zhì)的影響也存在較大的差異。以往的研究已經(jīng)證實(shí)PU在水解過(guò)程中會(huì)消耗土壤中的H+,在一定程度上會(huì)提升土壤的pH,促進(jìn)微生物的繁殖,有利于微生物對(duì)秸稈的分解作用[44],但是PU施入土壤一段時(shí)間后,銨根離子通過(guò)硝化細(xì)菌氧化為亞硝酸鹽和硝酸鹽,土壤pH降低,當(dāng)pH降低到一定范圍時(shí),微生物活性會(huì)受到影響[45],導(dǎo)致PU促腐效果減弱。Hu等[46]研究也發(fā)現(xiàn),尿素進(jìn)入土壤后,在12 d時(shí)土壤pH略上升;在30 d時(shí)土壤pH降到施入前水平。汪敬恒等[23]也有相似的發(fā)現(xiàn)。CaCN2是一種強(qiáng)堿性的綠色肥料,pH值在12.4左右[21]。Kazuki等[47]研究表明CaCN2施入土壤后土壤pH值立即增加到10.7~11.1,在培養(yǎng)結(jié)束時(shí)維持在8.8~9.5,因此CaCN2施入土壤后,在逐漸轉(zhuǎn)化過(guò)程中具有調(diào)節(jié)土壤酸度,減少氮素?fù)p失的作用,所以提高微生物活性促進(jìn)秸稈腐解具有遲效性[48]。
水稻秸稈纖維素、半纖維素、木質(zhì)素的腐解速率直接決定了水稻秸稈不同時(shí)期的腐解速率[49]。在本試驗(yàn)條件下PU處理促進(jìn)纖維素分解效果最佳;PU和UAN處理促進(jìn)半纖維素分解效果相似,明顯高于CK和CaCN2處理;而對(duì)于木質(zhì)素的分解,CaCN2處理效果顯著高于其他處理。這可能和纖維素、半纖維素、木質(zhì)素結(jié)構(gòu)有關(guān)。纖維素、半纖維素是葡萄糖、木糖等分子組成的網(wǎng)狀結(jié)構(gòu),能通過(guò)纖維素酶作用水解[50],相對(duì)于木質(zhì)素來(lái)說(shuō),較易分解。因此纖維素和半纖維素分解發(fā)生在水稻秸稈腐解前期。相對(duì)于CaCN2這種遲效性肥料來(lái)說(shuō),PU和UAN添加到土壤后能快速釋放氮素調(diào)節(jié)秸稈和土壤C/N,改善土壤微生物活性,從而促進(jìn)了纖維素和半纖維素的分解[45]。而木質(zhì)素是由苯丙烷組成的大分子結(jié)構(gòu),穩(wěn)定性強(qiáng),酶和真菌降解緩慢[51],難以分解。一般木質(zhì)素的分解發(fā)生在水稻秸稈腐解后期。在本試驗(yàn)條件下,添加的CaCN2是一種堿性的肥料,在逐漸水解的過(guò)程中提高土壤pH有利于破壞木質(zhì)素的結(jié)構(gòu),促進(jìn)其分解[21]。此外,也有研究指出CaCN2生成氰胺類(lèi)物質(zhì)可以促進(jìn)氧化酶的活性[52],氧化酶是促進(jìn)木質(zhì)素分解的主要酶之一。本研究發(fā)現(xiàn)在水稻秸稈腐解的0~30 d、30~90 d和90~150 d三個(gè)時(shí)間段內(nèi),纖維素腐解率占累積腐解率的比例平均為63.65%、20.51%和15.84%;半纖維素平均為47.02%、21.48%和31.50%;木質(zhì)素平均為17.55%、56.72%和25.73%。添加PU處理有利于水稻秸稈纖維素和半纖維素等易分解物質(zhì)的腐解,因此提高了水稻秸稈前期腐解速率;而CaCN2有利于木質(zhì)素這類(lèi)難分解物質(zhì)的腐解,因此提高了水稻秸稈后期腐解速率。綜上所述,合理的添加外源氮顯著促進(jìn)水稻秸稈腐解和養(yǎng)分釋放,在綜合考慮不同外源氮的促腐效應(yīng)的基礎(chǔ)上,針對(duì)田間實(shí)際生產(chǎn),建議不同種類(lèi)外源氮進(jìn)行配施,以達(dá)到最佳促腐效果。
1)不同處理水稻秸稈腐解總體上均表現(xiàn)為0~5 d秸稈腐解速率最快,達(dá)到0.39~0.47 g/d,累積腐解率為7.25%~8.79%;5~30 d秸稈腐解速率較快,為0.12~0.16 g/d,累積腐解率為10.95%~14.94%;30~150 d腐解速率放緩,腐解速率0.045~0.050 g/d,累積腐解率為15.48%~19.90%。
2)經(jīng)過(guò)150 d培養(yǎng),CK、PU、UAN和CaCN2處理累積腐解率分別為39.24%、42.61%、43.23%和43.70%。添加外源氮顯著促進(jìn)水稻秸稈腐解。不同外源氮處理間水稻秸稈累積腐解率差異不顯著,但不同腐解時(shí)期差異顯著。0~5 d PU處理水稻腐解速率比UAN和CaCN2處理分別高16.56%和21.38%;5~30 d PU處理水稻秸稈腐解速率比UAN和CaCN2處理分別高2.74%和7.14%;30~150 d CaCN2處理比PU和UAN處理均高11.76%,在水稻秸稈腐解前期(0~30 d)PU處理腐解速率最高,腐解后期(30~150 d)CaCN2處理促腐效果優(yōu)于PU處理和UAN處理。
3)添加PU促進(jìn)了纖維素和半纖維素這類(lèi)易分解物質(zhì)的腐解,因此PU和UAN有利于秸稈前期腐解;添加CaCN2促進(jìn)了木質(zhì)素這類(lèi)難分解物質(zhì)的腐解,因此CaCN2有利于秸稈后期腐解。
[1] 中國(guó)國(guó)家統(tǒng)計(jì)局 [EB/OL]. 中國(guó)統(tǒng)計(jì)年鑒,2018-9-20. http://www. stats. gov. cn/tjsj/ndsj/2020/indexch. htm.
[2] 宋大利,侯勝鵬,王秀斌,等. 中國(guó)秸稈養(yǎng)分資源數(shù)量及替代化肥潛力[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2018,24(1):1-21.
Song Dali, Hou Shengpeng, Wang Xiubin, et alNutrient resource quantity of crop straw and its potential of substituting[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 1-21. (in Chinese with English abstract)
[3] 牛新勝,巨曉棠. 我國(guó)有機(jī)肥料資源及利用[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2017,23(6):1462-1479.
Niu Xinsheng, Ju Xiaotang. Organic fertilizer resources and utilization in China[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(6): 1462-1479. (in Chinese with English abstract)
[4] 卜容燕,李敏,韓上,等. 有機(jī)無(wú)機(jī)肥配施對(duì)雙季稻輪作系統(tǒng)產(chǎn)量、溫室氣體排放和土壤養(yǎng)分的綜合效應(yīng)[J]. 應(yīng)用生態(tài)學(xué)報(bào),2021,32(1):145-153.
Bu Rongyan, Li Min, Han Shang, et al. Comprehensive effects of combined application of organic and inorganic fertilizer on yield, greenhouse gas emissions, and soil nutrient in double-cropping rice systems[J]. Chinese Journal of Applied Ecology, 2021, 32(1): 145-153. (in Chinese with English abstract)
[5] 武際,郭熙盛,魯劍巍,等. 水旱輪作制下連續(xù)秸稈覆蓋對(duì)土壤理化性質(zhì)和作物產(chǎn)量的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2012,18(3):587-594.
Wu Ji, Guo Xisheng, Lu Jianwei, et al. Effects of continuous straw mulching on soil physical and chemical properties and crop yields in paddy-upland rotation system[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(3): 587-594. (in Chinese with English abstract)
[6] Elaine M, Clemens S, David W R, et al. The influence of above-ground residue input and incorporation on GHG fluxes and stable SOM formation in a sandy soil[J]. Soil Biology and Biochemistry, 2016, 101: 104-113.
[7] 戴志剛,魯劍巍,李小坤,等. 不同作物還田秸稈的養(yǎng)分釋放特征試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(6):272-276.
Dai Zhigang, Lu Jianwei, Li Xiaokun, et al. Nutrient release characteristic of different crop straws manure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(6): 272-276. (in Chinese with English abstract)
[8] 韓上,武際,李敏,等. 深耕結(jié)合秸稈還田提高作物產(chǎn)量并改善耕層薄化土壤理化性質(zhì)[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2020,26(2):276-284.
Han Shang, Wu Ji, Li Min, et al. Deep tillage with straw returning increase crop yield and improve soil physicochemical properties under topsoil thinning treatment[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(2): 276-284. (in Chinese with English abstract)
[9] 張娟霞,劉偉剛,寧媛,等. 長(zhǎng)期秸稈還田與施氮后土壤活性碳、氮的變化[J]. 水土保持學(xué)報(bào),2018,32(3):212-217.
Zhang Juanxia, Liu Weigang, Ning Yuan, et al. Changes of active carbon and nitrogen in soil after long-term straw returning and nitrogen application[J]. Journal of Soil and Water Conservation, 2018, 32(3): 212-217. (in Chinese with English abstract)
[10] 叢日環(huán),張麗,魯艷紅,等. 添加不同外源氮對(duì)長(zhǎng)期秸稈還田土壤中氮素轉(zhuǎn)化的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2019,25(7):1107-1114.
Cong Rihuan, Zhang Li, Lu Yanhong, et al. Effect of adding different exogenous nitrogen sources on nitrogen transformation in long-term straw incorporated soil[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(7): 1107-1114. (in Chinese with English abstract)
[11] 黃玲,張自陽(yáng),趙若含,等. 秸稈配施腐熟劑對(duì)土壤細(xì)菌群落及養(yǎng)分狀況的影響[J]. 土壤通報(bào),2019,50(6):1361-1369.
Huang Ling, Zhang Ziyang, Zhao Ruohan, et al. Effects of straw decomposing inoculants on soil bacterial communities and nutrients[J]. Chinese Journal of Soil Science, 2019, 50(6): 1361-1369. (in Chinese with English abstract)
[12] 王秋菊,劉峰,遲鳳琴,等. 秸稈還田及氮肥調(diào)控對(duì)不同肥力白漿土氮素及水稻產(chǎn)量影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(14):105-111. Wang Qiuju, Liu Feng, Chi Fengqin, et al. Effect of straw returning and nitrogen fertilizer regulation on nitrogen and rice yield in albic soil with different fertilities[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(14): 105-111. (in Chinese with English abstract)
[13] 曾莉,張?chǎng)危瑥埶?,? 不同施氮量下潮土中小麥秸稈腐解特性及其養(yǎng)分釋放和結(jié)構(gòu)變化特征[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2020(9):1565-1577.
Zeng Li, Zhang Xin, Zhang Shuiqing, et al. Characteristics of decomposition, nutrient release and structure change of wheat straw in a fluvo-aquic soil under different nitrogen application rates[J]. Journal of Plant Nutrition and Fertilizers, 2020(9): 1565-1577. (in Chinese with English abstract)
[14] 劉穎穎,卜容燕,唐杉,等. 連續(xù)秸稈-紫云英協(xié)同還田對(duì)雙季稻產(chǎn)量、養(yǎng)分積累及土壤肥力的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2020,26(6):1008-1016.
Liu Yingying, Bu Rongyan, Tang Shan, et al. Effect of continuous straw-Chinese milk vetch synergistic return to the field on yield, nutrient accumulation and soil fertility of double cropping rice[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(6): 1008-1016. (in Chinese with English abstract)
[15] 李曉韋,韓上,雷之萌,等. 氮素形態(tài)對(duì)油菜秸稈腐解及養(yǎng)分釋放規(guī)律的影響[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào)(中英文),2019,27(5):717-725.
Li Xiaowei, Han Shang, Lei Zhimeng, et al. Effects of nitrogen forms on decomposition and nutrient release of rapeseed straw[J]. Chinese Journal of Eco-Agriculture, 2019, 27(5): 717-725. (in Chinese with English abstract)
[16] 韓上,武際,李敏,等. 秸稈還田條件下氮肥運(yùn)籌對(duì)作物產(chǎn)量和氮肥利用效率的影響[J]. 中國(guó)土壤與肥料,2020(3):23-28.
Han Shang, Wu Ji, Li Min, et al. Effects of nitrogen fertilization managements on crops yield and nitrogen nutrient use efficiency under straw returning[J]. Soil and Fertilizer Sciences in China, 2020(3): 23-28. (in Chinese with English abstract)
[17] 張經(jīng)廷,張麗華,呂麗華,等. 還田作物秸稈腐解及其養(yǎng)分釋放特征概述[J]. 核農(nóng)學(xué)報(bào),2018,32(11):2274-2280.
Zhang Jingting, Zhang Lihua, Lyu Lihua, et al. Overview of the characteristics of crop straw decomposition and nutrients release of returned field crops[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(11): 2274-2280. (in Chinese with English abstract)
[18] 程文龍,韓上,李敏,等. 主要農(nóng)作物秸稈養(yǎng)分資源現(xiàn)狀及其肥料替代潛力分析-以安徽省為例[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào)(中英文),2020,28(11):1789-1798.
Cheng Wenlong, Han Shang, Li Min, et al. Current situation of the main crop straw nutrient resources and the substitute potential of crop straw for chemical fertilizer: A case study of Anhui Province[J]. Chinese Journal of Eco-Agriculture, 2020, 28(11): 1789-1798. (in Chinese with English abstract)
[19] 于春曉,張麗莉,楊立杰,等. 減氮配施抑制劑及雞糞提高尿素氮在稻田土壤中的轉(zhuǎn)化及利用[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2021,27(9):1581-1591.
Yu Chunxiao, Zhang Lili, Yang Lijie, et al. Combining N-inhibitor and chicken manure with reduced N fertilizer to improve the conversion and utilization of fertilizer N in a paddy soil[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(9): 1581-1591. (in Chinese with English abstract)
[20] 李帆,王靜,武際,等. 尿素硝酸銨調(diào)節(jié)碳氮比促進(jìn)小麥秸稈堆肥腐熟[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2019,25(5):832-840.
Li Fan, Wang Jing, Wu Ji, et al. Fast production of wheat straw aerobic compost through regulating C/N ratio with urea ammonium nitrate solution[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(5): 832-840. (in Chinese with English abstract)
[21] 朱炳良,馬軍偉,葉雪珠,等. 石灰氮的土壤改良作用及對(duì)蔬菜的施用效果研究[J]. 浙江大學(xué)學(xué)報(bào):農(nóng)業(yè)與生命科學(xué)版,2001(3):105-108.
Zhu Bingliang, Ma Junwei, Ye Xuezhu, et al. Effects of lime-nitrogen on soil ameliorate and vegetables production[J]. Journal of Zhejiang University: Agriculture & Life Sciences, 2001(3): 105-108. (in Chinese with English abstract)
[22] 朱遠(yuǎn)芃,金夢(mèng)燦,馬超,等. 外源氮肥和腐熟劑對(duì)小麥秸稈腐解的影響[J]. 生態(tài)環(huán)境學(xué)報(bào),2019,28(3):612-619.
Zhu Yuanpeng, Jin Mengcan, Ma Chao, et al. Impacts of exogenous nitrogen and effective microorganism on the decomposition of wheat straw residues [J]. Ecology and Environmental Sciences, 2019, 28(3): 612-619. (in Chinese with English abstract)
[23] 汪敬恒,謝迎新,楊素芬,等. 室內(nèi)培養(yǎng)條件下多元素長(zhǎng)效顆粒碳銨與尿素氮素釋放規(guī)律比較研究[J]. 中國(guó)農(nóng)學(xué)通報(bào),2019,35(20):59-64.
Wang Jingheng, Xie Yingxin, Yang Sufen, et al. Comparative study on nitrogen release characteristics of long-acting ammonium bicarbonate and urea under indoor culture condition[J]. Chinese Agricultural Science Bulletin, 2019, 35(20): 59-64. (in Chinese with English abstract)
[24] 楊蘇,劉耀斌,章歡,等. 土壤不同形態(tài)碳氮含量和酶活性對(duì)培養(yǎng)時(shí)間及外源碳投入的響應(yīng)[J]. 水土保持學(xué)報(bào),2020,34(4):340-346.
Yang Su, Liu Yaowu, Zhang Huan, et al. Responses of different forms of soil carbon and nitrogen contents and enzyme activities to cultivation time and exogenous carbon input[J]. Journal of Soil and Water Conservation 2020, 34(4): 340-346. (in Chinese with English abstract)
[25] 王婧,張莉,逄煥成,等. 秸稈顆?;€田加速腐解速率提高培肥效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(6):177-183.
Wang Jing, Zhang Li, Pang Huancheng, et al. Returning granulated straw for accelerating decomposition rate and improving soil fertility[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(6): 177-183. (in Chinese with English abstract)
[26] 武際,郭熙盛,魯劍巍,等. 不同水稻栽培模式下小麥秸稈腐解特征及對(duì)土壤生物學(xué)特性和養(yǎng)分狀況的影響[J]. 生態(tài)學(xué)報(bào),2013,33(2):565-575.
Wu Ji, Guo Xisheng, Lu Jianwei, et al. Decomposition characteristics of wheat straw and effects on soil biological properties and nutrient status under different rice cultivation[J]. Ecology, 2013, 33(2) 565-575. (in Chinese with English abstract)
[27] 鮑士旦. 土壤農(nóng)化分析[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2000.
[28] 王玉萬(wàn),徐文玉. 木質(zhì)纖維素固體基質(zhì)發(fā)酵物中半纖維素、纖維素和木素的定量分析程序[J]. 微生物學(xué)通報(bào),1987(2):81-84.
Wang Yuwan, Xu Wenyu. Quantitative analysis program of hemicellulose, cellulose and lignin in lignocellulose solid substrate fermentation[J]. Microbiology China, 1987(2): 81-84. (in Chinese with English abstract)
[29] 江培福,雷廷武,劉曉輝,等. 用毛細(xì)吸滲原理快速測(cè)量土壤田間持水量的研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2006,22(7):1-5.
Jiang Peifu, Lei Tingwu, Liu Xiaohui, et al. Principles and experimental verification of capillary suction method for fast measurement of field capacity[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(7): 1-5. (in Chinese with English abstract)
[30] Olson J S, Energy storage and the balance of producers and decomposers in ecological systems[J]. Ecology, 1963, 44(2): 465-472.
[31] 劉佳,張杰,秦文婧,等. 紅壤旱地毛葉苕子不同翻壓量下腐解及養(yǎng)分釋放特征[J]. 草業(yè)學(xué)報(bào),2016,25(10):66-76.
Liu Jia, Zhang Jie, Qin Wenjing, et al. Decomposition and nutrient release characteristics of differentgreen manure applications in red soil uplands of South China[J]. Acta Prataculturae Sinica, 2016 25(10): 66-76. (in Chinese with English abstract)
[32] 張成蘭,劉春增,李本銀,等. 不同施肥條件下毛葉苕子的腐解及養(yǎng)分釋放特征[J]. 應(yīng)用生態(tài)學(xué)報(bào),2019,30(7):2275-2283.
Zhang Chenglan, Liu Chunzeng, Li Benyin, et al. The characteristics of decomposition and nutrient release ofunder different fertilization treatments[J]. Chinese Journal of Applied Ecology, 2019, 30(7): 2275-2283. (in Chinese with English abstract)
[33] 王景,陳曦,魏俊嶺. 水稻秸稈和玉米秸稈在好氣和厭氧條件下的腐解規(guī)律[J]. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào),2017,34(1):59-65.
Wang Jing, Chen Xi, Wei Junling. Decomposition of rice straw and corn straw under aerobic and anaerobic Conditions[J]. Journal of Agricultural Resources and Environment, 2017, 34(1): 59-65. (in Chinese with English abstract)
[34] 龔振平,鄧乃榛,宋秋來(lái),等. 基于長(zhǎng)期定位試驗(yàn)的松嫩平原還田玉米秸稈腐解特征研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(8):139-145.
Gong Zhenping, Deng Naizhen, Song Qiulai, et al. Decomposing characteristics of maize straw returning in Songnen Plain in long-time located experiment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(8): 139-145. (in Chinese with English abstract)
[35] 姚云柯,周衛(wèi),孫建光,等. 田間條件下不同促腐菌對(duì)水稻秸稈腐解及胞外酶活性的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2020,26(11):2070-2080.
Yao Yunke, Zhou Wei, Sun Jianguang, et al. Effects of different straw-decomposition inoculants on increasing the activities of extracellular enzymes and decomposition of rice straw buried into soil[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(11): 2070-2080. (in Chinese with English abstract)
[36] Guo Teng F, Zhang Q, Chao A, et al. Nitrogen enrichment regulates straw decomposition and its associated microbial community in a double-rice cropping system[J]. Scientific Reports, 2018, 8(1): 1847-1859.
[37] 潘劍玲,代萬(wàn)安,尚占環(huán),等. 秸稈還田對(duì)土壤有機(jī)質(zhì)和氮源有效性影響及機(jī)制研究進(jìn)展[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2013,21(5):526-535.
Pan Jianling, Dai Wanan, Shang Zhanhuan, et al. Review of research progress on the influence and mechanism of field straw residue incorporation on soil organic matter and nitrogen availability[J]. China Journal of Eco-Agriculture, 2013, 21(5): 526-535. (in Chinese with English abstract)
[38] 武際,郭熙盛,王允青,等. 不同水稻栽培模式和秸稈還田方式下的油菜、小麥秸稈腐解特征[J]. 中國(guó)農(nóng)業(yè)科學(xué),2011,44(16):3351-3360.
Wu Ji, Guo Xisheng, Wang Yunqing, et al. Decomposition characteristics of rapeseed and wheat straws under different rice cultivations and straw mulching models[J]. Scientia Agricultura Sinica, 2011, 44(16): 272-276. (in Chinese with English abstract)
[39] 周?chē)?guó)朋. 紫云英-稻草共同還田的協(xié)同效應(yīng)及機(jī)制[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院,2020.
Zhou Guopeng. The Synergistic Effects and Mechanism of Co-incorporating Chinese Milk Vetch () and Rice () Straw[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese with English abstract)
[40] 鄭文魁,盧永健,鄧曉陽(yáng),等. 控釋氮肥對(duì)玉米秸稈腐解及潮土有機(jī)碳組分的影響[J]. 水土保持學(xué)報(bào),2020,34(5):292-298.
Zheng Wenkui, Lu Yongjian, Deng Xiaoyang, et al. Effects of controlled-release nitrogen fertilizer on decomposition of maize straw and organic carbon fractions in fluvo-aquic soil[J]. Journal of Soil and Water Conservation. 2020, 34(5): 292-298. (in Chinese with English abstract)
[41] 張丹,付斌,胡萬(wàn)里,等. 秸稈還田提高水稻-油菜輪作土壤固氮能力及作物產(chǎn)量[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(9):133-140.
Zhang Dan, Fu Bin, Hu Wanli, et al. Increasing soil nitrogen fixation capacity and crop yield of rice-rape rotation by straw returning[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 133-140. (in Chinese with English abstract)
[42] 雷之萌. 不同形態(tài)氮源的氮肥對(duì)稻稈的促腐效應(yīng)[D]. 合肥:安徽農(nóng)業(yè)大學(xué),2017.
Lei Zhimeng. Nitrogen Fertilizer with Different Nitrogen forms Promoting the Decomposition of Straw[D]. Hefei: Anhui Agricultural University, 2017. (in Chinese with English abstract)
[43] Simujide H, Aorigele C, Wang C J, et al. Evaluation of calcium cyanamide addition during co-composting of manure and maize straw in a forced-aeration static-pile system[J]. Journal of Environmental Health Science and Engineering, 2016, 14(1)14-18.
[44] 蔣夢(mèng)蝶,何志龍,孫赟,等. 尿素和生物質(zhì)炭對(duì)茶園土壤pH值及CO2和CH4排放的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2018,37(1):196-204.
Jiang Mengdie, He Zhilong, Sun Yun, et al. The effect of wheat-straw derived biochar on the soil pH and emissions of CO2and CH4from tea garden soil[J]. Journal of Agro-Environment Science, 2018, 37(1): 196-204. (in Chinese with English abstract)
[45] 高嵩涓,周?chē)?guó)朋,曹衛(wèi)東. 南方稻田紫云英作冬綠肥的增產(chǎn)節(jié)肥效應(yīng)與機(jī)制[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2020,26(12):2115-2126.
Gao Songjuan, Zhou Guopeng, Cao Weidong. Effects of milk vetch () as winter green manure on rice yield and rate of fertilizer application in rice paddies in south China[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(12): 2115-2126. (in Chinese with English abstract)
[46] Hu A Y, Yu Z Y, Liu X H, et al. The effects of irrigation and fertilization on the migration and transformation processes of main chemical components in the soil profile[J]. Environmental Geochemistry and Health, 2019, 41(6): 2631-2648.
[47] Kazuki Suzuki, Naoya Kashiwa, Kota Nomura, et al. Impacts of application of calcium cyanamide and the consequent increase in soil pH on N2O emissions and soil bacterial community compositions[J]. Biology and Fertility of Soils, 2020, 57: 269-279.
[48] Liao P, Shan H, Gestel V N C, et al. Liming and straw retention interact to increase nitrogen uptake and grain yield in a double rice-ropping system[J]. Field Crops Research, 2018, 216: 217-224.
[49] 羅立娜,丁清華,公維佳,等. 尿素氨化預(yù)處理改善稻秸干法厭氧發(fā)酵特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(19):234-239.
Luo Lina, Ding Qinghua, Gong Weijia, et al. Urea ammoniated pretreatment improving dry anaerobic fermentation characteristics of rice straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(19): 234-239. (in Chinese with English abstract)
[50] 席北斗,劉鴻亮,白慶中,等. 堆肥中纖維素和木質(zhì)素的生物降解研究現(xiàn)狀[J]. 環(huán)境污染治理技術(shù)與設(shè)備,2002(3):19-23.
Xi Beidou, Liu Hongliang, Bai Qingzhong, et al. Study on current status of lignin and cellulose biodegradation in composting process[J]. Technique and Equipment for Environment Pollution Control, 2002(3): 19-23. (in Chinese with English abstract)
[51] 楊增玲,梅佳琪,曹聰,等. 基于紅外光譜的不同農(nóng)作物秸稈磨木木質(zhì)素差異表征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(19):219-224.
Yang Zengling, Mei Jiaqi, Cao Cong, et al. Traits of milled wood lignin isolated from different crop straw based on FT-IR[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(19): 219-224. (in Chinese with English abstract)
[52] 張學(xué)鵬,寧堂原,楊燕,等. 不同濃度石灰氮對(duì)黃瓜連作土壤微生物生物量及酶活性的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2015,26(10):3073-3082.
Zhang Xuepeng, Ning Tangyuan, Yang Yan, et al. Effects of different application rates of calcium cyanamide on soil microbial biomass and enzyme activity in cucumber continuous cropping[J]. Chinese Journal of Applied Ecology, 2015, 26(10): 3073-3082. (in Chinese with English abstract)
Effects of adding different exogenous nitrogen on rice straw decomposition and nutrient release
Mai Yichen1,2, Bu Rongyan2, Han Shang2, Lei Zhimeng1,3, Li Min2, Wang Hui2, Cheng Wenlong2, Tang Shan2, Wu Ji2※, Zhu Lin1
(1.,,230036,;2.,/,230031,;3.,271601,)
A straw returning technique has been one of the most important measures for the comprehensive utilization of straw in ecological agriculture in the world. The soil fertility can also be improved to protect the environment during the sustainable development of farmland. The amount of straw returning is ever increasing in China in recent years. It is necessary to optimize the straw returning for higher efficiency during resource utilization. The nitrogen content can also be added to adjust the carbon-nitrogen ratio of straw for the rapid decomposition, thus improving the nutrient release rate with the better straw returning. In this study, different exogenous nitrogen sources were added to determine the dynamic changes of rice straw during decomposition. The suitable nitrogen source was also screened. Indoor cultivation was adopted at the constant humidity. Four treatments were set, including the control (CK), the application of urea (PU), the application of urea ammonium nitrate (UAN), and the application of lime nitrogen (CaCN2). The results showed that the highest decomposition rate of rice straw was achieved at 0-5 d with 0.39-0.47 g/d, followed by the 5-30 d with 0.12-0.16 g/d, and the lowest was 0.045-0.050 g/d during 30-150 d. The addition of exogenous nitrogen significantly increased the cumulative decomposition rate of rice straw (<0.05), compared with the CK. There was no significant difference in decomposition rate, whereas, a relatively significant difference was found in the decomposition characteristics of rice straw at different stages among the three treatments of exogenous nitrogen. Specifically, the decomposition rates of rice straw in the PU, UAN, and CaCN2treatments in 0-30 d were 0.076, 0.077, and 0.078 g/d, respectively. The decomposition rates of the PU, UAN, and CaCN2treatments at 30-150 d were 0.046, 0.046, and 0.050 g/d, respectively. The cellulose, hemicellulose, and lignin were attributed to the decomposition rates of rice straw at different stages. The maximum decomposition rates of cellulose treated with the PU, UAN, and CaCN2were 13.23%, 10.65%, and 11.29% higher than those with the CK, respectively. The PU treatment also presented the best promoting effect on cellulose decomposition. The decomposition rates of hemicellulose treated with the PU, UAN, and CaCN2were 6.40%, 5.89%, and 4.74% higher than those with the CK, respectively. The PU and UAN presented the best promoting effects on hemicellulose decomposition. The PU and UAN treatments contributed the most to improving the early decomposition rate of rice straw. The maximum decomposition rates of lignin treated with the PU, UAN, and CaCN2were higher than those with the CK, respectively. The CaCN2treatment presented the best promoting effect on the lignin decomposition, thus improving the decomposition rate of rice straw in the late stage. Consequently, the different types of exogenous nitrogen can be combined to achieve the best decomposition. This finding can provide a theoretical basis to improve the nutrient utilization of rice straw for the feasibility and sustainability of straw returning.
urea; decomposition; rice straw; urea ammonium nitrate; lime nitrogen
麥逸辰,卜容燕,韓上,等. 添加不同外源氮對(duì)水稻秸稈腐解和養(yǎng)分釋放的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(22):210-219.doi:10.11975/j.issn.1002-6819.2021.22.024 http://www.tcsae.org
Mai Yichen, Bu Rongyan, Han Shang, et al. Effects of adding different exogenous nitrogen on rice straw decomposition and nutrient release[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(22): 210-219. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.22.024 http://www.tcsae.org
2021-07-26
2021-10-28
安徽省自然科學(xué)基金項(xiàng)目(2008085QD165);安徽省科技重大專(zhuān)項(xiàng)(202003a06020008);財(cái)政部和農(nóng)業(yè)農(nóng)村部:現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專(zhuān)項(xiàng)資金資助(綠肥,CARS-22-Z-05)
麥逸辰,研究方向?yàn)橛袡C(jī)養(yǎng)分資源利用。Email:18856962825@163.com
武際,研究員,研究方向?yàn)橥寥琅喾屎妥魑锔咝┓始夹g(shù)。Email:wuji338@163.com
10.11975/j.issn.1002-6819.2021.22.024
S38
A
1002-6819(2021)-22-0210-10