郭超奇,趙繼展,李小建,張靜非,仵勝利,陳冬冬,黃興利,李寶軍
中硬低滲煤層定向長(zhǎng)鉆孔水力壓裂瓦斯高效抽采技術(shù)與應(yīng)用
郭超奇1,趙繼展2,李小建1,張靜非2,仵勝利1,陳冬冬2,黃興利1,李寶軍1
(1. 陜西黃陵二號(hào)煤礦有限公司,陜西 黃陵 727307;2. 中煤科工集團(tuán)西安研究院有限公司,陜西 西安 710077)
針對(duì)黃隴侏羅紀(jì)煤田中硬煤層滲透性差、瓦斯抽采濃度及流量衰減速度快等問(wèn)題,利用自主研發(fā)的水力壓裂成套工藝設(shè)備,提出煤層定向長(zhǎng)鉆孔水力壓裂瓦斯高效抽采技術(shù),并在黃隴煤田黃陵二號(hào)煤礦進(jìn)行工程應(yīng)用試驗(yàn)?,F(xiàn)場(chǎng)共完成5個(gè)定向長(zhǎng)鉆孔鉆探施工,單孔孔深240~285 m,總進(jìn)尺1 320 m;采用整體壓裂工藝對(duì)5個(gè)本煤層鉆孔進(jìn)行壓裂施工,累計(jì)壓裂液用量1 557.5 m3,單孔最大泵注壓力19 MPa;壓裂后單孔瓦斯抽采濃度及百米抽采純量分別提升0.7~20.5倍、1.7~9.8倍;相比于普通鉆孔,壓裂孔瓦斯初始涌出強(qiáng)度提升2.1倍,鉆孔瓦斯流量衰減系數(shù)降低39.6%。試驗(yàn)結(jié)果表明:采取水力壓裂增透措施后,瓦斯抽采效果得到顯著提升,煤層瓦斯可抽采性增加,為類似礦區(qū)低滲煤層瓦斯高效抽采提供了技術(shù)支撐。
黃陵礦區(qū);定向長(zhǎng)鉆孔;裸眼坐封;水力壓裂;瓦斯抽采
近年來(lái),隨著礦井開采活動(dòng)的進(jìn)行和開采深度的不斷增加,礦井瓦斯涌出量逐年增大,低滲煤層所帶來(lái)的瓦斯抽采濃度低、抽采流量衰減速度快等問(wèn)題,使礦井安全生產(chǎn)面臨極大威脅[1-2]。同時(shí),高產(chǎn)高效礦井工作面回采效率高、接續(xù)時(shí)間緊,常規(guī)瓦斯抽采技術(shù)鉆孔工程量大、抽采效果不理想等問(wèn)題無(wú)法得到有效解決[3-4]。
黃隴侏羅紀(jì)煤田煤層埋藏較深,煤系含煤性好,但煤層透氣性差,需采取煤層強(qiáng)化增透措施提高瓦斯抽采效果,實(shí)踐證明,水力壓裂具有煤層增透、改變煤體強(qiáng)度等功效[5-6]。定向長(zhǎng)鉆孔水力壓裂綜合了定向鉆進(jìn)高效抽采技術(shù)和水力壓裂增透強(qiáng)化抽采的技術(shù)優(yōu)勢(shì),能夠有效提高瓦斯治理效率、擴(kuò)大瓦斯治理規(guī)模,促進(jìn)低滲煤層瓦斯高效治理技術(shù)發(fā)展[6-8]。目前,有人在不同礦區(qū)已開展了試驗(yàn)研究。
孫四清等[9]針對(duì)陽(yáng)泉礦區(qū)碎軟低滲高突煤層開展了井下長(zhǎng)鉆孔整體水力壓裂增透技術(shù)的工程試驗(yàn)研究,工程實(shí)現(xiàn)了井下一次性整體壓裂(煤孔段長(zhǎng)度307 m);李國(guó)棟等[10]研發(fā)了適合中等偏硬低透煤層裸眼鉆孔高壓穩(wěn)定封孔裝備,并且用于本煤層定向長(zhǎng)鉆孔整體水力壓裂增透技術(shù),良好效果;王建利等[11]針對(duì)韓城礦區(qū)碎軟煤層透氣性差、本煤層鉆孔鉆進(jìn)困難等問(wèn)題,采用頂板梳狀孔水力壓裂技術(shù)有效地解決了碎軟低滲煤層瓦斯抽采難題。
目前井下水力壓裂技術(shù)實(shí)現(xiàn)途徑主要為頂?shù)装寮懊簩訅毫眩瑢?duì)于不同硬度煤層需采用不同壓裂工藝。碎軟(薄)煤層(<0.8)由于其硬度低、成孔性差,多采用頂?shù)装?分段)壓裂方式[12-13],而本次針對(duì)陜西黃陵礦區(qū)中等偏硬煤層(≈1)為目標(biāo),以黃陵二號(hào)煤礦(區(qū)域煤層實(shí)測(cè)≈1.16)為試驗(yàn)點(diǎn)開展本煤層水力壓裂工程應(yīng)用試驗(yàn),研究中硬低滲煤儲(chǔ)層條件下壓裂工藝的適用性,旨在豐富不同地質(zhì)條件下煤層高效瓦斯抽采技術(shù)。
黃陵二號(hào)井田含煤地層為侏羅系中統(tǒng)延安組,其中,2號(hào)煤層是井田內(nèi)主要可采煤層,3號(hào)煤層為局部可采煤層,其他為不可采煤層。施工區(qū)域位于209輔運(yùn)巷八聯(lián)巷以里,向211工作面施工順煤層鉆孔。根據(jù)地質(zhì)勘探鉆孔資料(N47鉆孔)及實(shí)測(cè)數(shù)據(jù),2號(hào)煤厚度3.75 m,值約為1.16,埋深632.30 m,與3號(hào)煤層平均間距為13.5 m,層間巖性為粉砂巖和細(xì)砂巖互層(表1)。2號(hào)煤層作為主采煤層,滲透性差,普通鉆孔瓦斯抽采濃度及流量衰減速度快,抽采效果差。
表1 黃陵二號(hào)井田N47鉆孔揭露含煤地層巖性特征
采用ZDY6000LD型煤礦用全液壓坑道鉆機(jī)進(jìn)行鉆探施工。該鉆機(jī)是目前常用的履帶式定向鉆機(jī),適用于孔底馬達(dá)定向鉆進(jìn)、孔口回轉(zhuǎn)鉆進(jìn)以及復(fù)合鉆進(jìn)等多種施工工藝[14]。
水力壓裂施工需要較大的液體壓力和流量才能達(dá)到破裂煤體的目的,對(duì)鉆孔及封孔的工藝技術(shù)要求較高,將封孔工具坐封于煤層中容易出現(xiàn)封隔器爆裂、破損等現(xiàn)象。基于上述問(wèn)題,提出了中硬煤層“先入頂板后進(jìn)煤層”鉆探工藝,即鉆探施工中控制鉆孔軌跡在2號(hào)煤層頂板(層間距不宜過(guò)大,控制在2~3 m以內(nèi)),隨后調(diào)整角度進(jìn)入煤層鉆進(jìn)(圖1),在壓裂過(guò)程中將封隔器坐封于頂板巖層中,以保證良好的封孔效果。
圖1 “先入頂板后進(jìn)煤層”鉆探工藝軌跡
在2號(hào)煤層共計(jì)實(shí)施定向長(zhǎng)鉆孔5個(gè)(M1–M5),單孔孔深240~285 m,總進(jìn)尺1 320 m。其中M1–M4號(hào)孔采用“先入頂板后進(jìn)煤層”鉆探工藝,M5號(hào)孔為全煤層段鉆進(jìn),具體施工參數(shù)見(jiàn)表2,鉆孔平面軌跡如圖2所示。
表2 黃陵二號(hào)井田煤層定向長(zhǎng)鉆孔施工情況
圖2 黃陵二號(hào)井田煤層鉆孔平面位置
壓裂設(shè)備選用BYW65/400型壓裂泵組。水力壓裂成套設(shè)備由壓力泵、水箱、高壓管匯、遠(yuǎn)程操作系統(tǒng),具有壓力高、流量穩(wěn)定、可遠(yuǎn)程操作、遠(yuǎn)程視頻監(jiān)控、設(shè)備運(yùn)行穩(wěn)且運(yùn)行時(shí)間長(zhǎng)等特點(diǎn),可保證施工過(guò)程中工作人員的安全;根據(jù)鉆孔孔徑和壓裂工藝選擇封隔器,總長(zhǎng)為1 620 mm,最大外徑為86 mm,通徑為50 mm,工作壓力達(dá)70 MPa。
根據(jù)施工條件,本次壓裂方式采用整體壓裂,封孔方式采用封隔器裸眼坐封,壓裂液為清水;試驗(yàn)區(qū)煤層平均破裂壓力梯度為1.190~3.849 MPa/hm,壓裂施工區(qū)2號(hào)煤層平均埋深為630 m,計(jì)算得2號(hào)煤層破裂壓力為7.5~24.2 MPa。依據(jù)煤層厚度、孔隙率、壓裂影響范圍等參數(shù)計(jì)算壓裂液用量,設(shè)計(jì)煤層孔壓裂液用量240 m3。
基于前期本煤層壓裂孔“先入頂板后進(jìn)煤層”鉆探工藝,采用本煤層裸眼坐封水力壓裂工藝技術(shù),設(shè)計(jì)鉆探軌跡并跟蹤采樣,成孔后利用鉆孔窺視分析,選定頂板砂巖層孔壁完整段進(jìn)行裸眼坐封,水力壓裂工具串組合為:?86 mm引鞋+?86 mm單流閥+?86 mm定壓節(jié)流器+?86 mm封隔器+?73 mm油管。
本次共實(shí)施5個(gè)水力壓裂煤層鉆孔,采用整體壓裂方式,最高泵注壓力19 MPa,壓裂液總用量1 557.5 m3。各鉆孔水力壓裂施工情況見(jiàn)表3。
通過(guò)注水壓裂曲線分析可發(fā)現(xiàn),所有壓裂孔均以較為規(guī)則的鋸齒狀波動(dòng)為主,反映出該區(qū)域煤層較為穩(wěn)定,壓裂以微破裂為主,以M1號(hào)孔、M5號(hào)孔為例分析壓裂施工曲線。
M1號(hào)壓裂孔于20:03開泵進(jìn)行壓裂工作,至次日11:43左右結(jié)束,采用拖動(dòng)式封隔器進(jìn)行持續(xù)整體壓裂。壓裂時(shí)間持續(xù)15.67 h,注水總量315 m3,最高注水壓力19 MPa;該段壓裂期間鄰近鉆孔(50 m左右)出水,鄰近區(qū)域頂板也出現(xiàn)滲水現(xiàn)象。
由圖3所示,本次整體壓裂曲線仍以鋸齒狀上下波動(dòng)的壓力曲線為主,反映出清水壓入巖層孔隙或裂縫后的反復(fù)的“起裂–擴(kuò)展延伸”行為;隨著前期壓裂水的不斷注入,壓裂液(清水)能量的不斷積聚,巖層抵抗失效,主裂隙迅速擴(kuò)展,巖層裂隙中的自由空間增大,孔內(nèi)產(chǎn)生較大裂隙,壓裂清水在該裂隙系統(tǒng)中延伸、擴(kuò)展。
表3 本煤層鉆孔施工情況
圖3 M1號(hào)壓裂孔壓裂曲線(部分)
圖4 M5號(hào)壓裂孔壓裂曲線
M5號(hào)本煤層壓裂孔為全煤層段壓裂,采用拖動(dòng)式封隔器坐封后(坐封位置位于煤層)進(jìn)行持續(xù)整體壓裂。M5號(hào)壓裂孔于13:13左右開泵進(jìn)行壓裂工作,至次日07:37結(jié)束。壓裂時(shí)間持續(xù)18.4 h,注水總量403.5 m3,最高泵注壓力7.8 MPa,最大瞬時(shí)注水流量為31.41 m3/h。由圖4可以看出,本次壓力曲線整體呈現(xiàn)鋸齒狀上下波動(dòng),該壓力曲線反映清水壓入巖層天然孔隙后產(chǎn)生的微裂隙的“起裂–擴(kuò)展延伸”行為。壓裂水一開始通過(guò)滲流的方式逐漸充實(shí)煤層的原生孔隙和裂隙;隨著壓裂水壓力的不斷增加,壓裂孔周圍應(yīng)力升高產(chǎn)生微裂隙,而在壓裂泵持續(xù)注入的作用下,煤體內(nèi)發(fā)生再蓄能、裂縫再擴(kuò)張的循環(huán)往復(fù)過(guò)程,即壓力數(shù)據(jù)曲線呈鋸齒狀上下波動(dòng)的過(guò)程[15-16]。
通過(guò)對(duì)比M1和M5號(hào)孔壓裂情況發(fā)現(xiàn),M1號(hào)孔在進(jìn)行壓裂施工期間出現(xiàn)頂板及側(cè)幫滲水現(xiàn)象,考慮安全因素并未繼續(xù)增大排量和壓力,整體壓裂曲線較為平穩(wěn);而M5號(hào)孔在壓裂進(jìn)行了14.4 h后并未出現(xiàn)滲水情況,遂升檔提高排量和壓力,造成該處壓裂曲線出現(xiàn)階梯式增長(zhǎng)。
壓裂前后鉆孔瓦斯抽采數(shù)據(jù)對(duì)比分析結(jié)果見(jiàn)表4。M1—M5號(hào)鉆孔壓裂前瓦斯抽采純量和瓦斯體積分?jǐn)?shù)別為0.022~0.070 m3/(min·hm)、3.2%~38.2%;采用水力壓裂增透措施后,單孔瓦斯體積分?jǐn)?shù)提升倍數(shù)為0.7~20.5倍,抽采純量提升倍數(shù)為1.7~9.8倍,其中,最大單孔瓦斯體積分?jǐn)?shù)和抽采純量分別達(dá)86.48%、0.441 m3/(min·hm)。進(jìn)一步分析可知,M5號(hào)鉆孔壓裂效果整體優(yōu)于其他鉆孔,分析原因?yàn)镸5號(hào)鉆孔順煤層(全煤孔)施工、軌跡整體上行,孔內(nèi)無(wú)積水,而M1—M4號(hào)“先入頂板后進(jìn)煤層”鉆孔在見(jiàn)煤點(diǎn)附近存在低洼區(qū),抽采過(guò)程中大量壓裂液在此聚集無(wú)法順利返排,影響抽采效果。但M5號(hào)鉆孔壓裂施工時(shí),封隔器在煤層中破損程度高、損壞數(shù)量多且出現(xiàn)了孔口滲水現(xiàn)象導(dǎo)致泵壓較低,“先入頂板后進(jìn)煤層”鉆孔未出現(xiàn)封隔器破損和孔口滲水現(xiàn)象,因此,對(duì)于中硬煤層而言,采用“先入頂板后進(jìn)煤層”布孔方式除能夠得到較好封孔效果之外,還可降低壓裂工具損耗,減少成本投入,經(jīng)濟(jì)適用性較強(qiáng)。
跟蹤了鉆孔自然瓦斯涌出量數(shù)據(jù),其中,B1、B2對(duì)比孔與壓裂孔處于同一工作面,且鉆孔結(jié)構(gòu)參數(shù)與壓裂鉆孔相同。通過(guò)水力壓裂施工后,M1、M2、M3號(hào)壓裂孔瓦斯初始涌出強(qiáng)度為0.120 6~0.142 9 m3/(min·hm),平均為0.133 5 m3/(min·hm),鉆孔瓦斯流量衰減系數(shù)為0.012~0.019 d–1,平均為0.016 d–1;未壓裂鉆孔(對(duì)比孔)B1、B2孔瓦斯初始涌出強(qiáng)度為0.018 5~0.067 3 m3/(min·hm),平均為0.042 9 m3/(min·hm),鉆孔瓦斯流量衰減系數(shù)為0.024~0.029 d–1,平均為0.026 5 d–1,見(jiàn)表5。相比于普通鉆孔,壓裂孔瓦斯初始涌出強(qiáng)度提升2.1倍,鉆孔瓦斯流量衰減系數(shù)降低39.6%。采取水力壓裂增透措施后,鉆孔瓦斯初始涌出量有所提高、而鉆孔瓦斯流量衰減系數(shù)降低,煤層的可抽性增加。
表4 壓裂鉆孔瓦斯抽采效果對(duì)比
表5 壓裂鉆孔和對(duì)比孔瓦斯自然涌出特征對(duì)比
為了對(duì)比壓裂孔、未壓裂鉆孔(壓裂區(qū)域之外)及壓裂區(qū)域預(yù)抽孔3者的抽采效果情況,選取持續(xù)觀測(cè)的鉆孔進(jìn)行效果對(duì)比分析,未壓裂鉆孔平均百米抽采量?jī)H為0.069 m3/min,壓裂區(qū)域本煤層預(yù)抽孔平均百米抽采量為0.118 m3/min,是未壓裂鉆孔的1.7倍;壓裂孔平均百米抽采量為0.297 m3/min,是未壓裂鉆孔的4.3倍;壓裂影響范圍內(nèi)鉆孔瓦斯百米抽采量整體上是未壓裂區(qū)域鉆孔的2倍以上。
煤層滲透性作為瓦斯抽采技術(shù)的關(guān)鍵制約因素,主要受到煤儲(chǔ)層裂隙發(fā)育情況以及地應(yīng)力等條件影響。
低滲煤層由于其滲透率低、裂隙連通性差,往往造成瓦斯抽采濃度及流量衰減速度快等問(wèn)題。煤層水力壓裂技術(shù)是從力學(xué)角度入手,采用高于地層應(yīng)力或煤體破壞抵抗力的壓力水沖擊煤體,使煤體裂隙孔隙產(chǎn)生“壓縮–膨脹–壓縮”反復(fù)擾動(dòng),造成局部疲勞損傷,促使煤體內(nèi)部裂隙弱面擴(kuò)展延伸,擴(kuò)開煤體原生裂隙,并不斷發(fā)育新生裂隙,在煤體儲(chǔ)層內(nèi)形成相互交織貫通的裂縫網(wǎng)絡(luò),增加流體介質(zhì)的流動(dòng)通道,從而提高儲(chǔ)層滲透性[17]。
整體水力壓裂要實(shí)現(xiàn)煤層裂隙開啟并維持其擴(kuò)展、延伸,需要滿足鉆孔注入水量大于煤層濾失水量和鉆孔注入水壓大于煤層滲透水壓。壓裂初始階段高壓水進(jìn)入煤體,進(jìn)入煤層中的水則會(huì)使煤層的各級(jí)弱面面壁產(chǎn)生內(nèi)水壓力,因此,會(huì)有膨脹的產(chǎn)生,促使弱面繼續(xù)擴(kuò)展和延伸,并在煤層中相互連通,形成一個(gè)貫通網(wǎng)絡(luò),致使煤層產(chǎn)生壓裂。隨著鉆孔注水壓裂的持續(xù),煤層周而復(fù)始地重復(fù)上述壓裂過(guò)程,使得裂隙不斷向煤層深部開啟、擴(kuò)展、延伸。這一壓裂過(guò)程在鉆孔壓力曲線上(圖3、圖4)表現(xiàn)為壓力周期性的上升、下降。通過(guò)水力壓裂增透措施后,可有效擴(kuò)大煤層瓦斯流通裂隙規(guī)模,提高煤層滲透性和瓦斯可抽性。
水力壓裂施工完成后,水和瓦斯的排出降低了地層孔隙壓力,使煤層的有效應(yīng)力發(fā)生變化,煤層中有效應(yīng)力的增加導(dǎo)致煤層中孔隙、裂隙減少,裂縫會(huì)出現(xiàn)閉合,因此裂縫閉合問(wèn)題也是清水壓裂目前存在的瓶頸之一。
a. 利用自主研發(fā)的水力壓裂成套工藝設(shè)備,開發(fā)出適用于黃陵礦區(qū)中硬低滲煤層的定向長(zhǎng)鉆孔裸眼快速坐封水力壓裂瓦斯高效抽采工藝技術(shù),完成5個(gè)鉆孔整體壓裂施工,累計(jì)壓裂液用量1 557.5 m3,單孔最大泵注壓力19 MPa。針對(duì)煤層坐封存在封隔器易破損、成本高等問(wèn)題,提出了“先入頂板后進(jìn)煤層”布孔和壓裂方式,該方式具有封孔效果好、施工投入小、經(jīng)濟(jì)適用性強(qiáng)等特點(diǎn)。
b. 壓裂后單孔瓦斯抽采濃度及百米抽采純量分別提升0.7~20.5倍、1.7~9.8倍;相比于普通鉆孔,壓裂孔瓦斯初始涌出強(qiáng)度提升2.1倍,鉆孔瓦斯流量衰減系數(shù)降低39.6%;通過(guò)對(duì)比不同抽采工藝效果發(fā)現(xiàn),未壓裂區(qū)域本煤層預(yù)抽孔平均百米抽采量是未壓裂鉆孔的1.7倍;壓裂孔平均百米抽采量是未壓裂鉆孔的4.3倍;壓裂影響范圍內(nèi)鉆孔瓦斯百米抽采量整體是未壓裂區(qū)域鉆孔的2倍以上,區(qū)域大面積預(yù)抽效果顯著。
c. 通過(guò)本次井下水力壓裂工程試驗(yàn),證實(shí)了定向長(zhǎng)鉆孔水力壓裂高效抽采工藝技術(shù)在黃陵礦區(qū)的適用性。水力壓裂施工增加了煤層瓦斯流通裂隙規(guī)模,提高了煤層滲透性和瓦斯可抽性,為黃陵礦區(qū)中硬低滲煤層瓦斯高效抽采提供了技術(shù)支撐。
[1] 盧平,袁亮,程樺,等. 低透氣性煤層群高瓦斯采煤工作面強(qiáng)化抽采卸壓瓦斯機(jī)理及試驗(yàn)[J]. 煤炭學(xué)報(bào),2010,35(4):580–585. LU Ping,YUAN Liang,CHENG Hua,et al. Theory and experimental studies of enhanced gas drainage in the high-gas face of low permeability coal multi-seams[J]. Journal of China Coal Society,2010,35(4):580–585.
[2] 張東明,白鑫,尹光志,等. 低滲煤層液態(tài)CO2相變定向射孔致裂增透技術(shù)及應(yīng)用[J]. 煤炭學(xué)報(bào),2018,43(7):1938–1950. ZHANG Dongming,BAI Xin,YIN Guangzhi,et al. Research and application on technology of increased permeability by liquid CO2phase change directional jet fracturing in low-permeability coal seam[J]. Journal of China Coal Society,2018,43(7):1938–1950.
[3] 郭啟文,韓煒,張文勇,等. 煤礦井下水力壓裂增透抽采機(jī)理及應(yīng)用研究[J]. 煤炭科學(xué)技術(shù),2011,39(12):60–64. GUO Qiwen,HAN Wei,ZHANG Wenyong,et al. Study on mechanism and application of hydraulic fracturing and permeability improvement gas drainage in underground mine[J]. Coal Science and Technology,2011,39(12):60–64.
[4] 徐剛,金洪偉,李樹剛,等. 不同堅(jiān)固性系數(shù)值煤滲透率分布特征及其井下水力壓裂適用性分析[J]. 西安科技大學(xué)學(xué)報(bào),2019,39(3):443–451. XU Gang,JIN Hongwei,LI Shugang,et al. Distribution characteristics of coal seam permeability with different solidity coefficientand applicability analysis of hydraulic fracturing of underground coal mine[J]. Journal of Xi’an University of Science and Technology,2019,39(3):443–451.
[5] 周紅星,王亮,程遠(yuǎn)平,等. 低透氣性強(qiáng)突出煤層瓦斯抽采導(dǎo)流通道的構(gòu)建及應(yīng)用[J]. 煤炭學(xué)報(bào),2012,37(9):1456–1460. ZHOU Hongxing,WANG Liang,CHENG Yuanping,et al. Guide channel construction for gas drainage and its applications in coal seams with low permeability and strong burst-pronenees [J]. Journal of China Coal Society,2012,37(9):1456–1460.
[6] 王耀鋒,何學(xué)秋,王恩元,等. 水力化煤層增透技術(shù)研究進(jìn)展及發(fā)展趨勢(shì)[J]. 煤炭學(xué)報(bào),2014,39(10):1945–1955. WANG Yaofeng,HE Xueqiu,WANG Enyuan,et al. Research progress and development tendency of the hydraulic technology for increasing the permeability of coal seams[J]. Journal of China Coal Society,2014,39(10):1945–1955.
[7] 鄭凱歌. 碎軟低透煤層底板梳狀長(zhǎng)鉆孔分段水力壓裂增透技術(shù)研究[J]. 采礦與安全工程學(xué)報(bào),2020,37(2):272–281. ZHENG Kaige. Permeability improving technology by sectional hydraulic fracturing for comb-like long drilling in floor of crushed and soft coal seam with low permeability[J]. Journal of Mining and Safety Engineering,2020,37(2):272–281.
[8] 賈進(jìn)章,葛佳琪,甄紋浩,等. 水力壓裂增透技術(shù)及應(yīng)用研究[J]. 中國(guó)安全科學(xué)學(xué)報(bào),2020,30(10):63–68. JIA Jinzhang,GE Jiaqi,ZHEN Wenhao,et al. Research and application of anti-reflection technology of hydraulic fracturing[J]. China Safety Science Journal,2020,30(10):63–68.
[9] 孫四清,張群,閆志銘,等. 碎軟低滲高突煤層井下長(zhǎng)鉆孔整體水力壓裂增透工程實(shí)踐[J]. 煤炭學(xué)報(bào),2017,42(9):2337–2344. SUN Siqing,ZHANG Qun,YAN Zhiming,et al. Practice of permeability enhancement through overall hydraulic fracturing of long hole in outburst-prone soft crushed coal seam with low permeability[J]. Journal of China Coal Society,2017,42(9):2337–2344.
[10] 李國(guó)棟,鄭凱歌,陳冬冬. 趙固二礦本煤層定向長(zhǎng)鉆孔水力壓裂增透技術(shù)研究[J]. 煤炭工程,2019,51(7):53–57.LI Guodong,ZHENG Kaige,CHEN Dongdong. Study on permeability enhancement technology through overall hydraulic fracturing of long directional hole in Zhaogu No.2 Coal Mine mining coal seam[J]. Coal Engineering,2019,51(7):53–57.
[11] 王建利,陳冬冬,賈秉義. 韓城礦區(qū)碎軟煤層頂板梳狀孔水力壓裂瓦斯抽采工程實(shí)踐[J]. 煤田地質(zhì)與勘探,2018,46(4):17–21. WANG Jianli,CHEN Dongdong,JIA Bingyi. Practice of gas drainage by hydraulic fracturing of roof pectination boreholes in broken soft coal seam in Hancheng mining area[J]. Coal Geology & Exploration,2018,46(4):17–21.
[12] 楊俊哲,鄭凱歌. 厚煤層綜放開采覆巖動(dòng)力災(zāi)害原理及防治技術(shù)[J]. 采礦與安全工程學(xué)報(bào),2020,37(4):750–758. YANG Junzhe,ZHENG Kaige. The mechanism of overburden dynamic disasters and its control technology in top-coal caving in the mining of thick coal seams[J]. Journal of Mining and Safety Engineering,2020,37(4):750–758.
[13] 王廣宏. 定向長(zhǎng)鉆孔水力壓裂增滲技術(shù)預(yù)抽煤巷條帶瓦斯的應(yīng)用研究[J]. 能源與環(huán)保,2019,41(7):25–28. WANG Guanghong. Application study of directional long borehole hydraulic fracturing and permeability enhancement technology for pre-drainage gas in coal roadway[J]. China Energy and Environmental Protection,2019,41(7):25–28.
[14] 方鵬,田宏亮,鄔迪,等. ZDY6000LD(A)型履帶式全液壓定向鉆機(jī)及其應(yīng)用[J]. 煤田地質(zhì)與勘探,2011,39(2):74–77. FANG Peng,TIAN Hongliang,WU Di,et al. Development and application of the track-mounted ZDY6000LD(A) hydraulic directional drilling rig[J]. Coal Geology & Exploration,2011,39(2):74–77.
[15] 陶云奇,劉東,許江,等. 大尺寸復(fù)雜應(yīng)力水力壓裂裂縫擴(kuò)展模擬試驗(yàn)研究[J]. 采礦與安全工程學(xué)報(bào),2019,36(2):405–412. TAO Yunqi,LIU Dong,XU Jiang,et al. Experimental study on hydraulic fracturing propagation in coal/rock with large size and complex stress[J]. Journal of Mining and Safety Engineering,2019,36(2):405–412.
[16] 徐濤,馮文軍,蘇現(xiàn)波. 煤礦井下水力壓沖增透強(qiáng)化抽采技術(shù)試驗(yàn)研究[J]. 西安科技大學(xué)學(xué)報(bào),2015,35(3):303–306. XU Tao,F(xiàn)ENG Wenjun,SU Xianbo. Experimental research on enhanced gas extraction application with hydraulic fracturing and flushing[J]. Journal of Xi’an University of Science and Technolgy,2015,35(3):303–306.
[17] 秦玉金,蘇偉偉,田富超,等. 煤層注水微觀效應(yīng)研究現(xiàn)狀及發(fā)展方向[J]. 中國(guó)礦業(yè)大學(xué)學(xué)報(bào),2020,49(3):428–444. QIN Yujin,SU Weiwei,TIAN Fuchao,et al. Research status and development direction of microcosmic effect under coal seam water injection[J]. Journal of China University of Mining & Technology,2020,49(3):428–444.
Technology and application of high efficiency gas extraction by directional long borehole hydraulic fracturing in coal seams of medium hardness and low permeability
GUO Chaoqi1, ZHAO Jizhan2, LI Xiaojian1, ZHANG Jingfei2, WU Shengli1, CHEN Dongdong2, HUANG Xingli1, LI Baojun1
(1. Shaanxi Huangling No.2 Coal Mine Co. Ltd., Huangling 727307, China; 2. Xi’an Research Institute Co. Ltd., China Coal Technology and Engineering Group Corp., Xi’an 710077, China)
Aiming at the problems such as poor permeability of coal seams and fast attenuation of gas extraction concentration and flow rate in Jurassic coalfield of Huanglong, the complete set of independently developed hydraulic fracturing equipment was used , the high-efficiency gas extraction technology of directional long borehole hydraulic fracturing of coal seams was put forward, the engineering application test was carried out in Huangling No.2 coal mine in Huanglong coalfield . Five directional long boreholes were drilled. The depth of single borehole was 240~285 m and the total footage was of 1 320 m. The integrated fracturing process was used to fracture coal seams in five boreholes. The cumulative amount of fracturing fluid was 1 557.5 m3, and the maximum pumping pressure for the single borehole was 19MPa. After fracturing, the gas extraction concentration and the drainage quantity per 100 m were increased by 0.7-20.5 times and 1.7-9.8 times respectively. Compared with ordinary boreholes, the initial gas-gushing strength of the fractured borehole was increased by 2.1 times, and the attenuation coefficient of gas flow of the boreholes was reduced by 39.6%. The test results show that the gas extraction effect can be significantly improved and the coal seam drainage ability can be increased after adopting the permeability improvement measures of hydraulic fracturing, providing technical support for the high-efficiency gas extraction of low-permeability coal seam in similar mining areas.
Huangling mining area;directional long borehole; open hole setting; hydraulic fracturing; gas drainage
請(qǐng)聽作者語(yǔ)音介紹創(chuàng)新技術(shù)成果等信息,歡迎與作者進(jìn)行交流
TD713
A
10.3969/j.issn.1001-1986.2020.06.014
1001-1986(2020)06-0103-06
2020-06-05;
2020-12-18
國(guó)家科技重大專項(xiàng)任務(wù)(2016ZX05045-002-002);中煤科工集團(tuán)西安研究院有限公司科技創(chuàng)新基金資助項(xiàng)目(2018XAYZD10,2018XAYMS08)
National Science and Technology Major Project(2016ZX05045-002-002);Science and Technology Innovation Fund of Xi’an Research Institute of CCTEG(2018XAYZD10,2018XAYMS08)
郭超奇,1981年生,男,陜西長(zhǎng)安人,高級(jí)工程師,從事煤礦工程技術(shù)與管理工作. E-mail:17135197@qq.com
張靜非,1993年生,男,甘肅隴南人,碩士,從事礦井瓦斯與硫化氫災(zāi)害防治研究. E-mail:782356383@qq.com
郭超奇,趙繼展,李小建,等. 中硬低滲煤層定向長(zhǎng)鉆孔水力壓裂瓦斯高效抽采技術(shù)與應(yīng)用[J]. 煤田地質(zhì)與勘探,2020,48(6):103–108.
GUO Chaoqi,ZHAO Jizhan,LI Xiaojian,et al.Technology and application of high efficiency gas extraction by directional long borehole hydraulic fracturing in coal seams of medium hardness and low permeability[J]. Coal Geology & Exploration,2020,48(6):103–108.
(責(zé)任編輯 范章群)