亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        煤層氣開發(fā)中煤粉問題的研究現(xiàn)狀及研究思路

        2021-01-29 13:31:48魏迎春曹代勇崔茂林王安民
        煤田地質(zhì)與勘探 2020年6期
        關(guān)鍵詞:運(yùn)移煤粉煤層氣

        魏迎春,張 勁,曹代勇,孟 濤,崔茂林,王安民

        煤層氣開發(fā)中煤粉問題的研究現(xiàn)狀及研究思路

        魏迎春,張 勁,曹代勇,孟 濤,崔茂林,王安民

        (中國礦業(yè)大學(xué)(北京) 地球科學(xué)與測(cè)繪工程學(xué)院,北京 100083)

        隨著煤層氣的開發(fā),煤粉問題已逐漸成為制約煤層氣開發(fā)的重要問題。由于近年來煤粉問題才開始被關(guān)注和重視,煤粉研究缺乏系統(tǒng)科學(xué)的研究思路和方法,從煤粉的危害、煤粉形成機(jī)制、煤粉產(chǎn)出規(guī)律及煤粉管控措施方面,總結(jié)了煤層氣開發(fā)中產(chǎn)出煤粉的研究現(xiàn)狀,指出了煤粉研究的不足,提出了一套由理論依據(jù)、研究?jī)?nèi)容、研究方法等核心環(huán)節(jié)構(gòu)成的煤層氣開發(fā)中煤粉問題的研究思路與方法:以煤層氣地質(zhì)與開發(fā)學(xué)、煤田地質(zhì)學(xué)、巖石力學(xué)和流體力學(xué)等多學(xué)科理論為指導(dǎo),以《煤層氣勘探開發(fā)規(guī)范》《煤層氣井監(jiān)測(cè)方法》《測(cè)試分析技術(shù)方法》等相關(guān)技術(shù)標(biāo)準(zhǔn)和規(guī)范為依據(jù),以歷年煤層氣地質(zhì)資料和煤層氣排采數(shù)據(jù)為基礎(chǔ),按資料收集→現(xiàn)場(chǎng)監(jiān)測(cè)與采樣→測(cè)試與數(shù)據(jù)處理→物理模擬與數(shù)值模擬→專題制圖與綜合分析→技術(shù)設(shè)備研發(fā)→現(xiàn)場(chǎng)工程應(yīng)用的工作流程和方法,以煤粉產(chǎn)出的影響因素、煤粉產(chǎn)出機(jī)理、煤粉產(chǎn)出規(guī)律和煤粉管制措施等為主要研究?jī)?nèi)容,選擇典型煤層氣示范區(qū),開展全面系統(tǒng)的煤粉研究工作,為實(shí)現(xiàn)煤層氣高效開發(fā)提供保障。本研究思路與方法為科學(xué)研究煤粉問題提供方法學(xué)依據(jù)。

        煤層氣;煤粉;研究現(xiàn)狀;研究思路;研究方法

        煤層氣作為非常規(guī)天然氣資源是一種綠色的清潔能源,合理開發(fā)利用煤層氣,對(duì)于改善我國長期以煤炭開采利用為主的能源結(jié)構(gòu)、緩解國內(nèi)油氣資源利用壓力、防治煤礦瓦斯事故、提高煤礦安全生產(chǎn)指數(shù)、促進(jìn)我國逐步向低污染、低碳循環(huán)發(fā)展模式轉(zhuǎn)變具有重要的意義。

        據(jù)新一輪全國煤炭資源潛力評(píng)價(jià),埋深在2 000 m以淺的煤炭資源量為5.90 萬億t[1],煤層氣資源量也相當(dāng)豐富,埋深在2 000 m以淺的煤層氣地質(zhì)資源量36.81 萬億m3,其中,埋深1500 m以淺的煤層氣可采資源量10.87 萬億m3[2]。但我國大陸在全球構(gòu)造格局中所處的特殊位置決定了煤盆地構(gòu)造–熱演化歷史復(fù)雜,主要成煤期為晚古生代和中新生代,煤層受中、新生代多期構(gòu)造熱事件影響,煤變質(zhì)程度較高,煤層(儲(chǔ)層)受到不同程度的改造和破壞,不同類型的構(gòu)造煤普遍發(fā)育。由于我國煤層氣儲(chǔ)層不均一性強(qiáng)及煤層開發(fā)中煤粉產(chǎn)出明顯等特征,導(dǎo)致我國煤層氣大規(guī)模開發(fā)在理論和技術(shù)方面仍存在諸多難題[3-7],其中,煤層氣開發(fā)中煤粉問題日益顯現(xiàn),成為制約煤層氣開發(fā)的難題之一。煤粉滯留在裂縫中的孔道內(nèi),逐漸降低裂縫導(dǎo)流能力,使煤層氣井產(chǎn)能過早出現(xiàn)衰減現(xiàn)象;煤粉在井內(nèi)沉積聚集或進(jìn)入排采系統(tǒng),導(dǎo)致埋泵和卡泵,影響煤層氣的連續(xù)開采。煤粉問題已嚴(yán)重制約了我國煤層氣井的產(chǎn)能。因此,如何開展煤層氣開發(fā)中煤粉問題的研究和建立科學(xué)的煤粉問題研究思路與方法是煤粉研究亟需要解決的問題,為實(shí)現(xiàn)煤層氣井高效穩(wěn)定連續(xù)排采提供保障,為煤層氣高效開發(fā)提供技術(shù)方法依據(jù)。

        1 研究現(xiàn)狀及存在問題

        1.1 煤粉的危害研究

        眾多學(xué)者對(duì)煤粉產(chǎn)出的危害逐步達(dá)成共識(shí)[8-13],主要有以下2個(gè)方面,① 儲(chǔ)層傷害:煤粉遷移直接堵塞煤層天然裂縫系統(tǒng)或堵塞支撐劑充填層孔隙,降低擴(kuò)散和滲流通道的導(dǎo)流能力,進(jìn)一步降低煤層滲透率[12,14-20],影響煤層氣的高效生產(chǎn)。劉巖等[21](2017)分析了不同流速下煤粉對(duì)支撐裂縫導(dǎo)流能力的影響特征。胡勝勇等[22]、石軍太等[23]分別建立了考慮煤粉運(yùn)移與沉積的支撐裂縫滲透率演化模型和考慮煤粉堵塞影響的煤儲(chǔ)層滲透率模型。趙政等[24](2020)研究了氣/水兩相驅(qū)替煤粉引起的煤裂縫導(dǎo)流衰減特征。Tao Shu等[25]分析了保德煤層氣區(qū)塊煤粉對(duì)煤儲(chǔ)層流體速度敏感性及其對(duì)煤層氣井產(chǎn)能的影響,分析了煤粉生成和運(yùn)移對(duì)煤滲透率的影響[19]。② 排采故障:煤粉顆粒堵塞井底篩管及泵吸入口,導(dǎo)致煤層氣井排水不暢,凡爾關(guān)閉不嚴(yán),抽油泵漏失,大幅度降低水泵功效,不僅造成機(jī)械磨損,甚至形成黏稠膠狀物進(jìn)入泵內(nèi),易造成卡泵,在生產(chǎn)過程中需要頻繁檢泵,破壞煤層氣井產(chǎn)氣的連續(xù)性,影響產(chǎn)氣潛力;液固兩相流進(jìn)入井筒以后,由于流速變小,一部分煤粉由于重力作用沉入井筒底部,堆積極易發(fā)生埋泵[26-29]。上述煤粉的危害方面在宏觀上達(dá)成了共識(shí),但關(guān)于不同特征的煤粉在不同儲(chǔ)層中運(yùn)移對(duì)儲(chǔ)層傷害如何,尚有待進(jìn)一步研究。

        1.2 煤粉形成機(jī)制研究

        不同學(xué)者分別從排采實(shí)踐和室內(nèi)實(shí)驗(yàn)角度,對(duì)煤粉組分特征進(jìn)行了分析研究。煤層氣井產(chǎn)出的煤粉濃度變化較大,其與煤層性質(zhì)(特別是構(gòu)造煤發(fā)育程度)、開發(fā)方式及排采階段等有關(guān)。煤粉成分以鏡質(zhì)組和無機(jī)礦物為主,顆粒粒徑大部分在200 μm以下,煤粉顆粒形態(tài)主要為柱狀、粒狀和片狀,光滑表面的煤粉顆粒成分以煤為主,粗糙表面的煤粉顆粒成分以無機(jī)礦物為主。韓城區(qū)塊煤層氣井產(chǎn)出煤粉濃度為0.325~2.262 g/L,平均為0.729 g/L[30],煤粉的成分以鏡質(zhì)組和黏土礦物為主,煤粉中無機(jī)礦物以黏土礦物、黃鐵礦、白鐵礦和方解石為主[13,31-32]。臨汾區(qū)塊煤層氣井產(chǎn)出煤粉濃度為1.789~2.931 g/L,平均為2.406 g/L[33],煤粉的成分以無機(jī)礦物和鏡質(zhì)組為主,以硬石膏、黃鐵礦和黏土礦物為主[34]。沁水盆地煤層氣井的煤粉主要由受構(gòu)造應(yīng)力破碎形成和壓裂支撐劑打磨產(chǎn)生,煤粉的特征和成因機(jī)制決定了煤粉的粒度、濃度以及形態(tài)[32]??仆锱璧豊eyveli煤田的褐煤煤層在煤層氣開發(fā)中產(chǎn)出的煤粉成分主要為高嶺石片和煤巖顆粒[33]。煤粉中無機(jī)礦物類型及含量不同與煤層氣主力開發(fā)煤層的煤巖組成及夾矸成分有關(guān),主要受煤層形成時(shí)沉積環(huán)境和物源的影響[30]。物理模擬實(shí)驗(yàn)證實(shí)煤巖組分、礦物成分、煤層結(jié)構(gòu)、煤體結(jié)構(gòu)等影響煤粉產(chǎn)出[12,16,35-36]。煤粉成因分為地質(zhì)作用和人為作用兩類,其對(duì)應(yīng)的煤粉來源一是地質(zhì)作用形成的原生煤粉,二是煤層氣井勘探開發(fā)中人為擾動(dòng)形成的煤粉,主要有壓裂造縫、支撐劑嵌入煤層、煤基質(zhì)收縮、排水過程儲(chǔ)層應(yīng)力狀態(tài)的變化等[8,37]。針對(duì)多分支水平井產(chǎn)出的煤粉,其成因主要有構(gòu)造應(yīng)力破壞、機(jī)械破壞、氣液流沖刷和應(yīng)力改變等產(chǎn)生的煤粉[38]。根據(jù)煤粉的來源,煤粉主要?jiǎng)澐譃槌涮钭杂擅悍?、骨架顆粒煤粉和孔眼塑性區(qū)煤粉[39]。從煤粉產(chǎn)生機(jī)理分析,煤粉分為鉆井殘留煤粉、井壁失穩(wěn)(坍塌和破裂)產(chǎn)生煤粉和煤基質(zhì)破裂產(chǎn)生煤粉[40]。從煤巖破壞機(jī)理方面,剪切破壞、壓實(shí)破壞和滑移破壞導(dǎo)致煤粉產(chǎn)出[41]。I. D. Palmer等認(rèn)為軟弱煤巖的力學(xué)破壞是煤粉產(chǎn)出的主要來源[42]。從煤粉受到流體作用力、自身重力、范德華力、布朗擴(kuò)散力、雙電層排斥力與波恩短程斥力等分析,建立了單相流條件下煤粉顆粒的啟動(dòng)力學(xué)模型,分析了煤粉顆粒的啟動(dòng)條件[42-44]。在煤層氣早期氣水兩相流動(dòng)時(shí),儲(chǔ)層中氣水界面的移動(dòng)誘發(fā)大量細(xì)?;揫45]。碎粒煤產(chǎn)出煤粉量遠(yuǎn)遠(yuǎn)大于原生結(jié)構(gòu)煤產(chǎn)出煤粉量[35],糜棱煤遇水后容易完全分解成煤粉,是煤層氣井產(chǎn)出煤粉的主要來源[46]。綜合考慮煤粉成因機(jī)制、產(chǎn)出位置及對(duì)生產(chǎn)的影響等,提出了煤粉成因機(jī)制—產(chǎn)出位置綜合分類體系,指出了煤層自身性質(zhì)是煤粉產(chǎn)出的基礎(chǔ),工程擾動(dòng)是煤粉產(chǎn)出的誘因,而煤體結(jié)構(gòu)是煤粉產(chǎn)出的關(guān)鍵[11,13]。現(xiàn)有的研究成果尚未能從煤儲(chǔ)層地質(zhì)條件、煤巖性質(zhì)與工程擾動(dòng)耦合效應(yīng)分析入手,系統(tǒng)的揭示煤粉產(chǎn)出機(jī)制。

        1.3 煤粉產(chǎn)出規(guī)律研究

        控制煤粉產(chǎn)出是煤層氣井排采管理中的重要環(huán)節(jié),合理的煤粉控制是以煤粉產(chǎn)出規(guī)律為基礎(chǔ)。通過沁水盆地南部和鄂爾多斯盆地東緣韓城區(qū)塊、臨汾區(qū)塊和三交區(qū)塊煤層氣井現(xiàn)場(chǎng)排采實(shí)踐及煤粉監(jiān)測(cè),針對(duì)韓城區(qū)塊煤層氣井產(chǎn)出煤粉特征,從煤粉濃度、煤粉粒度和煤粉來源方面劃分了煤層氣井煤粉產(chǎn)出的4個(gè)階段,排采初期和產(chǎn)氣量快速上升期是煤層氣井卡泵的高峰期[26]。沁水盆地南部煤層氣井在動(dòng)液面初次降到煤層附近時(shí),是煤粉產(chǎn)出的高峰期[8],煤層氣井煤粉產(chǎn)出顆粒粒徑呈四個(gè)階段變化特征[40,46]。通過煤粉產(chǎn)出的物理模擬和數(shù)值模擬,排采速度、圍壓影響煤粉的產(chǎn)出量,煤粉產(chǎn)出對(duì)煤儲(chǔ)層的滲透率有影響[47,12],煤粉顆粒產(chǎn)出量隨顆粒粒徑減小而增多,隨煤粉中無機(jī)組分含量增加而增多[16,20,48]。水平井井筒遷移規(guī)律物理模擬試驗(yàn)表明,壓差與煤粉的遷移速率呈非線性增加關(guān)系,煤粉的遷移受限于臨界啟動(dòng)壓差[49],煤層氣產(chǎn)氣通道內(nèi)煤粉顆粒的啟動(dòng)與運(yùn)移是壓力梯度、流體沖刷力、流體中浮力及煤粉自身重力的綜合作用結(jié)果[37]。單相水流階段裂縫面黏附煤粉以“壓力梯度”為啟動(dòng),煤粉啟動(dòng)受顆粒尺寸、顆粒類型、裂縫縫寬和離子強(qiáng)度的影響[50-51],建立了煤儲(chǔ)層液流攜粉運(yùn)移特征的數(shù)學(xué)模型[52],分析了單相水流條件下煤粉運(yùn)移對(duì)儲(chǔ)層滲透率的影響[53-55]。多相流條件下不同粒徑煤粉啟動(dòng)–運(yùn)移模擬表明,流量、壓差、管道傾角、粒度等因素影響煤粉的啟動(dòng)和運(yùn)移[56-57],不同粒度和不同濃度煤粉的聚集與沉降特征不同[58-59],不同礦化度水對(duì)煤粉的運(yùn)移產(chǎn)生影響[60],分析了非穩(wěn)定流下煤粉顆粒的運(yùn)移規(guī)律[61]。由于不同區(qū)塊,地質(zhì)特征不同,煤粉產(chǎn)出規(guī)律存在差異,上述研究主要是針對(duì)某煤層氣區(qū)塊,開展的煤粉產(chǎn)出規(guī)律研究;在物理模擬方面,尚未采用煤粉運(yùn)移可視物理模擬實(shí)驗(yàn)裝置,開展煤粉運(yùn)移可視流動(dòng)物理模擬實(shí)驗(yàn);在數(shù)值模擬方面,還需要進(jìn)一步細(xì)化,如上述數(shù)學(xué)模型均未考慮煤粉形態(tài)的不同,不同類型構(gòu)造煤儲(chǔ)層孔裂隙不同,因此,需要開展不同地質(zhì)條件、儲(chǔ)層、排采條件的可視化煤粉產(chǎn)出物理模擬實(shí)驗(yàn),在其基礎(chǔ)上,結(jié)合現(xiàn)場(chǎng)煤粉監(jiān)測(cè),建立不同類型煤儲(chǔ)層和不同通道中煤粉運(yùn)移的數(shù)學(xué)模型,來更好地揭示煤粉運(yùn)移規(guī)律。

        1.4 煤粉管控措施研究

        針對(duì)煤粉產(chǎn)出對(duì)煤層氣開發(fā)的危害,不同學(xué)者從地質(zhì)預(yù)防、儲(chǔ)層改造、設(shè)備優(yōu)選、生產(chǎn)預(yù)警、排采控制和工藝治理等方面提出了一系列煤粉管控措施[27]。在地質(zhì)預(yù)防方面,針對(duì)韓城區(qū)塊,利用測(cè)井?dāng)?shù)據(jù)預(yù)測(cè)了各類型構(gòu)造煤[62-63]。通過地質(zhì)分析和地球物理解釋方法,利用測(cè)井?dāng)?shù)據(jù)辨識(shí)各類型構(gòu)造煤與煤層結(jié)構(gòu),分析煤巖組分、煤體結(jié)構(gòu)、煤層結(jié)構(gòu)等儲(chǔ)層地質(zhì)條件,預(yù)測(cè)和圈定煤粉高發(fā)區(qū)域和層段,從煤粉方面為選區(qū)布井提供依據(jù)[11,27]。在儲(chǔ)層改造方面,主要在壓裂工藝、壓裂液成分和壓裂層位等方面制定煤粉管控措施[27]。針對(duì)煤巖力學(xué)性質(zhì),選擇不同的壓裂工藝,優(yōu)化壓裂參數(shù)。壓裂液中選用不同類型的煤粉懸浮分散劑和表面活性劑[64-71]、超級(jí)分子膜控煤粉劑[72]。在壓裂層位選擇時(shí),盡量避開原生煤粉發(fā)育的軟煤層段即構(gòu)造煤發(fā)育區(qū)段[11,65],在構(gòu)造煤發(fā)育區(qū)段,采取間接壓裂,壓裂煤層頂板砂巖,而不是直接壓裂煤層;針對(duì)無機(jī)礦物含量高的煤層,采用酸化壓裂[73]。在設(shè)備優(yōu)選方面,不同排采設(shè)備具有不同的適用性[27],水平井適宜采用具有較大攜粉能力的螺桿泵進(jìn)行排采[40,46],水量大、煤粉問題嚴(yán)重的斜井和水平井宜采用射流泵,負(fù)壓射流泵對(duì)煤層氣井底部煤粉進(jìn)行高速清洗,減少煤粉在井底的沉降聚集,進(jìn)而降低煤粉導(dǎo)致的埋泵故障發(fā)生率[43,74-75]。在生產(chǎn)預(yù)警方面,主要采用示功圖監(jiān)測(cè)和煤粉濃度監(jiān)測(cè)。依據(jù)監(jiān)測(cè)的煤粉濃度和煤層氣區(qū)塊的煤粉濃度極限值進(jìn)行生產(chǎn)預(yù)警[40,46],針對(duì)煤粉產(chǎn)出導(dǎo)致的煤層氣井排水不暢、抽油泵漏失、卡泵等井下故障,依據(jù)示功圖監(jiān)測(cè)進(jìn)行預(yù)警[29]。在排采控制方面,張遂安等[28]基于煤粉產(chǎn)出的傷害特點(diǎn)及傷害機(jī)理,結(jié)合多年的排采經(jīng)驗(yàn),確立了以定壓排采、有效調(diào)節(jié)煤層氣井動(dòng)液面高度和油套環(huán)空內(nèi)氣體壓力來合理控制工作壓差、用合適的排采強(qiáng)度來控制產(chǎn)水量進(jìn)而控制煤粉適度產(chǎn)出等排采工作制度來控制煤粉產(chǎn)出,從防、控、疏、導(dǎo)4個(gè)方面提出了綜合治理煤粉的措施[76]。根據(jù)煤層氣井煤粉產(chǎn)出規(guī)律、排水采氣和儲(chǔ)層壓力情況,不同排采階段的煤層氣井,制度不同的排采控制制度,實(shí)現(xiàn)排采制度精細(xì)化[73]。在工藝治理方面,采用不同的洗井工藝措施,主要有常規(guī)水洗井、酸化洗井、空心抽油桿洗泵等[73],在泵吸入口接防粉尾管或繞絲篩管。前人已提出了一系列煤粉管控措施,但隨著技術(shù)的發(fā)展,對(duì)煤粉認(rèn)識(shí)的深化,煤粉管控措施還有待完善和更新,應(yīng)綜合考慮煤儲(chǔ)層地質(zhì)條件與煤層氣開發(fā)工程,從煤粉產(chǎn)出機(jī)理出發(fā),提出有針對(duì)性和科學(xué)性的解決方法,更好地為煤層氣高效穩(wěn)定開發(fā)提供保障。

        2 研究思路及研究方法

        2.1 研究思路

        隨著煤層氣的開發(fā),煤粉問題已逐漸成為制約煤層氣開發(fā)的重要問題。由于近年來煤粉問題才開始被關(guān)注和重視,煤粉研究缺乏系統(tǒng)科學(xué)的研究思路和方法,本文提出了一套由理論依據(jù)、研究?jī)?nèi)容、研究方法等核心環(huán)節(jié)構(gòu)成的煤層氣開發(fā)中煤粉問題的研究思路與方法(圖1):以煤層氣地質(zhì)與開發(fā)學(xué)、煤田地質(zhì)學(xué)、巖石力學(xué)和流體力學(xué)等多學(xué)科理論為指導(dǎo),以《煤層氣勘探開發(fā)規(guī)范》《煤層氣井監(jiān)測(cè)方法》《測(cè)試分析技術(shù)方法》等相關(guān)技術(shù)標(biāo)準(zhǔn)和規(guī)范為依據(jù),以歷年煤層氣地質(zhì)資料和煤層氣排采數(shù)據(jù)為基礎(chǔ),按資料收集→現(xiàn)場(chǎng)監(jiān)測(cè)與采樣→測(cè)試與數(shù)據(jù)處理→物理模擬與數(shù)值模擬→專題制圖與綜合分析→技術(shù)設(shè)備研發(fā)→現(xiàn)場(chǎng)工程應(yīng)用的工作流程和方法,以煤粉產(chǎn)出的影響因素、煤粉產(chǎn)出機(jī)理、煤粉產(chǎn)出規(guī)律和煤粉管控措施等為主要研究?jī)?nèi)容,選擇典型煤層氣示范區(qū),開展全面系統(tǒng)的煤粉研究工作,為實(shí)現(xiàn)煤層氣高效開發(fā)提供保障。本研究思路與方法為科學(xué)研究煤粉問題提供方法學(xué)依據(jù)。

        2.2 研究?jī)?nèi)容

        從煤儲(chǔ)層地質(zhì)條件、煤巖性質(zhì)與工程擾動(dòng)耦合效應(yīng)分析入手,查明煤層氣開發(fā)中煤粉產(chǎn)出的影響因素。重點(diǎn)研究區(qū)域地質(zhì)構(gòu)造、地層及煤層發(fā)育特征、構(gòu)造地質(zhì)、水文地質(zhì)及煤層氣地質(zhì)特征、煤巖性質(zhì)等地質(zhì)因素和煤層氣井的鉆井工程、壓裂儲(chǔ)層改造、排采設(shè)備及排采制度等工程因素對(duì)煤粉產(chǎn)出的影響。從微觀角度出發(fā),研究不同條件下煤粉生成和運(yùn)移對(duì)煤儲(chǔ)層的傷害、煤粉運(yùn)移與沉降對(duì)排采設(shè)備的影響及對(duì)煤層氣開發(fā)的危害。如通過原生結(jié)構(gòu)煤和碎粒煤對(duì)煤粉產(chǎn)出影響的物理模擬實(shí)驗(yàn),模擬不同煤體結(jié)構(gòu)煤儲(chǔ)層對(duì)煤粉產(chǎn)出影響,查明了碎粒煤對(duì)煤粉產(chǎn)出的影響遠(yuǎn)遠(yuǎn)大于原生結(jié)構(gòu)煤。通過不同煤巖組分煤對(duì)煤粉產(chǎn)出影響的物理模擬實(shí)驗(yàn),模擬煤巖組分不同的煤儲(chǔ)層對(duì)煤粉產(chǎn)出影響,查明了鏡質(zhì)組含量高的煤儲(chǔ)層產(chǎn)出的煤粉量大。針對(duì)韓城煤層氣區(qū)塊,綜合分析了地質(zhì)因素(區(qū)域地質(zhì)構(gòu)造、地層及煤層發(fā)育特征、構(gòu)造地質(zhì)、煤巖等)和工程因素(鉆井、壓裂、排采等)對(duì)煤粉產(chǎn)出的影響。

        圖1 煤層氣開發(fā)中煤粉問題研究思路與方法

        從煤粉的濃度、粒度、成分、形態(tài)等方面,研究煤粉特征,識(shí)別煤粉的來源,查明煤粉成因。煤粉形態(tài)主要從煤粉顆粒的圓度、外形特征、表面特征及煤粉顆粒脫落方式角度描述,查明不同形態(tài)煤粉的成因和來源。以韓城煤層氣區(qū)塊為例,采用顯微鏡和帶能譜掃描電鏡,對(duì)比分析了煤層氣井產(chǎn)出的煤粉樣和煤礦井下采集的煤巖樣,發(fā)現(xiàn)煤粉特征與煤層的煤體結(jié)構(gòu)有關(guān),煤粉特征反映了煤粉的成因和來源。原生結(jié)構(gòu)煤和碎裂煤生成的煤粉為柱狀,碎粒煤生成的煤粉為粒狀,鱗片煤和片狀煤生成的煤粉為片狀。原生煤粉呈現(xiàn)圓狀或次圓狀,次生煤粉呈現(xiàn)棱角狀或次棱角狀。光滑表面的煤粉主要為煤,粗糙表面的煤粉主要為無機(jī)礦物。從煤粉生成和運(yùn)移的受力方面,分析不同形態(tài)和成分的煤粉在不同條件下生成、啟動(dòng)、運(yùn)移及沉降時(shí)的受力情況,查明煤粉產(chǎn)出的力學(xué)機(jī)理,揭示煤粉產(chǎn)出、運(yùn)移、沉降機(jī)理。

        研究不同儲(chǔ)層、不同流體、不同排采條件下煤粉產(chǎn)出特征,總結(jié)煤層氣井生產(chǎn)特征和煤粉產(chǎn)出特征,揭示煤粉產(chǎn)出規(guī)律。重點(diǎn)研究不同流速和圍壓、不同粒度、形態(tài)和成分的煤粉、不同相態(tài)(氣、水、氣水兩相)及成分(不同水化學(xué)類型和礦化度的水)流體、不同類型煤儲(chǔ)層(不同煤體結(jié)構(gòu)、煤層結(jié)構(gòu)、煤巖組分及無機(jī)礦物含量)、不同形狀和寬度的孔裂隙通道等條件下煤粉產(chǎn)出運(yùn)移特征及規(guī)律。如,通過單因素分析方法,采用煤粉產(chǎn)出物理模擬實(shí)驗(yàn),從產(chǎn)出的煤粉量、煤粉粒度、煤粉成分及形態(tài)、儲(chǔ)層滲透率等方面,分析了驅(qū)替流速、圍壓、煤巖組分、煤體結(jié)構(gòu)、煤層結(jié)構(gòu)、煤粉粒度、礦物含量等因素對(duì)煤粉產(chǎn)出和運(yùn)移的影響,揭示了實(shí)驗(yàn)條件下煤粉產(chǎn)出規(guī)律。

        在綜合分析研究區(qū)煤層氣井煤粉產(chǎn)出的影響因素、煤粉產(chǎn)出機(jī)理及煤粉產(chǎn)出規(guī)律研究的基礎(chǔ)上,針對(duì)煤粉對(duì)煤層氣開發(fā)的影響,通過實(shí)驗(yàn)研究、技術(shù)研發(fā)、設(shè)備研制、地質(zhì)綜合分析及工程應(yīng)用等方法,從地質(zhì)預(yù)防、儲(chǔ)層改造、設(shè)備優(yōu)選、生產(chǎn)預(yù)警、排采控制和工藝治理等方面,提出有針對(duì)性和科學(xué)性的煤粉管控措施。煤粉管控措施在韓城煤層氣區(qū)塊的應(yīng)用實(shí)施取得良好的成效和顯著的經(jīng)濟(jì)效益。首先,在地質(zhì)選區(qū)和工程部署上,避開易產(chǎn)出原生煤粉的碎粒煤和鱗片煤發(fā)育區(qū)域和層位。若無法避開,在儲(chǔ)層改造時(shí),選擇間接壓裂,即,壓裂煤層頂板砂巖,減少原生煤粉和次生煤粉的產(chǎn)生。根據(jù)煤儲(chǔ)層地質(zhì)條件和各種泵的適用條件,煤層氣井選擇不同類型的排采泵,如自潔泵、射流泵、電潛螺桿泵或桿式泵,順利排出煤粉。通過對(duì)煤層井產(chǎn)出的煤粉濃度監(jiān)測(cè)和示功圖監(jiān)測(cè),掌握煤粉產(chǎn)出的動(dòng)態(tài)變化情況,調(diào)整排采制度,預(yù)防煤粉引起的排采事故發(fā)生。若排采中發(fā)生了煤粉引起的排采事故,通常采用常規(guī)洗井、酸化洗井、空心抽油桿洗泵等事故處理方法。

        2.3 研究方法

        煤粉產(chǎn)出的影響因素針對(duì)示范區(qū),主要采用區(qū)域構(gòu)造地質(zhì)分析、沉積環(huán)境分析、水文地質(zhì)條件分析、煤層氣地質(zhì)分析等地質(zhì)綜合分析方法、井下煤層觀察及采樣、煤巖測(cè)試分析、測(cè)井曲線解釋、測(cè)試分析、煤層氣井工程影響因素分析、煤層氣井現(xiàn)場(chǎng)監(jiān)測(cè)及采樣、煤粉物理模擬實(shí)驗(yàn)、力學(xué)分析及公式推導(dǎo)等方法,從煤儲(chǔ)層地質(zhì)條件、煤巖性質(zhì)與工程擾動(dòng)耦合效應(yīng)分析入手,查明煤粉產(chǎn)出的影響因素。煤層氣開發(fā)中煤粉危害的查明主要通過煤粉生成與運(yùn)移的物理模擬實(shí)驗(yàn)和數(shù)值模擬,利用力學(xué)分析和公式推導(dǎo),建立相應(yīng)的數(shù)學(xué)模型和力學(xué)模型,從微觀角度出發(fā),研究不同條件下煤粉生成和運(yùn)移對(duì)煤儲(chǔ)層的傷害、煤粉運(yùn)移與沉降對(duì)排采設(shè)備的影響及對(duì)煤層氣開發(fā)的危害。

        煤粉特征主要從煤粉的濃度、粒度、成分、形態(tài)等方面研究。煤粉濃度主要采用煤粉液色度對(duì)比法、精密天平稱重法及煤粉濃度監(jiān)測(cè)儀測(cè)試法測(cè)量。不同煤粉濃度測(cè)定方法具有不同的特點(diǎn),色度對(duì)比法是肉眼觀察煤粉液樣特征與色度標(biāo)樣對(duì)比,確定煤粉濃度等級(jí),此方法確定等級(jí)快,但精度低。稱重法是將恒定體積的含煤粉液體過濾、風(fēng)干、利用精密天平稱重、計(jì)算得到煤粉濃度,此方法操作較繁瑣,但精度高。煤粉濃度監(jiān)測(cè)儀具有測(cè)量精度相對(duì)較高、快捷,但該儀器易受電磁信號(hào)干擾,測(cè)量存在誤差。

        煤粉粒度主要采用激光粒度測(cè)試儀測(cè)試和顯微鏡下觀察。激光粒度測(cè)試儀測(cè)試煤粉粒度精度高,但在使用激光粒度測(cè)試儀時(shí)一定要注意儀器的粒度測(cè)量范圍和量程,才能更好的測(cè)試煤粉粒度。顯微鏡下觀察煤粉粒度,比較麻煩,不夠準(zhǔn)確,而且,只能取部分煤粉樣品觀察,其代表性較差。煤粉成分主要運(yùn)用顯微鏡和帶能譜的掃描電鏡觀察及X射線衍射儀測(cè)試。顯微鏡觀察主要通過煤粉的煤巖組分和無機(jī)礦物定量,確定其含量。帶能譜的掃描電鏡觀察測(cè)試,主要觀察測(cè)試不同形態(tài)煤粉的元素情況。X射線衍射儀測(cè)試煤粉中無機(jī)礦物的成分。煤粉形態(tài)利用帶能譜的掃描電鏡觀察。掃描電鏡能較好地顯示煤粉的形態(tài),并且針對(duì)不同形態(tài)的煤粉,可以能譜測(cè)試其元素。

        煤粉產(chǎn)出規(guī)律研究主要采用煤粉產(chǎn)出物理模擬實(shí)驗(yàn)、數(shù)值模擬、煤層氣井排采參數(shù)和煤粉監(jiān)測(cè)及煤粉測(cè)試分析方法。煤粉產(chǎn)出物理模擬實(shí)驗(yàn)是通過正演方式,對(duì)煤儲(chǔ)層中煤粉產(chǎn)出過程在室內(nèi)進(jìn)行模擬還原,展示煤粉生成與運(yùn)移情況?,F(xiàn)今所做的煤粉產(chǎn)出物理模擬實(shí)驗(yàn)裝置主要采用酸蝕裂隙導(dǎo)流儀或巖心驅(qū)替裝置,均是將煤巖心看作一個(gè)“黑匣子”,通過監(jiān)測(cè)驅(qū)替出口端產(chǎn)出的煤粉量和滲透率變化來推測(cè)分析煤粉的產(chǎn)出規(guī)律。利用酸蝕裂隙導(dǎo)流儀開展煤粉產(chǎn)出物理模擬實(shí)驗(yàn)需把煤巖破碎后制作成煤磚,然后,根據(jù)設(shè)定的實(shí)驗(yàn)條件,驅(qū)替模擬煤層氣開發(fā)中的煤粉產(chǎn)出,該裝置的不足是把煤巖制作成煤磚的過程,已改變了原來煤巖的性質(zhì)。利用巖心驅(qū)替裝置開展煤粉產(chǎn)出物理模擬實(shí)驗(yàn)需煤巖樣鉆成圓柱狀煤樣,然后,根據(jù)設(shè)定的實(shí)驗(yàn)條件,驅(qū)替模擬煤層氣開發(fā)中的煤粉產(chǎn)出,該裝置的不足為圓柱狀煤樣比較小,若煤樣為原生結(jié)構(gòu)煤,在驅(qū)替的過程中,可能無法產(chǎn)出煤粉或產(chǎn)出的煤粉量在檢測(cè)線以下。采用和研制可視化煤粉產(chǎn)出物理模擬實(shí)驗(yàn)裝置是煤粉產(chǎn)出物理模擬實(shí)驗(yàn)研究的必然,現(xiàn)今研究所采用的煤粉產(chǎn)出物理模擬實(shí)驗(yàn)裝置均是通過監(jiān)測(cè)驅(qū)替出口端產(chǎn)出的煤粉量和滲透率變化來分析煤粉產(chǎn)出的規(guī)律,而尚未對(duì)物理模擬實(shí)驗(yàn)過程中煤粉運(yùn)移情況和孔裂隙變化情況進(jìn)行實(shí)時(shí)、直觀地觀測(cè)和表達(dá)。因此,本文提出了利用核磁共振成像儀與滲流儀或巖心驅(qū)替儀組成的可視化煤粉產(chǎn)出物理模擬實(shí)驗(yàn)裝置,開展可視化煤粉生成與運(yùn)移的物理模擬實(shí)驗(yàn),研究不同煤儲(chǔ)層中煤粉運(yùn)移規(guī)律,直觀揭示煤粉在煤儲(chǔ)層中的運(yùn)移狀態(tài)及煤粉運(yùn)移引起的儲(chǔ)層空間的變化。

        煤粉管控措施研究主要采用實(shí)驗(yàn)研究、技術(shù)研發(fā)、設(shè)備研制、地質(zhì)綜合分析及工程應(yīng)用等方法。實(shí)驗(yàn)研究主要有壓裂液、洗井液、煤粉懸浮劑和煤粉沉降劑等方面的研究和選取。技術(shù)研發(fā)應(yīng)從各種管控煤粉的鉆探技術(shù)、壓裂技術(shù)、排采制度、工藝和方法、洗井工藝等方面進(jìn)行研發(fā)。設(shè)備研制主要包括手持式現(xiàn)場(chǎng)煤粉濃度監(jiān)測(cè)儀、手持式現(xiàn)場(chǎng)煤粉粒度監(jiān)測(cè)儀、井底煤粉顆粒破碎儀、各種防煤粉泵、各種防煤粉篩管等煤粉管控設(shè)備。地質(zhì)綜合分析主要采用煤體結(jié)構(gòu)測(cè)井曲線解釋、井震結(jié)合及AVO 技術(shù)、地質(zhì)分析方法。

        3 結(jié)論

        a. 從煤層氣開發(fā)中煤粉的危害、煤粉形成機(jī)制、煤粉產(chǎn)出規(guī)律及煤粉管控措施方面,總結(jié)了煤層氣開發(fā)中產(chǎn)出煤粉的研究現(xiàn)狀,指出了煤粉尚待研究的方面。

        b. 提出了一套由理論依據(jù)、研究?jī)?nèi)容、研究方法等核心環(huán)節(jié)構(gòu)成的煤層氣開發(fā)中煤粉問題的研究思路與方法,為科學(xué)研究煤粉問題提供方法學(xué)依據(jù)。

        [1] 中國煤炭地質(zhì)總局. 中國煤炭資源賦存規(guī)律與資源評(píng)價(jià)[M]. 北京:科學(xué)出版社,2016. China National Administration of Coal Geology. China occurrence regularity of coal resources and resource evaluation[M]. Beijing:Science Press,2016.

        [2] 車長波,楊虎林,李富兵,等. 我國煤層氣資源勘探開發(fā)前景[J]. 中國礦業(yè),2008(5):1–4. CHE Changbo,YANG Hulin,LI Fubing,et al. Exploration and development prospects of coalbed methane(CBM) resources in China[J]. China Mining Magazine,2008(5):1–4.

        [3] 翟光明,何文淵. 中國煤層氣賦存特點(diǎn)與勘探方向[J]. 天然氣工業(yè),2010,30(11):1–3. ZHAI Guangming,HE Wenyuan. Occurrence features and exploration orientation of coalbed methane gas in China[J]. Natural Gas Industry,2010,30(11):1–3.

        [4] 葉建平,秦勇,林大揚(yáng). 中國煤層氣資源[M]. 徐州:中國礦業(yè)大學(xué)出版社,1998. YE Jianping,QIN Yong,LIN Dayang. Coalbed methane resources of china[M]. Xuzhou:China University of Mining and Technology Press,1998.

        [5] 孫萬祿. 中國煤層氣盆地[M]. 北京:地質(zhì)出版社,2005. SUN Wanlu. Coalbed methane basins of china[M]. Beijing:Geological Publishing House,2005.

        [6] 王紅巖,李景明,劉洪林,等. 煤層氣基礎(chǔ)理論、聚集規(guī)律及開采技術(shù)方法進(jìn)展[J]. 石油勘探與開發(fā),2004,31(6):14–16. WANG Hongyan,LI Jingming,LIU Honglin,et al. Progress of basic theory and accumulation law and development technology of coalbed methane[J]. Petroleum Exploration and Development,2004,31(6):14–16.

        [7] 秦車影. 趙莊井田煤層氣成藏條件研究[J]. 能源與環(huán)保,2020,42(10):92–99.

        QIN Cheying. Study on CBM reservoiring condition in Zhaozhuang mine field[J]. China Energy and Environmental Protection,2020,42(10):92–99.

        [8] 陳振宏,王一兵,孫平. 煤粉產(chǎn)出對(duì)高煤階煤層氣井產(chǎn)能的影響及其控制[J]. 煤炭學(xué)報(bào),2009,34(2):229–232. CHEN Zhenhong,WANG Yibing,SUN Ping. Destructive influences and effectively treatments of coal powder to high rank coalbed methane production[J]. Journal of China Coal Society,2009,34(2):229–232.

        [9] 李仰民,王立龍,劉國偉,等. 煤層氣井排采過程中的儲(chǔ)層傷害機(jī)理研究[J]. 中國煤層氣,2010,7(6):39–43.LI Yangmin,WANG Lilong,LIU Guowei,et al. Study on coal reservoir damage mechanism in dewatering and extraction process of CBM wells[J]. China Coalbed Methane,2010,7(6):39–43.

        [10] 白建梅,孫玉英,李薇,等. 高煤階煤層氣井煤粉產(chǎn)出對(duì)滲透率影響研究[J]. 中國煤層氣,2011,8(6):18–21. BAI Jianmei,SUN Yuying,LI Wei,et al. Study of the impact of coal dust yield on permeability rate in high rank CBM well[J]. China Coalbed Methane,2011,8(6):18–21.

        [11] 曹代勇,袁遠(yuǎn),魏迎春,等. 煤粉的成因機(jī)制–產(chǎn)出位置綜合分類研究[J]. 中國煤炭地質(zhì),2012,24(1):10–12. CAO Daiyong,YUAN Yuan,WEI Yingchun,et al. Comprehensive classification study of coal fines genetic mechanism and origin site[J]. Coal Geology of China,2012,24(1):10–12.

        [12] 曹代勇,姚征,李小明,等. 單相流驅(qū)替物理模擬實(shí)驗(yàn)的煤粉產(chǎn)出規(guī)律研究[J]. 煤炭學(xué)報(bào),2013,38(4):624–628. CAO Daiyong,YAO Zheng,LI Xiaoming,et al. Rules of coal powder output under physical simulation experiments of single-phase water flow displacement[J]. Journal of China Coal Society,2013,38(4):624–628.

        [13] 魏迎春,曹代勇,袁遠(yuǎn),等. 韓城區(qū)塊煤層氣井產(chǎn)出煤粉特征及主控因素[J]. 煤炭學(xué)報(bào),2013,38(8):1424–1429. WEI Yingchun,CAO Daiyong,YUAN Yuan,et al. Characteristics and controlling factors of pulverized coal during coalbed methane drainage in Hancheng area[J]. Journal of China Coal Society,2013,38(8):1424–1429.

        [14] 張芬娜,綦耀光,徐春成,等. 煤粉對(duì)煤層氣井產(chǎn)氣通道的影響分析[J]. 中國礦業(yè)大學(xué)學(xué)報(bào),2013,42(3):428–435. ZHANG Fenna,QI Yaoguang,XU Chuncheng,et al. Analysis of the impact of gas production channel for coalbed methane well by pulverized coal[J]. Journal of China University of Ming & Technology,2013,42(3):428–435.

        [15] 鄒雨時(shí),張士誠,張勁,等. 煤粉對(duì)裂縫導(dǎo)流能力的傷害機(jī)理[J]. 煤炭學(xué)報(bào),2012,37(11):1890–1894. ZOU Yushi,ZHANG Shicheng,ZHANG Jin,et al. Damage mechanism of coal powder on fracture conductivity[J]. Journal of China Coal Society,2012,37(11):1890–1894.

        [16] 李小明,曹代勇,姚征,等. 基于流態(tài)物理模擬試驗(yàn)的煤粉排出機(jī)理研究[J]. 煤炭科學(xué)技術(shù),2015,43(2):76–79. LI Xiaoming,CAO Daiyong,YAO Zheng,et al. Study on mechanism of pulverized coal discharge based on flow-state physical simulation[J]. Coal Science and Technology,2015,43(2):76–79.

        [17] GUO Zhenghuai,HUSSAIN F,CINAR Y. Permeability variation associated with fines production from anthracite coal during water injection[J]. International Journal of Coal Geology,2015,147–148.

        [18] GUO Zhenghuai,LE-HUSSAIN F,CINAR Y. Physical and analytical modelling of permeability damage in bituminous coal caused by fines migration during water production[J]. Journal of Natural Gas Science and Engineering,2016,35:331–346.

        [19] BAI Tianhang,CHEN Zhongwei,SAIIED M A,et al. Experimental investigation on the impact of coal fines generation and migration on coal permeability[J]. Journal of Petroleum Science and Engineering,2017,159:257–266.

        [20] WEI Yingchun,LI Chao,CAO Daiyong,et al. The effects of particle size and inorganic mineral content on fines migration in fracturing proppant during coalbed methane production[J]. Journal of Petroleum Science and Engineering,2019,182:106355.

        [21] 劉巖,蘇雪峰,張遂安. 煤粉對(duì)支撐裂縫導(dǎo)流能力的影響特征及其防控[J]. 煤炭學(xué)報(bào),2017,42(3):687–693. LIU Yan,SU Xuefeng,ZHANG Sui’an. Influencing characteristics and control of coal powder to proppant fracture conductivity[J]. Journal of China Coal Society,2017,42(3):687–693.

        [22] 胡勝勇,郝勇鑫,陳云波,等. 煤粉運(yùn)移與沉積對(duì)支撐裂縫滲透率動(dòng)態(tài)影響規(guī)律[J/OL]. 煤炭學(xué)報(bào):1–10. https://doi.org/10. 13225/j.cnki.jccs.2020.1306. HU Shengyong,HAO Yongxin,CHEN Yunbo,et al. Dynamic influence law of coal powder migration and deposition on propped fracture permeability[J/OL]. Journal of China Coal Society:1–10. https://doi.org/10.13225/j.cnki.jccs.2020.1306.

        [23] 石軍太,吳嘉儀,房燁欣,等. 考慮煤粉堵塞影響的煤儲(chǔ)層滲透率模型及其應(yīng)用[J]. 天然氣工業(yè),2020,40(6):78–89. SHI Juntai,WU Jiayi,F(xiàn)ANG Yexin,et al. A new coal reservoir permeability model considering the influence of pulverized coal blockage and its application[J]. Natural Gas Industry,2020,40(6):78–89.

        [24] 趙政,倪小明,劉澤東,等. 氣/水兩相驅(qū)替煤粉引起的煤裂縫導(dǎo)流衰減特征實(shí)驗(yàn)研究[J/OL]. 煤炭學(xué)報(bào):1–12. https://doi. org/10.13225/j.cnki.jccs.2019.1299. ZHAO Zheng,NI Xiaoming,LIU Zedong,et al. Experimental study on the attenuation characteristics of coal fissure induced by gas-water two-phase drive[J/OL]. Journal of China Coal Society:1–12. https://doi.org/10.13225/j.cnki.jccs.2019.1299.

        [25] TAO Shu,TANG Dazhen,XU Hao,et al. Fluid velocity sensitivity of coal reservoir and its effect on coalbed methane well productivity:A case of Baode Block,northeastern Ordos Basin,China[J]. Journal of Petroleum Science and Engineering,2017,152:229–237.

        [26] 魏迎春,張傲翔,姚征,等. 韓城區(qū)塊煤層氣排采中煤粉產(chǎn)出規(guī)律研究[J]. 煤炭科學(xué)技術(shù),2014,42(2):85–89. WEI Yingchun,ZHANG Aoxiang,YAO Zheng,et al. Research on output laws of pulverized coal during coal bed methane drainage in Hancheng block[J]. Coal Science and Technology,2014,42(2):85–89.

        [27] 魏迎春,李超,曹代勇,等. 煤層氣開發(fā)中煤粉產(chǎn)出機(jī)理及管控措施[J]. 煤田地質(zhì)與勘探,2018,46(2):68–73.WEI Yingchun,LI Chao,CAO Daiyong,et al. The output mechanism and control measures of the pulverized coal in coalbed methane development[J]. Coal Geology & Exploration,2018,46(2):68–73.

        [28] 張遂安,曹立虎,杜彩霞. 煤層氣井產(chǎn)氣機(jī)理及排采控壓控粉研究[J]. 煤炭學(xué)報(bào),2014,39(9):1927–1931. ZHANG Sui’an,CAO Lihu,DU Caixia. Study on CBM production mechanism and control theory of bottom-hole pressure and coal fines during CBM well production[J]. Journal of China Coal Society,2014,39(9):1927–1931.

        [29] 姚征,曹代勇,熊先鉞,等. 基于示功圖監(jiān)測(cè)的煤粉相關(guān)井下故障預(yù)警[J]. 煤炭學(xué)報(bào),2015,40(7):1595–1600.YAO Zheng,CAO Daiyong,XIONG Xianyue,et al. Forecast of coal fines-related downhole failures based on monitoring dynamometer card[J]. Journal of China Coal Society,2015,40(7):1595–1600.

        [30] WEI Yingchun,LI Chao,CAO Daiyong,et al. New progress on the coal fines affecting the development of coalbed methane[J]. Acta Geologica Sinica-English Edition,2018,92(5):2060–2062.

        [31] WEI Yingchun,CAO Daiyong,YUAN Yuan,et al. Characteristics of pulverized coal during coalbed methane drainage in Hancheng block,Shaanxi Province,China[J]. Energy Exploration & Exploitation,2013,31(5):745–757.

        [32] ZHAO Xianzheng,LIU Shiqi,SANG Shuxun,et al. Characteristics and generation mechanisms of coal fines in coalbed methane wells in the southern Qinshui Basin,China[J]. Journal of Natural Gas Science and Engineering,2016,34:849–863.

        [33] PRANESH V,BALASUBRAMANIAN S,Kumar R S,et al. Kaolinite flakes and coal fines production in lignite core under ambient conditions:A case study of Neyveli lignite field at Cauvery Basin,southern India[J]. Journal of Natural Gas Science and Engineering,2019,64:72–80.

        [34] 魏迎春,張傲翔,曹代勇,等. 臨汾區(qū)塊煤層氣井排采中產(chǎn)出煤粉特征[J]. 煤田地質(zhì)與勘探,2016,44(3):30–35.WEI Yingchun,ZHANG Aoxiang,CAO Daiyong,et al. Characteristics of pulverized coal during coalbed methane drainage in Linfen block[J]. Coal Geology & Exploration,2016,44(3):30–35.

        [35] YAO Zheng,CAO Daiyong,WEI Yingchun,et al. Experimental analysis on the effect of tectonically deformed coal types on fines generation characteristics[J]. Journal of Petroleum Science and Engineering,2016,146:350–359.

        [36] 姚征,曹代勇,魏迎春,等. 水巖反應(yīng)中泥質(zhì)夾層生成固相微粒的實(shí)驗(yàn)研究[J]. 煤炭學(xué)報(bào),2019,44(7):2188–2196. YAO Zheng,CAO Daiyong,WEI Yingchun,et al. Experimental research on the generation of solid fines from muddy intercalation in water-rock reaction[J]. Journal of China Coal Society,2019,44(7):2188–2196.

        [37] 曹立虎,張遂安,張亞麗,等. 煤層氣水平井煤粉產(chǎn)出及運(yùn)移特征[J]. 煤田地質(zhì)與勘探,2014,42(3):31–35. CAO Lihu,ZHANG Sui’an,ZHANG Yali,et al. Investigation of coal powder generation and migration characteristics in coalbed methane horizontal well[J]. Coal Geology & Exploration,2014,42(3):31–35.

        [38] 白建梅,陳浩,祖世強(qiáng),等. 煤層氣多分支水平井煤粉形成機(jī)理初步認(rèn)識(shí)[C]//煤層氣勘探開發(fā)理論與技術(shù). 北京:石油工業(yè)出版社,2010:425–431.BAI Jianmei,CHEN Hao,ZU Shiqiang,et al. CBM multi-branch horizontal wells pulverized coal formation mechanismC]//Coalbed methane exploration and development of theory and technology. Beijing:Petroleum Industry Press,2010:425–431.

        [39] 王旱祥,蘭文劍. 煤層氣井煤粉產(chǎn)生機(jī)理探討[J]. 中國煤炭,2012,38(2):95–97. WANG Hanxiang,LAN Wenjian. Discussion on formation mechanism of coal powder in coalbed methane well[J]. China Coal,2012,38(2):95–97.

        [40] 劉升貴,賀小黑,李惠芳. 煤層氣水平井煤粉產(chǎn)生機(jī)理及控制措施[J]. 遼寧工程技術(shù)大學(xué)學(xué)報(bào)(自然科學(xué)版),2011,30(4):508–512. LIU Shenggui,HE Xiaohei,LI Huifang. Production mechanism and control measures of coal powder in coalbed methane horizontal well[J]. Journal of Liaoning Technical University (Natural Science),2011,30(4):508–512.

        [41] 楊延輝,湯達(dá)禎,楊艷磊,等. 煤儲(chǔ)層速敏效應(yīng)對(duì)煤粉產(chǎn)出規(guī)律及產(chǎn)能的影響[J]. 煤炭科學(xué)技術(shù),2015,43(2):96–99. YANG Yanhui,TANG Dazhen,YANG Yanlei,et al. Influence on velocity sensitivity effect of coal reservoir to production law of pulverized coal and gas productivity[J]. Coal Science and Technology,2015,43(2):96–99.

        [42] PALMER I D,MOSCHOVIDIS Z A,CAMERON J R. Coal failure and consequences for coalbed methane wells[J]. Society of Petroleum Engineers,2005.

        [43] HUANG Fansheng,KANG Yili,YOU Lijun,et al. Massive fines detachment induced by moving gas-water interfaces during early stage two-phase flow in coalbed methane reservoirs[J]. Fuel,2018,222:193–206.

        [44] 張芬娜,綦耀光,莫日和,等. 單相流煤層氣井裂隙煤粉受力分析及啟動(dòng)條件[J]. 煤礦開采,2011,16(6):11–13. ZHAN Fenna,QI Yaoguang,MO Rihe et al. Force analysis of uniflow coaldust in cracks of mine for CBM and starting condition[J]. Coal Mining Technology,2011,16(6):11–13.

        [45] 綦耀光,張芬娜,劉冰,等. 煤層氣井產(chǎn)氣通道內(nèi)煤粉運(yùn)動(dòng)特征分析[J]. 煤炭學(xué)報(bào),2013,38(9):1627–1633. QI Yaoguang,ZHANG Fenna,LIU Bing,et al. Calculation on discharge flow of pulverized coal in gas production channel for coalbed methane well[J]. Journal of China Coal Society,2013,38(9):1627–1633.

        [46] 陳文文,王生維,秦義,等. 煤層氣井煤粉的運(yùn)移與控制[J]. 煤炭學(xué)報(bào),2014,39(增刊2):416–421. CHEN Wenwen,WANG Shengwei,QIN Yi,et al. Migration and control of coal powder in CBM well[J]. Journal of China Coal Society,2014,39(Sup.2):416–421.

        [47] 劉升貴,張新亮,袁文峰,等. 煤層氣井煤粉產(chǎn)出規(guī)律及排采管控實(shí)踐[J]. 煤炭學(xué)報(bào),2012,37(增刊2):412–415. LIU Shenggui,ZHANG Xinliang,YUAN Wenfeng,et al. Regularity of coal powder production and concentration control method during CBM well drainage[J]. Journal of China Coal Society,2012,37(Sup.2): 412–415.

        [48] 張公社,田文濤,陶杉,等. 煤層氣儲(chǔ)層煤粉運(yùn)移規(guī)律試驗(yàn)研究[J]. 石油天然氣學(xué)報(bào),2011,33(9):105–108+168. ZHANG Gongshe,TIAN Wentao,TAO Shan,et al. Experimental research of coal grain migration rules of coalbed methane[J]. Journal of Oil and Gas Technology,2011,33(9):105–108.

        [49] ZHANG Aoxiang,CAO Daiyong,WEI Yingchun,et al. Characterization of fines produced during drainage of coalbed methane reservoirs in the Linfen Block,Ordos Basin[J]. Energy Exploration & Exploitation,2020,38(5):1664–1679.

        [50] 曹立虎,張遂安,石惠寧,等. 沁水盆地煤層氣水平井井筒煤粉遷移及控制[J]. 石油鉆采工藝,2012,34(4):93–95.CAO Lihu,ZHANG Sui’an,SHI Huining,et al. Coal dust migration and treatment for coalbed methane horizontal wells in Qinshui Basin[J]. Oil Drilling & Production Technology,2012,34(4):93–95.

        [51] HUANG Fansheng,KANG Yili,YOU Zhenjiang,et al. Critical conditions for massive fines detachment induced by single–phase flow in coalbed methane reservoirs:Modeling and experiments[J]. Energy & Fuels,2017,31:6782–6793.

        [52] 劉新福,劉春花,吳建軍,等. 煤儲(chǔ)層排采液流攜粉運(yùn)移模型與產(chǎn)出規(guī)律[J]. 煤炭學(xué)報(bào),2018,43(3):770–775. LIU Xinfu,LIU Chunhua,WU Jianjun,et al. Migration models of pulverized coal flowing with fluid and its production in CBM channels for the coal reservoirs[J]. Journal of China Coal Society,2018,43(3):770–775.

        [53] GAO Dapeng,LIU Yuewu,WANG Tianjiao,et al. Experimental investigation of the impact of coal fines migration on coal core water flooding[J]. Sustainability,2018,10(11),4102.

        [54] GUO Zhenghuai,Phung N H V,HUSSAIN F. A laboratory study of the effect of creep and fines migration on coal permeability during single-phase flow[J]. International Journal of Coal Geology,2018,200:61–76.

        [55] HAN Wenlong,WANG Yanbin,F(xiàn)AN Jingjing,et al. An experimental study on coal fines migration during single phase water flow[J]. Geofluids,2020,2020.

        [56] 皇凡生,康毅力,李相臣,等. 單相水流誘發(fā)裂縫內(nèi)煤粉啟動(dòng)機(jī)理與防控對(duì)策[J]. 石油學(xué)報(bào),2017,38(8):947–954. HUANG Fansheng,KANG Yili,LI Xiangchen,et al. Incipient motion mechanisms and control measures of coal fines during single phase water flow in coalbed fractures[J]. Acta Petrolei Sinica,2017,38(8):947–954.

        [57] 慕甜,馬東民,陳躍,等. 煤層氣井多相流條件下不同粒徑煤粉啟動(dòng)–運(yùn)移規(guī)律[J]. 煤炭科學(xué)技術(shù),2020,48(5):188–196. MU Tian,MA Dongmin,CHEN Yue,et al. Start-migration law of coal powder with different particle sizes under multi-phase flow conditions in coalbed methane wells[J]. Coal Science and Technology,2020,48(5):188–196.

        [58] 魏迎春,崔茂林,張勁,等. 煤層氣開發(fā)中不同粒度煤粉的聚集沉降實(shí)驗(yàn)[J]. 煤田地質(zhì)與勘探,2020,48(5):1–9. WEI Yingchun,CUI Maolin,ZHANG Jin,et al. Aggregation and sedimentation experiments of coal fines with different particle sizes during CBM development[J]. Coal Geology & Exploration,2020,48(5):1–9.

        [59] 杜軍軍,劉聯(lián)濤,崔金榜,等. 煤層氣井不同類型煤粉的靜態(tài)沉降規(guī)律[J]. 煤炭學(xué)報(bào),2018,43(增刊1):203–209. DU Junjun,LIU Liantao,CUI Jinbang,et al. Static settlement of different types of pulverized coal in CBM wells[J]. Journal of China Coal Society,2018,43(Sup.1):203–209.

        [60] CHEQUER L,VAZ A,BEDRIKOVETSKY P. Injectivity decline during low-salinity waterflooding due to fines migration[J]. Journal of Petroleum Science and Engineering,2018,165:1054–1072.

        [61] ZHONG Ziyao,WU Xiaodong,HAN Guoqing,et al. Experimental investigation on particle transport of coal fines in unsteady terrain slug flow[J]. Journal of Petroleum Science and Engineering,2018:747–758.

        [62] 陳躍,湯達(dá)禎,許浩,等. 基于測(cè)井信息的韓城地區(qū)煤體結(jié)構(gòu)的分布規(guī)律[J]. 煤炭學(xué)報(bào),2013,38(8):1435–1442. CHEN Yue,TANG Dazhen,XU Hao,et al. The distribution of coal structure in Hancheng based on well logging data[J]. Journal of China Coal Society,2013,38(8):1435–1442.

        [63] 張曉玉,王安民,張傲翔,等. 韓城區(qū)塊構(gòu)造煤類型及其產(chǎn)出煤粉特征分析[J]. 中國煤炭地質(zhì),2014,26(8):91–94.ZHANG Xiaoyu,WANG Anmin,ZHANG Aoxiang,et al. Tectonoclastic coal types and characteristic analysis of coal fines in Hancheng block[J]. Coal Geology of China,2014,26(8):91–94.

        [64] 王丹,趙峰華,宋波,等. 分散劑影響煤粉采出效果的實(shí)驗(yàn)研究[J]. 煤炭學(xué)報(bào),2015,40(1):149–153. WANG Dan,ZHAO Fenghua,SONG Bo,et al. Experimental study of coal powder production affected by using dispersant[J]. Journal of China Coal Society,2015,40(1):149–153.

        [65] 楊宇,曹煜,田慧君,等. 壓裂中煤粉對(duì)煤儲(chǔ)層損害機(jī)理分析與防控對(duì)策[J]. 煤炭科學(xué)技術(shù),2015,43(02):84–87. YANG Yu,CAO Yu,TIAN Huijung,et al. Mechanism anlaysis of coal fines damaged to coal reservoirs and prevention countermeasures during fracturing[J]. Coal Science and Technology,2015,43(02):84–87.

        [66] 羅莉濤,劉衛(wèi)東,朱文卿,等. 港西三區(qū)聚表二元驅(qū)中表面活性劑優(yōu)化篩選[J]. 科學(xué)技術(shù)與工程,2015,15(20):238–243. LUO Litao,LIU Weidong,ZHU Wenqing,et al. Research on optimization selection method of surfactant of polymer surfactant binary flooding for the west areas reservoir in dagang oilfield[J]. Science Technology and Engineering,2015,15(20):238–243.

        [67] 劉通義,蘭昌文,彭建,等. 煤層壓裂用懸浮分散劑BC–11的研究[J]. 應(yīng)用化工,2015,44(4):670–672. LIU Tongyi,LAN Changwen,PENG Jian,et al. Study on suspension dispersion agents BC-11 used in coal-bed fracturing[J]. Applied Chemical Industry,2015:44(4):670–672.

        [68] 魏迎春,李超,曹代勇,等. 煤層氣洗井中不同粒徑煤粉的分散劑優(yōu)選實(shí)驗(yàn)[J]. 煤炭學(xué)報(bào),2017,42(11):2908–2913. WEI Yingchun,LI Chao,CAO Daiyong,et al. Experiment on screening dispersants of pulverized coal with different sizes in CBM well-washing technology[J]. Journal of China Coal Society,2017,42(11):2908–2913.

        [69] 宋金星,劉程瑞. 基于改性表面活性劑的煤儲(chǔ)層表面物理改性增產(chǎn)機(jī)理分析[J]. 煤礦安全,2020,51(06):202–206. SONG Jinxing,LIU Chengrui. Mechanism analysis of physical modification and increasing production of coal reservoir surface based on modified surfactant[J]. Safety in Coal Mines,2020,51(6):202–206.

        [70] 魏迎春,李超,曹代勇,等. 煤層氣洗井中煤粉分散劑對(duì)煤巖的影響[J]. 煤炭學(xué)報(bào),2018,43(7):1951–1958.WEI Yingchun,LI Chao,CAO Daiyong,et al. Effect of pulverized coal dispersant on coal in the CBM well-washing technology[J]. Journal of China Coal Society,2018,43(7):1951–1958.

        [71] 李超,魏迎春,崔寶磊. 煤粉分散穩(wěn)定性的影響因素分析[J]. 煤田地質(zhì)與勘探,2018,46(1):73–77. LI Chao,WEI Yingchun,CUI Baolei. Analysis on influencing factors of dispersion stability of pulverized coal[J]. Coal Geology & Exploration,2018,46(1):73–77.

        [72] 劉子雄,劉汝敏,韓冠楠,等. 煤層氣井壓裂裂縫內(nèi)超級(jí)分子膜控煤粉可行性研究[J]. 煤炭科學(xué)技術(shù),2020,48(5):182–187. LIU Zixiong,LIU Rumin,HAN Guannan,et al. Feasibility study of super molecular film controlled coal powder in fracturing crack of coalbed methane well[J]. Coal Science and Technology,2020,48(5):182–187.

        [73] 熊先鉞. 韓城區(qū)塊煤層氣連續(xù)排采主控因素及控制措施研究[D]. 北京:中國礦業(yè)大學(xué)(北京),2014.XIONG Xianyue. Research on control factors and measures of continuous coal bed methane drainage in Hancheng Block[D]. Beijing:China University of Mining and Technology(Beijing),2014.

        [74] 劉冰,綦耀光,張芬娜,等. 煤層氣井射流沖煤粉裝置沖擊深度的研究[J]. 煤炭學(xué)報(bào),2014,39(4):713–718.

        LIU Bing,QI Yaoguang,ZHANG Fenna,et al. The impinging depth of coal particles cleanout jet device for coalbed methane well[J]. Journal of China Coal Society,2014,39(4):713–718.

        [75] 吳慶彬. 射流泵在煤層氣排采中的自動(dòng)控制[J]. 化工自動(dòng)化及儀表,2014,41(8):943–945.WU Qingbin. Auto-control of jet pumps in CBM production[J]. control and instruments in chemical industry,2014,41(8):943–945.

        [76] 李斌,劉欣佳,張瀟,等. 煤粉對(duì)儲(chǔ)層的傷害機(jī)理與防治措施研究[J]. 煤炭技術(shù),2020,39(8):115–118. LI Bin,LIU Xinjia,ZHANG Xiao,et al. Study on damage mechanism of coal fines to reservoir stratum and treating measures[J]. Coal Technology,2020,39(8):115–118.

        Research status and thoughts for coal fines during CBM development

        WEI Yingchun, ZHANG Jin, CAO Daiyong, MENG Tao, CUI Maolin, WANG Anmin

        (College of Geoscience & Surveying Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China)

        With the development of coalbed methane, the of coal fines has gradually become an important problem restricting the development of coalbed methane. Since the problem of coal fines has only been paid attention in recent years, the research on coal fines lacks systematic and scientific research ideas and methods. The research status of coal fines in CBM development was summarized and the research shortages on coal fines were pointed out from the aspects of hazard, formation mechanism, output rule and control measures of coal fines. A set of research ideas and methods of coal fines in CBM development, which were composed of theoretical basis, research contents, research methods and other core links, were proposed. The research ideas and methods: guided by multidisciplinary theories such as coalbed methane geology and development, coalfield geology, rock mechanics and fluid mechanics, and guided by the "Coalbed Methane Exploration and Development Specifications", "Coalbed Methane Well Monitoring Methods", "Testing and Analysis Technical Methods" and other relevant technical standards and specifications as the basis, based on the past years of coalbed methane geological data and coalbed methane drainage data, according to data collection, on-site monitoring and sampling, testing and data processing, physical simulation and numerical simulation, thematic mapping and Comprehensive analysis, technical equipment research and development, on-site engineering application workflow and methods, with the main research content of the influencing factors of coal fines production, coal fines production mechanism, coal fines production law and coal fines control measures, and select typical coal seams in the gas demonstration zone, a comprehensive and systematic research on coal fines were carried out to provide a guarantee for the efficient development of coalbed methane. The research ideas and methods provide a methodological basis for scientific research on coal fines issues.

        CBM; coal fines; research status; research thoughts; research methods

        請(qǐng)聽作者語音介紹創(chuàng)新技術(shù)成果等信息,歡迎與作者進(jìn)行交流

        P618

        A

        10.3969/j.issn.1001-1986.2020.06.016

        1001-1986(2020)06-0116-09

        2020-11-11;

        2020-11-30

        國家自然科學(xué)基金項(xiàng)目(41972174,41402134);國家留學(xué)基金項(xiàng)目(201906435004)

        National Natural Science Foundation of China(41972174,41402134),China Scholarship Council(201906435004)

        魏迎春,1977 年生,女,山東巨野人,博士,副教授,從事煤與煤層氣地質(zhì)、勘探與開發(fā)方面的教學(xué)和科研工作. E-mail:wyc@cumtb.edu.cn

        魏迎春,張勁,曹代勇,等. 煤層氣開發(fā)中煤粉問題的研究現(xiàn)狀及研究思路[J]. 煤田地質(zhì)與勘探,2020,48(6):116–124.

        WEI Yingchun,ZHANG Jin,CAO Daiyong,et al. Research status and thoughts for coal fines during CBM development[J]. Coal Geology & Exploration,2020,48(6):116–124.

        (責(zé)任編輯 范章群)

        猜你喜歡
        運(yùn)移煤粉煤層氣
        高爐噴吹煤粉添加助燃劑生產(chǎn)實(shí)踐
        山東冶金(2022年4期)2022-09-14 09:00:08
        曲流河復(fù)合點(diǎn)壩砂體構(gòu)型表征及流體運(yùn)移機(jī)理
        東營凹陷北帶中淺層油氣運(yùn)移通道組合類型及成藏作用
        2019年《中國煤層氣》征訂單
        中國煤層氣(2019年2期)2019-08-27 00:59:38
        煤層氣吸附-解吸機(jī)理再認(rèn)識(shí)
        中國煤層氣(2019年2期)2019-08-27 00:59:30
        開采過程中上覆急傾斜巖層運(yùn)移規(guī)律模擬與研究
        川西坳陷孝泉-新場(chǎng)地區(qū)陸相天然氣地球化學(xué)及運(yùn)移特征
        煤層氣排采產(chǎn)氣通道適度攜煤粉理論
        DFS-C02V煤層氣井高產(chǎn)因素簡(jiǎn)析
        中國煤層氣(2015年6期)2015-08-22 03:25:29
        高爐煤粉精細(xì)化噴吹技術(shù)
        人妻少妇被猛烈进入中文字幕| 欧美亚洲另类自拍偷在线拍| 日本黑人人妻一区二区水多多| 日本免费一二三区在线| 亚洲精品白浆高清久久久久久| 久久棈精品久久久久久噜噜| 日本精品免费一区二区三区| 日本免费一区二区在线| 豆国产96在线 | 亚洲| 99久久人人爽亚洲精品美女| 欧美乱人伦中文字幕在线不卡| 极品新娘高清在线观看| 欧美又大粗又爽又黄大片视频| 特级做a爰片毛片免费看无码| 欧美日韩区1区2区3区| 亚洲成在人网站天堂日本| 无码av天天av天天爽| 在线亚洲欧美日韩精品专区| 日本激情网址| 毛茸茸的女性外淫小视频| 精品久久久久久无码中文野结衣| 亚洲av日韩av永久无码色欲| 亚洲一区二区情侣| 99久久婷婷国产一区| 久久无码av一区二区三区| 欧美精品在线一区| 久久天堂av综合合色| 日韩精品人成在线播放| 人人添人人澡人人澡人人人人| 9丨精品国产高清自在线看| 亚洲第一页视频在线观看| 成人免费xxxxx在线观看| 四虎在线播放免费永久视频| 久久精品国语对白黄色| 国产亚州精品女人久久久久久| 日韩精品无码一区二区三区视频 | 欧美狠狠入鲁的视频777色| 俺也去色官网| 青青草在线成人免费视频| 亚洲国产精品无码久久一线| 国产精品卡一卡二卡三|