黃甫昭 李健星 李冬興 陳婷 王斌 陸樹華 李先琨
摘 要:受全球氣候變暖和季風氣候影響,西南巖溶區(qū)年降水量及其在季節(jié)間的分配發(fā)生明顯變化,無雨期頻率和持續(xù)時間增加,且基巖風化嚴重,基質儲水能力差,致使巖溶木本植物面臨的季節(jié)性和地質性干旱加劇。該文通過參考相關文獻分析結構性狀和生理調節(jié)探討巖溶木本植物如何適應地質性和季節(jié)性干旱。結果表明巖溶木本植物應對干旱的策略與其他干旱、半干旱區(qū)的植物大體一致,主要有抗旱和避旱兩種策略:抗旱性植物一般具有比葉面積小、葉肉多汁、儲水組織發(fā)達、細胞液濃度高等適應干旱的特征,可通過增加木材密度、增強木質部導管的抗栓塞性和提高水分利用效率以適應干旱;避旱植物則可通過小而密的氣孔和葉脈、發(fā)達的表皮毛、柵欄組織和維管束鞘等結構特征減少水分喪失,并可通過落葉、深根吸收深層水源和脫落酸(ABA)介導提早關閉氣孔以適應干旱。雖然關于巖溶植物形態(tài)結構和生理調節(jié)對干旱適應機制的研究取得了一定進展,但仍然存在一些亟待解決的問題,例如:深入研究巖溶地區(qū)基巖水分狀況及其對植物的貢獻;加強巖溶木本植物根系結構和生物量分配、樹木構型及根際微生物與木本植物干旱適應的協(xié)同關系研究;同時探索如何將巖溶植物生態(tài)適應研究成果應用于生產實踐中,科學指導石漠化治理與生態(tài)修復。
關鍵詞:巖溶,木本植物,干旱,形態(tài)結構,生理調節(jié)
中圖分類號:Q948,Q945
文獻標識碼:A
文章編號:1000-3142(2021)10-1644-10
Abstract:Affected by global warming in southwest karst area and monsoon climate,the annual precipitation in southwest karst area and its distribution between seasons have changed obviously,and the frequency and duration of non-rain period are increasing. In addition,karst woody plants face more serious seasonal and geological droughts due to the strong weathering of bedrock and poor water storage capacity. This paper discusses how karst plants adapt to geological and seasonal drought by analyzing their structural characters and physiological regulation by referring to relevant literatures. The results indicate that like plants in arid and semi-arid areas,karst woody plants have two strategies to cope with drought:drought resistance and drought avoidance. Drought-resistant plants generally have some drought-resistant characteristics,such as small specific leaf area,succulent mesophyll,well-developed water storage tissue and high cell fluid concentration and so on,and can adapt to drought by increasing wood density,enhancing vessel anti-embolism and improving water use efficiency. Drought-avoidant plants can reduce water loss by small and dense stomata and leaf veins,developed superficial fur,palisade tissue and vascular sheath,and adapt to drought by defoliation,deep root absorption of deep water and early stomatal closure mediated by Abscisic acid (ABA). Although some progress has been made in the research on karst plants adapting to drought through morphological structure and physiological regulation,there are still some problems to be solved urgently,such as the study of bedrock water condition in karst area and its contribution to plants,the root structure and biomass allocation of karst woody plants,the relationship between tree configuration and drought adaptation and synergistic relationship between rhizosphere microorganisms and woody plants. At the same time explore how to apply the results of physiological and ecological adaptation of karst woody plants to drought in production practice,and scientifically guide the control and ecological restoration of rocky desertification.
Key words:karst,woody plants,drought,morphological structure,physiological regulation
水是植物賴以生存的必要條件,也是植物生命活動中最活躍的成分之一,對植物生長、發(fā)育和分布具有顯著影響,尤其在干旱、半干旱地區(qū)和土壤淺薄的喀斯特地區(qū),水是限制植物生長和分布的最主要因素(Gu et al.,2015; Sillmann et al.,2017; Fu et al.,2019; 譚鳳森等,2019)。隨著全球氣溫上升,許多地區(qū)的年降水量及其在季節(jié)間的分配發(fā)生明顯改變,極端干旱發(fā)生的頻率顯著增加、持續(xù)時間更長,巖溶區(qū)季節(jié)性和地質性缺水有加劇趨勢,引發(fā)大規(guī)模樹木死亡的可能性更大,對現(xiàn)有巖溶植被的科學管護、可持續(xù)經營及石漠化區(qū)植被修復提出了挑戰(zhàn)(Reichstein et al.,2013; Anderegg et al.,2019,2020; Brodribb et al.,2020)。
巖溶區(qū)是同沙漠邊緣一樣的脆弱生境,是世界上最主要的生態(tài)脆弱區(qū)之一。全球巖溶分布面積達2 200萬km2,中國巖溶分布面積為344萬km2,約占國土面積的1/3。我國是世界上巖溶分布面積最大的國家,以面積大、發(fā)育充分、形態(tài)多樣、保存完好,成為“世界巖溶的立典之地”,其中,以西南巖溶區(qū)分布面積最大,主要分布在以云貴高原為中心的貴州、云南、廣西和重慶等地(陳洪松等,2004;袁道先,2014)。
西南巖溶區(qū)雖然降水充沛,但因季節(jié)分配極為不均,時常出現(xiàn)季節(jié)性干旱,且其地表地下二元結構,地表水大量滲漏,地下水深埋,土層淺薄且分布不連續(xù),土壤總量少,儲水能力低,巖溶干旱嚴重,所以,水分虧缺是該地區(qū)植被生長分布及恢復重建的主要限制因子。經過長期進化和自然選擇,巖溶木本植物形成復雜的結構和生理調節(jié)系統(tǒng)以適應其所處生境,理解巖溶木本植物干旱適應機制對植被恢復重建和現(xiàn)有植被科學管護具有重要意義。本文通過參考相關文獻分析巖溶植物根系、木質部、葉片等功能性狀和氣孔開合、滲透勢調節(jié)、抗氧化防御等生理調節(jié)探討巖溶植物適應地質性和季節(jié)性干旱的機理,并總結分析亟待解決的問題及研究前景,為進一步研究巖溶植物的抗旱機理提供參考。
1 西南巖溶區(qū)季節(jié)性與地質性干旱特征
西南巖溶區(qū)受熱帶、亞熱帶季風氣候影響,年降雨量可達1 100~2 000mm,但季節(jié)分配極為不均,春夏季多雨潮濕,秋冬季少雨干旱,加上全球氣候變暖,年降水量及其在季節(jié)間的分配發(fā)生明顯變化,極端干旱發(fā)生的頻率顯著增加,時常出現(xiàn)季節(jié)性干旱。
地質性干旱是巖溶區(qū)另一顯著特征,是指在濕潤氣候條件下,水資源總量充沛的巖溶地區(qū)出現(xiàn)的一種特殊干旱現(xiàn)象,與碳酸鹽巖巖性密切相關。碳酸鹽巖風化形成的石灰土,其理化性質有別于地帶性土壤,表現(xiàn)為富鈣、偏堿、質地偏粘,營養(yǎng)元素供給速率慢且不平衡,土壤養(yǎng)分含量高但易流失。巖溶山區(qū)土壤與母巖之間界面明顯,缺乏過渡層,結合力差,水土流失,且碳酸鹽巖風化成土作用緩慢,致使這些地區(qū)土層非常瘠?。↙egrand et al.,1973;袁道先,2014)。西南巖溶地區(qū)年降水量在1 100 mm以上,疊加高溫和碳酸鹽巖的可溶性,地下河發(fā)育強烈,地表有較多溶洞、溶洼、溶溝、溶隙、漏斗和落水洞天窗等,水文地質結構表現(xiàn)為地表地下雙重空間結構(圖1)(楊振華等,2019)。另外,其土層淺薄,巖石裸露率高,致使雨水很快滲漏到地下,淺薄土層貯存的土壤水蒸發(fā)迅速,最終導致其在多雨的濕潤季節(jié),也頻繁遭受地質性干旱。
2 巖溶植物結構對干旱的適應
作為一個有機體,植物會根據(jù)所處生境條件權衡各方面需求構建各器官結構以適應不斷變化的環(huán)境,從而增加其存活率(Delzon,2015)。在季節(jié)性和地質性缺水易發(fā)的巖溶生態(tài)系統(tǒng)中,植物常通過調整根系、葉片和木質部等結構應對干旱,且各部位結構和功能往往存在著協(xié)同或權衡的關系。
2.1 植物根系結構對干旱的適應
巖溶區(qū)時常出現(xiàn)季節(jié)性和地質性干旱,但該區(qū)域依然能發(fā)育形成物種豐富、結構完整、層次復雜的植物群落的一個重要原因是不同樹種能夠占據(jù)不同的水文生態(tài)位(Schwinning,2013; Ding et al.,2018;黃甫昭等,2019)。根系是植物吸收水分和養(yǎng)分的重要器官,由于植物根系的趨水性,深根是植物在缺水生態(tài)系統(tǒng)或季節(jié)性干旱環(huán)境中的一個重要特征。在干旱地區(qū),木本植物大多擁有垂直根系,其長可達地上部分的10倍。植物根系越發(fā)達,從深層土壤吸收的水分和養(yǎng)分越多,就越能適應干旱和貧瘠環(huán)境(任偉等,2020)。在喀斯特山地,可觀察到很多植物的根系沿巖隙或濕潤的巖壁下延達數(shù)十米深。對亞熱帶81個巖溶洞穴植物根系的DNA測序表明,根系樣品分屬12種植物,根系下扎深度大于10 m的樹種有7個,有兩種植物根系下扎深度達29 m(黃玉清等,2018)。當上層土壤水分有效性降低時,深根植物會增加對深層土壤/基巖水或地下水的利用,維持蒸騰和光合作用(West et al.,2012; Nie et al.,2019)。
植物水分來源與根系分布密切相關,有根系分布的基質層不一定是植物水分來源區(qū),但無根系分布的基質層絕不能成為水分來源地。淺根系植物主要利用來自最近降水的淺層土壤水,而深根系植物則可同時利用不同深度的水源,且能依靠儲存在巖石裂縫或裂隙中的水分抵御干旱(陳洪松等,2013)。研究南亞熱帶大塊孤立出露基巖上同一群落內不同樹種水分來源時發(fā)現(xiàn),胸徑較大的喬木菜豆樹(Radermachera sinica)和圓葉烏桕(Triadicar otundifolia)等利用較深層的水源(基巖水或地下水),而胸徑較小的灌木黃荊(Vitex negundo)、紅背山麻桿(Alchornea trewioides)和石巖楓(Mallotus repandus)等則利用較淺的土壤/表層巖溶水源(Ding et al.,2021)。根據(jù)地上和地下生物量之間的異速生長關系,根系大小和深度通常隨植株的生長而增加。巖溶生態(tài)系統(tǒng)中,根系扎入巖溶包氣帶獲取基巖水或地下水是一個緩慢的過程,這個過程隨植株大小和年齡的增加而增加(Schenk,2002; Phillips,2018),最終表現(xiàn)為大樹根系多且深,可利用深層水源;小樹根系淺而少,只能利用表層水源,通過不同的根系結構占據(jù)不同的水文生態(tài)位。
多項研究表明,深根植物能利用深層水分為其生長于干旱易發(fā)生態(tài)系統(tǒng)提供了潛在的競爭優(yōu)勢(Yang et al.,2017; McDowell et al.,2019)。Ding et al.(2021)研究亞熱帶巖溶次生群落發(fā)現(xiàn),黃荊、紅背山麻桿、火棘(Pyracantha fortuneana)和石巖楓等淺根植物在持續(xù)幾個月的干旱中植株會落葉甚至死亡,而與其共存的深根植物菜豆樹、圓葉烏桕和粗柄槭(Acer tonkinense)等卻不會落葉和死亡。在意大利和美國得克薩斯州喀斯特地區(qū)進行的研究也表明淺根樹種因干旱導致的樹冠落葉和死亡率更高(Johnson et al.,2018;Crouchet et al.,2019)??梢?,在時常面臨季節(jié)性干旱的生態(tài)系統(tǒng)中,根系深扎是植物應對干旱的一個關鍵的功能特征。與深根系植物通過利用巖石裂隙水或深層水分抗旱不同,淺根系植物一般可通過提高水分利用效率和發(fā)展高密度淺層根系提高對淺層水分的吸收效率,還可通過降低葉片氣孔導度和提前落葉以適應干旱(Schwinning,2010;陳洪松等,2013;Liu et al.,2021)。
此外,還有研究表明,植物蒸騰和地面蒸發(fā)減弱或停止的旱季,深根植物可從深層濕潤土層中吸收水分,再由側根釋放到表層較干燥的土層中;當上層土壤濕潤而底層土壤干燥時,水分會沿著根系由上層土壤向深層流動(Dawson,1993; Fan et al.,2013; Sun et al.,2018)??梢娡蝗郝渲校参锔到Y構和分布差異對水分吸收和再分配具有重要作用,且存在一種非常契合的互利共存機制,從而維持自然生態(tài)系統(tǒng)中物種多樣性和群落穩(wěn)定性。
2.2 木質部結構對干旱的適應
植物木質部主要由導管、薄壁組織和纖維組成,導管可縱向輸送水分和營養(yǎng)物質,薄壁組織主要有儲存水分、非結構性碳水化合物和其他營養(yǎng)素以及防御病原體的作用,而纖維具有機械支撐作用(Plavcová et al.,2016; Schenk et al.,2017)。木質部性狀是植物水分運輸、物質存儲、機械支持的關鍵功能性狀。巖溶常綠植物通常采取保守的“高安全性”水分利用策略,具有較大的木材密度和較小的導管,水分傳導速率和光合作用速率相對落葉樹種較低,但有更強的維持膨壓、抵抗氣穴化栓塞能力和更高的水分利用效率,能夠在缺水環(huán)境下維持水分運輸,從而維持葉片和枝條的生理功能(Maherali et al.,2004;譚鳳森等,2019;Tan et al.,2020;Ding et al.,2021)。巖溶落葉植物則傾向于采用冒險的“高效率”水分利用策略,具有小的木材密度和較大的木質部導管,因而具有較高的導水率和光合作用能力,通過雨季快速生長補償旱季碳物質的損失。落葉植物的葉片膨壓喪失點較高,對干旱更為敏感,當面臨一定的水分脅迫時,木質部更易發(fā)生氣穴化栓塞,氣孔關閉也較早;當干旱進一步加重時,則通過落葉降低蒸騰以減少水分的喪失,從而維持水分輸送安全(Choat et al.,2005; Johnson et al.,2012; Zhu et al.,2017)。半落葉植物的水分利用策略介于常綠和落葉植物之間。與落葉物種相比,半落葉植物木質部導管較小,對栓塞的抵抗力相對更強,但由于干旱期間,部分葉片繼續(xù)進行光合碳合成,蒸騰耗水使植物體內水勢更負,更易導致不可逆的木質部栓塞,最終導致植株枯死。與常綠植物相比,半落葉植物的木質部導管更大,極端干旱條件下更容易栓塞。因此,半落葉植物的干旱耐受策略在中度干旱時會顯示兼顧水力安全和碳合成的優(yōu)勢,但在極端干旱時,其較長的生長期增加了水分輸送風險(Kukowski et al.,2013)。Chen et al.(2021)在研究云南元江干熱河谷稀樹草原植被時觀察到同一干旱事件中半落葉樹種的枝條死亡率和枯梢率更高,也證實了干旱脅迫時半落葉植物水力安全風險更高。
同時,有些巖溶植物如薄葉羊蹄甲(Bauhinia tenuiflora)和囊托羊蹄甲(B. touranensis)的木質部導管具有獨特的“二元性”,即同時具有粗大的導管(>400 μm)和眾多細小導管(<30 μm),可以兼顧“高安全性”和“高效率”(Zhu et al.,2017)。另外,相比同區(qū)域的非巖溶森林,很多巖溶優(yōu)勢植物的木質部具有豐富的薄壁細胞,具有儲存水分和碳水化合物的功能,在防止栓塞擴散以及栓塞修復方面具有重要作用(Morris et al.,2016)。在干旱條件下,薄壁組織較多的樹種更多地依賴木質部薄壁組織促進栓塞體修復,而不是完全依靠其較強的抗栓塞性,植物木質部存在儲藏能力和抗栓塞性的權衡(Chen et al.,2014; Pratt et al.,2017; Kiorapostolou et al.,2019)。
由此可見,巖溶植物木質部結構分化在適應干旱中具有重要作用。巖溶常綠植物通常擁有較大的木材密度和較小的導管,增強木質部抗栓塞能力,采用“高安全性”水分利用策略,落葉物種則傾向采用“高效率”水分利用策略,木質藤本植物則采用“高安全性”和“高效率”兼顧的水分利用策略。
2.3 葉片結構對干旱的適應
葉片是植物較敏感和脆弱的部分,為了適應干旱的環(huán)境,旱生植物的葉子通常朝著降低蒸騰和增加貯藏水分兩個方面發(fā)展。巖溶植物為適應所處生境,葉片常常厚而小,同時具有較厚的蠟質層和角質層,柵欄組織發(fā)達,排列緊密,比葉面積較?。–ao,2014; Geekiyanage et al.,2018);同時葉肉多汁,儲水組織發(fā)達,細胞液濃度高,保水力強(Wright et al.,2004);此外,巖溶植物葉片、枝條上常覆蓋有較厚的柔毛,以減少蒸騰失水,而且葉片被毛還可以增加對小降雨量和冷凝水的利用(López et al.,2016;譚鳳森等,2019)。Fu et al.(2019)在比較中國西南巖溶和非巖溶植物葉片功能性狀時發(fā)現(xiàn),巖溶植物的葉片氮磷含量、近軸表皮厚度、遠軸表皮厚度、氣孔密度及葉片水分利用效率顯著高于鄰近區(qū)域的非巖溶植物,在水分利用結構和生理上更為保守。同時巖溶植物的葉脈密度大、導管長、抗栓塞性強,能快速地將水分輸送至葉片的各個部位,保證水分供應安全性,提高光合速率(Chen et al.,2021)。由此可見,葉片結構在巖溶植物適應季節(jié)性缺水中具有重要作用,在長期的季節(jié)性缺水生境下,巖溶植物葉片往往利用小而密的氣孔和葉脈、發(fā)達的表皮毛、柵欄組織和維管束鞘等結構特征來減少水分喪失,從而適應季節(jié)性和地質性干旱。
3 巖溶植物適應干旱的生理調節(jié)
植物為適應干旱,除了形成獨特的形態(tài)結構以外,還可通過一系列的生理調控來適應,如氣孔調節(jié)、滲透勢調節(jié)、抗氧化防御和內源激素調節(jié)等。
3.1 氣孔調節(jié)與干旱適應
氣孔調節(jié)是植物適應所處生境水分條件的重要途徑之一。葉片膨壓喪失點水勢與氣孔關閉時的水勢密切相關,是植物水力學中非常關鍵的性狀,與葉片的滲透調節(jié)能力和耐旱性有緊密聯(lián)系(Bartlett et al.,2014; Maréchaux et al.,2015)。研究發(fā)現(xiàn)植物在失水過程中,葉片細胞膨壓的喪失會引起氣孔關閉,而氣孔在木質部水勢降低至發(fā)生氣穴化閾值之前便會關閉,從而減緩植物木質部水勢的下降速率,避免木質部氣穴化栓塞(Nicolas et al.,2017; Wang et al.,2017; 杭紅濤等,2019)。北熱帶巖溶木本植物的葉片膨壓喪失點較低,大部分物種并不會通過提前關閉氣孔以防止水勢的降低,同時還保持較高光合速率,說明巖溶木本植物還具有其他有效的水力安全策略(Fu et al.,2012;譚鳳森等,2019)。Zhang et al.(2021)研究發(fā)現(xiàn),中國西南巖溶森林絕大多數(shù)樹種枝條的P50(喪失50%導水率時的木質部水勢)要小于樹葉P50,且樹葉的木質部導管先于樹枝栓塞,可減少水分繼續(xù)損耗,避免枝條木質部栓塞受損。在干旱生境中保護樹枝比保護樹葉更加重要(Zhu et al.,2016),通過葉片栓塞保護枝條水分運輸安全,具有“舍車保帥”的作用,這可能是巖溶植物沒有過早關閉氣孔又能應對干旱的調節(jié)機制之一。
3.2 滲透勢調節(jié)與干旱適應
滲透勢調節(jié)是植物應對干旱的另一有效途徑。在干旱生境下,為防止過度失水,植物會積累大量的無機和有機滲透調節(jié)劑來降低細胞的滲透勢,增強細胞持水能力,改善植株水分狀況,從而提高植物的適應性(Lum et al.,2014;代英超等,2015;Nohong et al.,2015)。巖溶植物葉片可溶性糖等滲透調節(jié)劑的積累在葉片膨壓維持中具有重要作用。對亞熱帶巖溶常見植物青岡(Cyclobalanopsis glauca)、圓葉烏桕、火棘和小果薔薇(Rosa cymosa)的研究發(fā)現(xiàn),隨著干旱加劇,這些植物通過積累脯氨酸、可溶性糖等有機滲透調節(jié)劑調控質膜滲透勢,維護酶和細胞膜穩(wěn)定,減少水分脅迫對細胞的傷害;同時累積鈉、鉀等無機離子調節(jié)液泡滲透勢,維持細胞膨壓(Liu et al.,2011;張中峰等,2012;劉珊等,2016)。Geekiyanage et al.(2018)在研究喀斯特季節(jié)性雨林不同生境優(yōu)勢樹種葉片功能性狀時發(fā)現(xiàn),干旱山頂優(yōu)勢樹種葉片積累的可溶性糖含量是低海拔濕潤生境優(yōu)勢樹種的四倍。歐芷陽等(2018)對北熱帶喀斯特季節(jié)性雨林建群種蜆木(Excentrodendron tonkinense)的研究發(fā)現(xiàn),蜆木在重度干旱脅迫下通過累積丙二醛和脯氨酸以適應干旱脅迫。
由此可見,地質性或季節(jié)性缺水時,巖溶植物可通過在體內積累各種滲透調節(jié)物質以調控質膜滲透勢,維護酶和細胞膜的穩(wěn)定,減少干旱對細胞的傷害,從而維持植物個體的存活和生長。
3.3 抗氧化防御與干旱適應
抗氧化防御也是植物適應干旱的另一重要途徑。植物有氧代謝過程會產生活性氧,正常條件下,活性氧可以維持動態(tài)平衡狀態(tài),但干旱脅迫會擾亂細胞的自我調節(jié),導致活性氧在細胞中過量累積,破壞膜質、葉綠體結構,損傷蛋白質、核酸等生物大分子,引起植物代謝紊亂,最終導致植株死亡(Lü et al.,2019)。經過長期進化,植物細胞形成了一套復雜的抗氧化防御系統(tǒng)以維持細胞內活性氧的穩(wěn)態(tài)平衡??寡趸镔|主要包括抗氧化酶和抗氧化劑兩類,超氧化物歧化酶(SOD)、過氧化物酶(POD)和過氧化氫酶(CAT)等是植物細胞的主要抗氧化酶(Gill et al.,2010;任偉等,2020)。植物體內抗氧化酶及其活性越高,其抗旱能力就越強(Frazeli et al.,2007;劉錦春等,2011)。巖溶區(qū)不同演替階段代表性植物蜆木、構樹(Broussonetia papyrifera)和火棘等在適度干旱條件下依靠增加體內SOD、POD、CAT的含量或活性應對干旱(井瑾等,2017;歐芷陽等,2018)。干旱條件下,植物膜脂過氧化水平和丙二醛含量升高,會影響到細胞的正常代謝,巖溶植物可通過增強保護酶活性等抗氧化防御以清除活性氧自由基,降低膜脂過氧化程度,避免干旱對其造成傷害,從而增強其抗旱性。
3.4 碳酸酐酶活性與干旱適應
碳酸酐酶(carbonic anhydrase,CA)廣泛存在于植物及單細胞綠藻中,可催化CO2+H2OHCO3-+H+雙向反應,加速無機碳向羧化酶活性部位擴散,提高CO2固定效率(李強等,2011)。植物葉片中碳酸酐酶(CA)除了能增強CO2固定能力外,其活性對植物適應干旱亦有積極意義(羅緒強等,2012)。為應對巖溶生境的季節(jié)性和地質性干旱,巖溶植物通常通過關閉氣孔或者減小氣孔導度來應對,這一生理行為在減少蒸騰防止葉片水分進一步喪失的同時也會減少葉片對大氣CO2的吸收,影響植物的CO2同化能力。為應對干旱引起的碳源減少,巖溶植物可通過碳酸酐酶高效利用碳酸氫根離子作為碳源。在遭受干旱時,巖溶植物的葉片碳酸酐酶活力升高,通過將細胞內的碳酸氫根離子轉化成水和CO2,應對干旱引起的CO2不足(吳沿友,2011)。巖溶植物通過碳酸酐酶利用巖溶環(huán)境中豐富的碳酸氫根離子合成水和CO2以補充干旱引起的葉片水分不足和胞間CO2減少,在提高植物水力安全的同時維持光合產物的合成,提高巖溶植物的干旱適應性,這是巖溶植物最為特別的干旱適應策略。
3.5 脫落酸(ABA)調節(jié)與干旱適應
在水分缺乏條件下,氣孔開合、滲透勢調節(jié)、抗氧化防御和碳酸酐酶活性是植物應對干旱的主要生理途徑,它們通常作為一個有機系統(tǒng)協(xié)同應對干旱,而這種協(xié)同主要由脫落酸(ABA)介導。ABA是植物體內一種重要的植物激素,可以調節(jié)逆境反應、代謝變化、基因表達、種子休眠、幼苗生長和植物蒸騰等(Fujii et al.,2009;Liu et al.,2021)。干旱會誘導大量ABA產生,一方面,產生的ABA可使保衛(wèi)細胞胞質Ca2+濃度升高,抑制質膜上的H+泵,使質膜上的H+-ATP酶(質膜上的H+-ATP酶是H+和K+的轉運體)活性降低,從而抑制H+外流和K+內流并關閉葉片氣孔,進而降低植物的光合作用和蒸騰能力,最終保證植物的水力安全(Sukhova et al.,2017)。另一方面,ABA產生后,保衛(wèi)細胞胞漿pH升高,K+外流的通道被激活,保衛(wèi)細胞中的K+流出,導致細胞脫水和氣孔關閉(Kim et al.,2010;Liu et al.,2021)??梢?,植物激素,尤其是ABA通過復雜的調節(jié)機制在誘發(fā)植物一系列干旱適應機制中具有不可替代的作用。
4 總結與展望
植物作為生態(tài)系統(tǒng)的初級生產者,其生產力關乎整個生態(tài)系統(tǒng)的物質和能量供給。在當前全球氣候變暖、極端天氣增加、高溫干旱頻發(fā)的形勢下,水資源短缺仍是未來全球面臨的主要問題,因此,有關植物適應干旱的研究將會持續(xù)成為植物科學的前沿研究領域之一。
近年來,許多學者從形態(tài)結構和生理調節(jié)等方面對巖溶木本植物干旱適應性進行了研究。結果表明,巖溶木本植物應對干旱主要有抗旱和避旱兩種策略:抗旱性植物一般具有比葉面積小、葉肉多汁、儲水組織發(fā)達、細胞液濃度高等適應干旱的特征,同時通過增加木材密度,增強木質部導管抗栓塞性和提高水分利用效率以適應干旱;避旱植物則通過發(fā)育小而密的氣孔和葉脈、發(fā)達的表皮毛、柵欄組織和維管束鞘等結構特征以減少水分喪失,并通過落葉、深根吸收深層水源和ABA介導提早關閉氣孔以適應干旱。雖然對巖溶木本植物適應干旱的認識不斷深入,但由于地質背景的特殊性、地形地貌的復雜性和生境的高度異質性,巖溶山區(qū)水分運移和賦存過程十分復雜,加上技術手段的限制,當前研究還存在一些問題,例如:難以明確巖溶地區(qū)基巖水分狀況及其對植物的貢獻、巖溶異質性生境不同植物的干旱適應策略、巖溶木本植物根系結構及其對干旱適應的意義以及根際微生物在巖溶植物水分獲取中的作用等。因此,提出以下建議:
(1)深入研究巖溶地區(qū)基巖水分狀況及其對植物的貢獻。一直以來,對巖溶地區(qū)水分狀況的認識是巖溶基巖縫隙管道豐富,降水迅速從地下管道流失然后補給地下水,所以,巖溶區(qū)的主要水源是土壤水和地下水。雖然有研究表明植物可利用巖石縫隙和基巖水分(Rose et al.,2003;陳洪松等,2013;Rempe et al.,2018; Ding et al.,2021),但其并不被認為是一個重要的水庫。最近,McCormick et al.(2021)對植物水分來源研究表明,木本植物通常會獲取大量儲存在基巖中的水分用于蒸騰作用,美國加州地區(qū)植物對基巖水的利用超過年均降水量的25%以上,利用基巖水補充蒸騰的植物的生物量占整個區(qū)域地上生物量的50%以上。但截止目前,巖溶區(qū)基巖水分狀況及其對植物的貢獻所知甚少,巖溶地區(qū)植物是否受到地質性干旱限制也存在爭議。因此,需要加強對巖溶地區(qū)基巖水的評估,可進一步理解巖溶植物的水分來源及其適應策略,同時對巖溶地區(qū)水資源管理和開發(fā)具有重要意義。
(2)加強巖溶木本植物根系結構和生物量分配研究。光合產物分配是植物適應各種環(huán)境的主要策略之一,根冠比是植物適應干旱的重要評估指標之一(Joslin et al.,2000; Foxx et al.,2019)。水分不足和養(yǎng)分缺乏會促使光合產物向根生長的相對分配,最終導致植物具有更高的根冠比和更強的水分和礦物質吸收能力(Kozlowski,2002; Seleiman et al.,2021)。巖溶地區(qū)水分、養(yǎng)分相對缺乏,植物是否將更多的光合產物用于根系生長,是理解巖溶植物干旱適應的關鍵科學問題之一。但巖溶植物根系大部分穿插于巖石縫隙,傳統(tǒng)的開挖土壤剖面和微根管觀測法很難在巖溶地區(qū)使用,限制了對巖溶地區(qū)植物根系結構和地下生物量的研究。今后可通過巖溶生境模擬裝置開展相關控制實驗,加強巖溶木本植物的光合產物分配策略研究,并探索通過穿透射線成像(肖爽等,2020;Liang et al.,2020)等原位根系觀測識別技術對巖溶植物根系結構及其生物量進行研究,不但能深入理解巖溶植物如何通過調整根系結構來適應干旱,而且對準確評估巖溶植被碳匯功能具有重要意義。
(3)開展巖溶木本植物樹木構型與干旱適應關系研究?,F(xiàn)有研究從根系、樹干和葉片結構等方面探討了巖溶木本植物對干旱的適應機制,而樹木構型作為植物最直觀的結構卻少有人研究其在植物水分獲取和干旱適應方面的功能。半干旱區(qū)研究表明植物為應對干旱,通常形成“大冠幅,小樹高”的樹木構型(Dai et al.,2020),半干旱區(qū)灌木通過冠層匯集形成的樹干莖流聚集到根部土壤的水分是當?shù)亟涤炅康?1~221倍,植物在干旱季可使用這些聚集的水分,表明冠層匯集聚水是灌木對干旱環(huán)境的一種主動適應形式和高效用水策略(李小雁,2011)。在巖溶峰叢區(qū),時常能觀察到從洼地到山脊(海拔高差100~300 m),植被迅速從高大喬木變成矮小灌木,是為由巖溶木本植物應對干旱的策略調控值得探究。
(4)開展巖溶環(huán)境下根際微生物與木本植物協(xié)同關系研究。大量研究表明,在土壤-植物根系-微生物互作體系中,根系中的細菌能通過產生植物生長調節(jié)因子或調節(jié)植物的激素水平促進植物根系發(fā)育及伸長,促進植物產生抗氧化物和活性氧清除劑等,從而提升植物的耐旱水平(Lakshmanan et al.,2017; 龐志強等,2020);菌根真菌則通過其菌絲網(wǎng)絡幫助宿主植物吸收水分、養(yǎng)分,還能調控宿主植物的水通道蛋白、干旱相關基因,促進植物在干旱脅迫下的代謝和生長(Miransari,2014; 張中峰等,2018; 袁志林等2019)。巖溶生境干旱頻發(fā),養(yǎng)分相對缺乏,植物與微生物如何協(xié)同應對生境變化,可能是理解植物適應干旱的有效途徑之一。
(5)科學研究的最終目是指導生產實踐,如何把巖溶植物對干旱的適應研究成果應用于生產,也是值得重視的問題。例如:基于巖溶木本植物干旱適應性狀構建抗旱植物篩選模型,為巖溶抗旱植物篩選提供支撐;篩選能提高巖溶植物水分吸收能力的微生物,研發(fā)菌根化育苗技術,增強種苗適應巖溶干旱的能力、提高造林成活率;科學評估石漠化山地植被修復的生態(tài)需水量;基于巖溶木本植物水文生態(tài)位分化研究,為植被恢復和復合農林經營的物種配置提供理論依據(jù)。
中國西南巖溶區(qū)已知分布有維管束植物7 000余種,植物資源豐富且特有性強,巖溶生境多樣化孕育了植物多樣化的表型,為研究木本植物適應特殊生境的結構、生理及其遺傳學基礎提供了豐富的資源。因此,隨著技術手段的不斷發(fā)展、巖溶生態(tài)系統(tǒng)研究方法論的逐漸完善,植物對巖溶地質性和季節(jié)性干旱的適應性研究將取得大量創(chuàng)新性的成果,也將有利于巖溶區(qū)的生態(tài)修復與生態(tài)系統(tǒng)管理。
致謝 感謝多位匿名審稿人對本文撰寫提出的寶貴意見和建議。
參考文獻:
ANDEREGG WRL,TRUGMAN AT,BADGLEY G,et al.,2020. Divergent forest sensitivity to repeated extreme droughts\[J]. Nat Clim Change,10(12):1-5.
BARTLETT,MK,ZHANG Y,KREIDLER N,et al.,2014. Global analysis of plasticity in turgor loss point,a key drought tolerance trait [J]. Ecol Lett,17(12):1580-1590.
BRODRIBB TJ,POWERS J,COCHARD H,et al.,2020. Hanging by a thread? Forests and drought\[J]. Science,268(6488):261-266.
CAO KF,F(xiàn)U PL,CHEN YJ,et al.,2014. Implications of the ecophysiological adaptation of plants on tropical karst habitats for the ecological restoration of desertified rocky lands in southern China\[J]. Sci Sin Vit,2014,44(3):238-247.[曹坤芳,付培立,陳亞軍,等,2014. 熱帶巖溶植物生理生態(tài)適應性對于南方石漠化土地生態(tài)重建的啟示\[J]. 中國科學:生命科學,44(3):238-247]
CHEN HS,NIE YP,WNAG KL,2013. Spatio-temporal heterogeneity of water and plant adaptation mechanisms in karst regions:a review [J]. Acta Ecol Sin,33(2):317-326. [陳洪松,聶云鵬,王克林,2013. 巖溶山區(qū)水分時空異質性及植物適應機理研究進展 [J]. 生態(tài)學報,33(2):317-326.]
CHEN HS,WANG KL,2004. Characteristics of karst drought and its countermeasures [J]. Res Agric Mod,25:70-73. [陳洪松,王克林,2004. 巖溶干旱特征及其治理對策 [J]. 農業(yè)現(xiàn)代化研究,25:70-73.]
CHEN YJ,CAO KF,SCHNITZER SA,et al.,2014. Water-use advantage for lianas over trees in tropical seasonal forests [J]. New Phytol,205:128-136.
CHEN YJ,CHOAT B,STERCK F,et al.,2021. Hydraulic prediction of drought-induced plant dieback and top-kill depends on leaf habit and growth form [J]. Ecol Lett. DOI:10.1111/ele.13856.
CHEN ZC,ZHANG YT,YUAN WJ,et al.,2021. Coordinated variation in stem and leaf functional traits of temperate broadleaf tree species in the isohydric-anisohydric spectrum [J]. Tree Physiol,DOI:10.1093/treephys/tpab028.
CHOAT B,BALL MC,LULY JG,et al.,2005. Hydraulic architecture of deciduous and evergreen dry rainforest tree species from north-eastern Australia [J]. Trees,19(3):305-311.
CROUCHET SE,JENSEN J,SCHWARTZ BF,et al.,2019. Tree mortality after a hot drought:distinguishing density-dependent and-independent drivers and why it matters [J]. Front For Glob Chang,2:21.
DAI JY,LIU HY,WANG YC,et al.,2020. Drought-modulated allometric patterns of trees in semi-arid forests [J]. CommBiol,405(2020):1234567890.
DAI YC,XU KY,MA K,et al.,2015. Physiological responses of the rare and endangered Ardisia violacea (Myrsinaceae) seedlings to progressive drought stress [J]. Acta Ecol Sin,35(9):2954-2959. [代英超,徐奎源,馬凱,等,2015珍稀瀕危植物堇葉紫金牛對持續(xù)干旱的生理響應 [J]. 生態(tài)學報,35(9):2954-2959.]
DAWSON TE,1993. Hydraulic lift and water use by plants:implications for water balance,performance and plant-plant interactions [J]. Oecologia,95 (4):565-574.
DELZON S,2015. New insight into leaf drought tolerance [J]. Funct Ecol,29(10):1247-1249.
DING YL,NIE YP,CHEN HS,et al.,2021. Water uptake depth is coordinated with leaf water potential,water-use efficiency and drought vulnerability in karst vegetation [J]. New Phytol,229(3):1339-1353.
DING YL,NIE YP,SCHWINNING S,et al.,2018. A novel approach for estimating groundwater use by plants in rock-dominated habitats [J]. J Hydrol,565:760-769.
FAN T,LI J,LI Y,et al. 2013. Stable isotopic study on water utilization sources of Pinus yunnanensis plantations in the central Yunnan karst plateau [J]. Adv Mat Res,726-731:3888-3893.
FRAZELI F,GHORBANLI M,NIKNAM V,2007. Effect of drought on biomass,protein content,lipid zeroxidation and antioxidant enzymes in two sesame cultivars [J]. Biol Plant,51(1):98-103.
FUJII H,ZHU JK,2009. Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth,reproduction,and stress [J]. Proc Natl Acad Sci,106(20):8380-8385.
FU PL,JIANG YJ,WANG AY,et al.,2012. Stem hydraulic traits and leaf water-stress tolerance are co-ordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karst forest [J]. Ann Bot,110(1):189-199.
FU PL,ZHU SD,ZHANG JL,et al.,2019. The contrasting leaf functional traits between a karst forest and a nearby non-karst forest in south-west China [J]. Funct Plant Biol,46(10):907-915.
FOXX AJ,F(xiàn)ORT F,2019. Root and shoot competition lead to contrasting competitive outcomes under water stress:A systematic review and meta-analysis [J]. PLoS ONE,14(12):e0220674.
GEEKIYANAGE,N,GOODALE,UM,CAO,KF,et al.,2018. Leaf trait variations associated with habitat affinity of tropical karst tree species [J]. EcolEvol,8(1):286-295.
GILL S,TUTEJA N,2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants [J]. Plant Physiol Biochem,(48):909-930.
GU DX,ZHANG ZF,MALLIK A,et al.,2015. Seasonal water use strategy of Cyclobalanopsis glauca in a karst area of southern China [J]. Environ Earth Sci,74(2):1007-1014.
HANG HT,WU YY,ZHANG KY,et al.,2019. Effects of simulated karst soil habitat stresses on photosynthetic characteristics and dry matter allocation of Robinia pseudoacacia seedlings [J]. Chin J Ecol,38(9):2648-2654. [杭紅濤,吳沿友,張開艷,等,2019. 模擬喀斯特不同土壤生境脅迫對刺槐幼苗光合特性及干物質分配的影響 [J]. 生態(tài)學雜志,38(9):2648-2654.]
HUANG FZ,LI DX,WANG B,et al.,2019. Foliar stable carbon isotope composition and water use efficiency of plant in the Karst seasonal rain forest [J]. Chin J Appl Ecol,30 (6):1833-1839. [黃甫昭,李冬興,王斌,等,2019. 喀斯特季節(jié)性雨林植物葉片碳同位素組成及水分利用效率 [J]. 應用生態(tài)學報,30(6):1833-1839.]
HUANG YQ,ZHANG ZF,MO L,et al.,2018. Study on the distribution of plant deep root system and its eco-geological function in karst area of south China [R] [黃玉清,張中峰,莫凌,等,2018. 我國南方巖溶區(qū)植物深根系分布及其生態(tài)地質作用研究 [R]. 科技成果.]
JING J,WANG FZ,ZHANG Y,et al.,2017. Seed germination of Pyracantha fortuneana and the change of antioxidant enzyme activity under drought stress [J]. J Arid Land Resourc Environ,(9):135-139. [井瑾,王方貞,張瑜,等,2017. 干旱脅迫下火棘種子萌發(fā)過程及其抗氧化酶活性變化 [J]. 干旱區(qū)資源與環(huán)境,(9):135-139.]
JOHNSON DM,DOMEC JC,BERRY ZC,et al.,2018. Cooccurring woody species have diverse hydraulic strategies and mortality rates during an extreme drought [J]. Plant Cell Environ,41:576-588.
JOHNSON DM,MCCULLOH KA,WOODRUFF DR,et al.,2012. Hydraulic safety margins and embolism reversal in stems and leaves:Why are conifers and angiosperms so different? [J]. Plant Sci,195(none):48-53.
JOSLIN JD,WOLFE MH,HANSON PJ,2000. Effects of altered water regimes on forest root systems [J]. New Phytol,147(1):117-129
KIM T,BHMER M,HU H,et al.,2010. Guard cell signal transduction network:advances in understanding abscisic acid,CO2,and Ca2+signaling [J]. Ann Rev Plant Biol,61:561-591.
KIORAPOSTOLOU N,DA SOIS L,PETRUZZELLIS F,et al.,2019. Vulnerability to xylem embolism correlates to wood parenchyma fraction in angiosperms but not in gymnosperms [J]. Tree Physiol,39(10):1675-1684.
KOZLOWSKI TT,PALLARDY SG,2002. Acclimation and adaptive responses of woody plants to environmental stresses [J]. Bot Rev,68(2):270-334.
KUKOWSKI KR,SCHWINNING S,SCHWARTZ BF,2013. Hydraulic responses to extreme drought conditions in three co-dominant tree species in shallow soil over bedrock [J]. Oecologia,171(4):819-830.
LAKSHMANAN V,RAY P,CRAVEN KD,2017. Toward a resilient,functional microbiome:drought tolerance-alleviating microbes for sustainable agriculture [J]. Methods Mol Biol,1631:69-84.
LEGRAND HE,STRINGFIELD VT,1973. Karst hydrology—A review [J]. J Hydrol,20(2):97-120.
LI Q,HE YY,CAO JH,et al.,2011. The plant carbonic anhydrase at karst area and its ecological effects [J].Ecol Environ Sci,20(12):1867-1871. [李強,何媛媛,曹建華,等,2011. 植物碳酸酐酶對巖溶作用的影響及其生態(tài)效應 [J]. 生態(tài)環(huán)境學報,20(12):1867-1871.]
LIANG H,XING LY,LIN JH,2020. Application and algorithm of ground-penetrating radar for plant root detection:a review [J]. Sensors (Basel,Switzerland),20(10):2836.
LIU CC,LIU YG,GUO K,et al. 2011. Effect of drought on pigments,osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China [J]. Environ Exp Bot,71(2):174-183.
LIU CN,HUANG Y,WU F,et al.,2021. Plant adaptability in karst regions [J]. J Plant Res,134(5):1-18.
LIU JC,ZHONG ZC,HE YJ,2011. Effects of drought stress and re-watering on the active oxygen scavenging system of Cupressus funebris seedlings in Karst area [J]. Chin J Appl Ecol,22 (11):2836-2840. [劉錦春,鐘章成,何躍軍,2011. 干旱脅迫及復水對喀斯特地區(qū)柏木幼苗活性氧清除系統(tǒng)的影響 [J]. 應用生態(tài)學報,22 (11):2836-2840.]
LIU WN,CHEN HS,ZOU QY,et al. 2021. Divergent root water uptake depth and coordinated hydraulic traits among typical karst plantations of subtropical China:Implication for plant water adaptation under precipitation changes [J].Agric Water Manag,249:1-10.
LIU S,HE Q,LI JY,et al.,2016. Physiological responses of the limestone endemic plant Triadica rotundifolia seedlings to drought stress [J]. J S Chin Agric Univ,37(2):96-100. [劉珊,何茜,李吉躍,等,2016. 石漠化樹種圓葉烏桕對干旱脅迫的生理響應 [J]. 華南農業(yè)大學學報,37(2):96-100.]
LI XY,2011. Mechanism of coupling,response and adaptation between soil,vegetation and hydrology in arid and semiarid regions [J]. Sci Sin Terrae,41(12):1721-1730. [李小雁,2011. 干旱地區(qū)土壤-植被-水文耦合、響應與適應機制 [J]. 中國科學:地球科學,41(12):1721-1730.]
LPEZ R,CANO FJ,CHOAT B,et al.,2016. Plasticity in vulnerability to cavitation of Pinus canariensis occurs only at the driest end of an aridity gradient [J]. Front Plant Sci,7:769.
L XP,GAO HJ,ZHANG L,et al.,2019. Dynamic responses of Haloxylon ammodendron to various degrees of simulated drought stress [J]. Plant Physiol Biochem,(139):121- 131.
LUM S,HANAFI MM,RAFII YM,et al.,2014. Effect of drought stress on growth,proline and antioxidant enzyme activities of upland rice [J]. J Anim Plant Sci,24(5) :1487-1493.
LUO XQ,WANG CY,YANG HY,et al.,2012. Studies on adaptive mechanisms of karst dominant plant species to drought and high calcium stress\[J] Chin Agric Sci Bull,28(16):1-5.[羅緒強,王程媛,楊鴻雁,等,2012. 喀斯特優(yōu)勢植物種干旱和高鈣適應性機制研究進展\[J]. 中國農學通報,28(16):1-5.]
MAHERALI H,POCKMAN WT,JACKSON RB,2004. Adaptive variation in the vulnerability of woody plants to xylem cavitation [J]. Ecology,85:2184-2199.
MARCHAUX I,BARTLETT K,SACK L,et al.,2015. Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest [J]. Funct Ecol,29(10):1268-1277.
MCCORMICK EL,DRALLE DN,HAHM WJ,et al.,2021. Widespread woody plant use of water stored in bedrock [J]. Nature,597(7875):225-229.
MCDOWELL NG,GROSSIORD C,ADAMS HD,et al.,2019. Mechanisms of a coniferous woodland persistence under drought and heat [J]. Environ Res Lett,14:045014.
MIRANSARI M,2014. Mycorrhizal fungi to alleviate compaction stress on plant growth [M]//MIRANSARI M. Use of microbes for the alleviation of soil stresses. New York:Springer,1:165-174.
MORRIS H,PLAVCOV L,CVECKO P,et al.,2016. A global analysis of parenchyma tissue fractions in secondary xylem of seed plants [J]. New Phytol,209(4):1553-1565.
NICOLAS MS,DELZON S,COCHARD H,2017. Plant resistance to drought depends on timely stomatal closure [J]. Ecol Lett,20(11),Doi:10.1111/ele.12851.
NIE YP,DING YL,ZHANG H,et al.,2019. Comparison of woody species composition between rocky outcrops and nearby matrix vegetation on degraded karst hillslopes of Southwest China [J]. J For Res,30:911-920.
NOHONG B,2015. Effect of water stress on growth,yield,proline and soluble sugars contents of signal grass and napier grass species [J]. Am-Eur J Sustain Agric,9:14-21.
OU YZ,CAO YY,TAN CQ,et al.,2018. Effects of drought on photosynthesis and resistance physiology of Excentrodendron hsienmu seedlings in karst habitat [J]. Chin J Ecol,37(11):3270-3276. [歐芷陽,曹艷云,譚長強,等,2018. 干旱脅迫對喀斯特生境蜆木幼苗光合特性及抗性生理的影響 [J]. 生態(tài)學雜志,37(11):3270-3276.]
PANG ZQ,YU DQ,2020. Plant root system-microbial interaction system under drought stress and its application [J]. Plant Physiol J,56 (2):109-126. [龐志強,余迪求,2020. 干旱脅迫下的植物根系-微生物互作體系及其應用 [J]. 植物生理學報,56(2):109-126.]
PHILLIPS JD,2018. Self-limited biogeomorphic ecosystem engineering in epikarstsoils [J]. Phys Geogr,39:304-328.
PLAVCOV L,HOCH G,MORRIS H,et al.,2016. The amount of parenchyma and living fibers affects storage of nonstructural carbohydrates in young stems and roots of temperate trees [J]. Amer J Bot,103(4):603-612.
PRATT RB,JACOBSEN AL,2017. Conflicting demands on angiosperm xylem:tradeoffs among storage,transport and biomechanics [J]. Plant Cell Environ,40(6):897-913.
REN W,GAO HJ,WANG RJ,et al.,2020. Research advances in adaptation of higher plants to arid habitats [J]. J Grassl Forage Sci,254(3):8-19. [任偉,高慧娟,王潤娟,等,2020. 高等植物適應干旱生境研究進展 [J]. 草學,254(3):8-19.]
REMPE DM,DIETRICH WE. 2018. Direct observations of rock moisture,a hidden component of the hydrologic cycle [J]. Proc Natl Acad Sci,115:2664-2669.
ROSE K,GRAHAM R,PARKER D,2003. Water source utilization by Pinus jeffreyi and Arctostaphylos patula on thin soils over bedrock [J]. Oecologia,134:46-54.
SCHENK HJ,ESPINO S,ROMO DM,et al.,2017. Xylem surfactants introduce a new element to the Cohesion-Tension Theory [J]. Plant Physiol,173(2):1177. Doi:10.1104/pp.16.01039.
SCHENK HJ,JACKSON RB,2002. Rooting depths,lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems [J]. J Ecol,90(3):480-494.
SCHWINNING S,2010. The ecohydrology of roots in rocks [J]. Ecohydrology,3(2):238-245.
SCHWINNING S,KELLY CK,2013. Plant competition,temporal niches and implications for productivity and adaptability to climate change in water-limited environments [J]. Funct Ecol,27(4):886-897.
SELEIMAN MF,AL-SUHAIBANI N,ALI N,et al.,2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects [J]. Plants,10(2):259.
SILLMANN J,THORARINSDOTTIR T,KEENLYSIDE N,et al.,2017. Understanding,modeling and predicting weather and climate extremes:Challenges and opportunities [J]. Weath Clim Extr,18:65-74.
SUKHOVA E,AKINCHITS E,SUKHOV V,2017. Mathematical models of electrical activity in plants [J]. J Membr Biol,250:407-423.
SUN L,YANG L,CHEN LD,et al. 2018. Hydraulic redistribution and its contribution to water retention during short-term drought in the summer rainy season in a humid area [J]. J Hydrol,566:377-385.
TAN FS,SONG HQ,LI ZG,et al.,2019. Hydraulic safety margin of 17 co-occurring woody plants in a seasonal rain forest in Guangxi’s Southwest karst landscape,China [J]. Chin J Plant Ecol,43(3):227-237. [譚鳳森,宋慧清,李忠國,等,2019. 桂西南喀斯特季雨林木本植物的水力安全 [J]. 植物生態(tài)學報,43(3):227-237.]
TAN FS,SONG HQ,F(xiàn)U PL,et al. 2020. Hydraulic safety margins of co-occurring woody plants in a tropical karst forest experiencing frequent extreme droughts [J]. Agric For Meteorol,292-293:108107.
WANG R,WU YY,XING DK,et al.,2017. Biomass production of three biofuel energy plants’ use of a new carbon resource by carbonic anhydrase in simulated karst soils:Mechanism and capacity [J]. Energies,10(9):1370-1383.
WEST AG,DAWSON TE,F(xiàn)EBRUARY EC,et al.,2012. Diverse functional responses to drought in a Mediterranean-type shrubland in South Africa [J]. New Phytol,195(2):396-407.
WU YY,2011. Trategies to increase carbon fixation and sequestration by karst-adaptable plant [J]. Carsol Sin,30(4):461-465. [吳沿友,2011. 喀斯特適生植物固碳增匯策略 [J]. 中國巖溶,30(4):461-465.]
XIAO S,LIU LT,ZHANG YJ,et al.,2020. Review on new methods of in situ observation of plant micro-roots and interpretation of root images [J]. J Plant Nutr Fert [J]. 26(2):370-385. [肖爽,劉連濤,張永江,等,2020. 植物微根系原位觀測方法研究進展 [J]. 植物營養(yǎng)與肥料學報,26(2):370-385.]
YANG FT,F(xiàn)ENG ZM,WANG HM,et al.,2017. Deep soil water extraction helps to drought avoidance but shallow soil water uptake during dry season controls the inter-annual variation in tree growth in four subtropical plantations [J]. Agric For Meteorol,234:106-114.
YANG ZH,SONG XQ,SU WC,2019. Slope runoff process and its utilization technology in Southwest karst area [J]. Earth Sci,44(9):2931-2943. [楊振華,宋小慶,蘇維詞,2019. 西南喀斯特地區(qū)坡地產流過程及其利用技術 [J]. 地球科學,44(9):2931-2943.]
YUAN DX,2014. Research on major environmental geological problems and countermeasures in karst rock mountain area in Southwestern China [M]. Beijing:Science Press. [袁道先,2014. 西南巖溶石山地區(qū)重大環(huán)境地質問題及對策研究 [M]. 北京:科學出版社.]
YUAN ZL,PAN XY,JIN W,2019. Tree-associated symbiotic microbes and underlying mechanisms of ecological interactions:a case study of poplar [J]. Acta Ecol Sin,39(1):381-397. [袁志林,潘雪玉,靳微,2019. 林木共生菌系統(tǒng)及其作用機制——以楊樹為例 [J]. 生態(tài)學報,39(1):381-397.]
YUN SX,QIN HN,2014. Status quo and protection countermeasures of plant resources in Dian-Qian-Gui Karst area [C]. Shenyang:11th National Symposium on Biodiversity Science and Conservation:293-303. [于勝祥,覃海寧,2014. 滇黔桂喀斯特地區(qū)植物資源現(xiàn)狀與保護對策 [C]. 沈陽:第十一屆全國生物多樣性科學與保護研討會:293-303.]
ZHANG QW,ZHU SD,JANSEN S,et al.,2021. Topography strongly affects drought stress and xylem embolism resistance in woody plants from a karst forest in Southwest China [J]. Funct Ecol,35(3):566-577.
ZHANG ZF,YOU YM,HUANG YQ,et al.,2012. Effects of drought stress on Cyclobalanopsis glauca seedlings under simulating karst environment condition [J]. Acta Ecol Sin,32(20):6318-6325. [張中峰,尤業(yè)明,黃玉清,等,2012. 模擬喀斯特生境條件下干旱脅迫對青岡櫟苗木的影響 [J]. 生態(tài)學報,32(20):6318-6325.]
ZHANG ZF,ZHANG JC,XU GP,et al.,2018. Contribution of arbuscular mycorrhizal fungi to water absorption by Cyclobalanopsis glauca [J].Chin J Eccol,37(8):2285-2292. [張中峰,張金池,徐廣平,等,2018. 接種菌根真菌對青岡櫟水分吸收的貢獻 [J]. 生態(tài)學雜志,37(8):2285-2292.]
ZHU SD,CHEN YJ,F(xiàn)U PL,et al.,2017. Different hydraulic traits of woody plants from tropical forests with contrasting soil water availability [J]. Tree Physiol,37(11):1469-1477.
ZHU SD,LIU H,XU QY,et al.,2016. Are leaves more vulnerable to cavitation than branches? [J]. Funct Ecol,30(11):1740-1744.
(責任編輯 李 莉)