亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Hordatines as a Potential Inhibitor of COVID-19 Main Protease and RNA Polymerase:An In-Silico Approach

        2020-12-28 06:46:56MohammedDahabMostafaHegazyHatemAbbass
        Natural Products and Bioprospecting 2020年6期

        Mohammed A.Dahab·Mostafa M.Hegazy·Hatem S.Abbass

        Abstract Total 40 natural compounds were selected to perform the molecular docking studies to screen and identify the potent antiviral agents specifically for Severe Acute Respiratory Syndrome Coronavirus 2 that causes coronavirus disease 2019 (COVID-19).The key targets of COVID-19,protease (PDB ID:7BQY) and RNA polymerase (PDB ID:7bV2) were used to dock our target compounds by Molecular Operating Environment (MOE) version 2014.09.We used 3 different conformations of protease target (6M0K,6Y2F and 7BQY) and two different score functions to strengthen the probability of inhibitors discovery.After an extensive screening analysis,20 compounds exhibit good binding affinities to one or both COVID-19 targets.7 out of 20 compounds were predicted to overcome the activity of both targets.The top 7 hits are,flacourticin (3),sagerinic acid (16),hordatine A (23),hordatine B (24),N-feruloyl tyramine dimer (25),bisavenanthramides B-5 (29) and vulnibactins (40).According to our results,all these top hits was found to have a better binding scores than remdesivir,the native ligand in RNA polymerase target (PDB ID:7bV2).Hordatines are phenolic compounds present in barley,were found to exhibit the highest binding affinity to both protease and polymerase through forming strong hydrogen bonds with the catalytic residues,as well as significant interactions with other receptor-binding residues.These results probably provided an excellent lead candidate for the development of therapeutic drugs against COVID-19.Eventually,animal experiment and accurate clinical trials are needed to confirm the preventive potentials of these compounds.

        Keywords Barley·COVID-19·Docking·Hordatine·Protease·RNA polymerase·MOE

        1 Introduction

        During the last coronavirus outbreak,the rapid development of computer-aided drug discovery used for the in silico molecular modelling along with natural product databases have dramatically improved the drug development process.The inhibition of viral replication is a good strategy for antiviral drug discovery and development [1].SARS-CoV replicase gene has been revealed to encode a number of enzymatic functions.These include RNA-dependent RNA polymerase (RdRp),3C-like protease (3CLpro),a papainlike protease (PLpro) and a helicase.[2] 3C-like protease(3CLpro) and RNA polymerase play an important role in the replication of the virus and has a highly conserved catalytic domain from the SARS virus which is considered to be an attractive target for drug development [3].By inhibiting anyone of these two proteins or both for a higher active therapy,the severity of the infection will be reduced.Natural products are inexhaustible source of drug discovery which always offers not only new compounds with interesting structures and different entities but also very important intermediates like shikimic acid which originated fromIllicium verumfruits which serve as a source for synthesis and commercial production oseltamivir as an effective treatment for avian influenza virus H5N1,seasonal influenza virus types A and B and human influenza virus H1N1 of swine origin [4,5].Phenolic compounds and their derivatives are widely distributed in nature especially from plants,their diverse structures and combinations which may be founded as acids or esters or amides and also may including nitrogen in monomer or dimmer structures or even more [6].Tens of phenolic compounds of different classes (phenolic acids,flavonoids and coumarins) are showing potent activities against many viruses like herpes simplex (HSV),influenza,epstein-barr hepatitis B and human immunodeficiency viruses (HIV)through different mechanisms [6,7].Antiviral activity and structure diversity and complexity of phenolic acids like caffeic acid derivatives as a major compounds of this study make them a suitable candidates for exploring their activity against COVID-19 [8].Caffeic acid exhibit a potent antiviral activity against hepatitis C virus (HCV) at 55 nM level but its n-octyl ester derivatives showed a way more strongest anti-HCV activity at 1.0 to 109.6 picomolar level.The structure activity relationship revealed that n-alkyl side chain and catechol moiety are a pharmacophore responsible for the anti HCV activities [8,9].Chicoric acid or dicaffeoyltartaric acid is dimeric caffeic acid derivative with tartaric acid which also showed more potent antiviral activity against HIV[6].Amide group is founded to increase antiviral activity of coumarin-based inhibitors against HIV through increasing biding affinity due hydrogen bonding [10].A library of known 40 natural compounds (Fig.1) have been run against the catalytic site of the COVID-19 main protease and RNA polymerase (Fig.2).The selection of compounds was based on their structure similarities with COVID-19 main protease and RNA polymerase native ligands (Fig.3).Hordatines,are dimers of coumaroylagmatine abundant in the shoots of barley seedlings grown in the dark,while no hordatines have been detected in un-germinated seeds or roots.Hordatine A is a dimer of coumaroylagmatine,while hordatine B possesses a methoxy group on its coumaran skeleton,is a dimer of coumaroylagmatine and feruloylagmatine [11,12].Hordatines may be stored as the glycosylated form in mature grains and partially produced by hydrolysis of the glycosylated form after germination explaining why hordatines have not previously been found in grains before germination[12].The hordatines are antifungal substances,inhibit the spore germination of a number of fungi in concentrations as low as 10—5.[13] The concentrations of hordatines show maxima 6 days after germination and decline to less than 50% by the 11th day [11].It has also been reported that Hordatine contents in barley leaves increase after an infection of powdery mildew [12].Barley (Hordeum vulgareL.) Family;Poaceae was one of the first domesticated grains near the Nile river.It is used as animal fodder,source of fermentable material for distilled beverages,soups and stews food [14].Barley has antiviral activities in addition to various properties,including; anti-inflammatory,antioxidant,diuretic,aphrodisiac,antiprotozoal,demulcent,astringent,febrifuge,digestive,expectorant,antimutagenic,refrigerant,sedative,stomachic,tonic properties,emollient,hypocholesterolemia effect,glycaemia regulation and wounds treatment [14,15].

        2 Results,Discussion and Conclusion

        Totally we docked 40 compounds to 4 COVID-19 targets (3 protease and 1 RNA polymerase).A comparative analysis can be done by referring to (Table 1).As for binding affinities,20 compounds exhibit good binding affinities to one or more of the COVID-19 targets.Surprisingly,7 out of 20 compounds exhibit remarkable binding affinities to all the 4 targets (6M0K,6Y2F,7BQY or 7bV2).The top 7 hits are flacourticin (3),sagerinic acid (16),hordatine A (23),hordatine B (24),N-feruloyl tyramine dimer (25),bisavenanthramides B-5 (29) and vulnibactins (40) summarized in (Table 2).Docking interactions pattern of the top 7 hits are depicted in (Fig.4).Importantly,hordatines (23 and 24)were found to interact with both protease and polymerase by exhibiting the highest binding affinity through forming strong hydrogen bonds with some residues of the catalytic site,as well as significant extra interactions with other receptor binding residues.

        2.1 For Protease Target 7BQY

        Binding interactions of the native ligand (binding score = - 7.8) (Fig.4 o),revealed that there are 3 hydrogen bonds with Glu166.In addition to other bonds with Gln189,His163,His164,Cys145,Gln189,Thr190,Ala191,Thr26 and Thr25.Whereas in case of hordatine A binding interactions with 7BQY (binding score = - 9.0) is given in (Fig.4 f),five hydrogen bonds were recorded with Glu166.Furthermore,extra nine interactions were observed with phe140,Gln189,Met49 and Glu47.Whereas in case of hordatine B binding interactions with 7BQY (binding score = - 8.5) is given in (Fig.4 g),6 bonds were recorded with Glu166.In addition to other interactions were observed with phe140,Gly143 and Gln189 (Table 2).

        For Molecular docking Patterns of Candidate Compounds 3,16,23,24,25,29 and 40 into Protease Targets 6M0K and 6Y2F See Supplementary Data.

        2.2 For Polymerase Target 7bv2

        Binding interactions of the native ligand Remdesivir(binding score = - 5.9) (Fig.4 p),revealed that there are 5 hydrogen bonds with Arg553.In addition to other bonds with Asp623,Asn691,Ser759 and ser682.For hordatine A binding interactions with 7bv2 (binding score = - 8.11)is given in (Fig.4 h),two hydrogen bonds were recorded with Arg553.Furthermore,extra interactions were observed with Thr680,Asp623,Asp684 and Ser682.Whereas in case of hordatine B binding interactions with 7bv2 (binding score = - 8.3) is given in (Fig.4 i),Hydrophobic interaction was recorded with Ser682 and one hydrogen bond was recorded with Arg553.In addition to seven interactions were recorded with Asp760.Furthermore,4 interactions were recorded with Asp618.Also,other interactions were observed with thr680,cys813 and Leu7582.It is worth mentioning that remdesivir is a nucleotide analogue prodrug that inhibits viral RNA polymerases which has shown in vitro prophylactic and therapeutic efficacy in nonclinical models against COVID-19 [16].

        Table 1 Comparative docking study results on COVID-19 enzymes

        Hordatines A and B could be obtained by extraction from dark-grown barley by several methods as a mixture.One method by homogenization with 2 volume acetic acid followed by centrifugation for 5 min.after being left at 4 °C for 20 h.The supernatant was decanted,and the precipitate washed with 1 volume acetic acid and re-centrifugated.Both acetic acid decanted fractions were combined and evaporated till dryness at 40 °C.The solid residue was re-dissolved in 1 volume 2—5% trichloroacetic acid and kept for 15 min.then centrifuged for 5 min.and the supernatant was stored at - 10 °C [11].Another method was reported by shaking pearled grain flour with 1 mL of 75% acetone for 60 min.at room temperature,in three or four replications then centrifugate at 12,500 rpm for 10 min.followed by re-extracting the precipitate with 75% acetone twice.Both acetone extracts evaporated under vacuum and dissolved in 3 mL 2.5%acetic acid [12].Another method was reported by sowing barley seeds in flats containing heat sterilized vermiculite.and incubated in the dark in controlled environment chambers.The developed shoots were extracted by boiling with 100 mL water for 10 min.The filtered extract was shaken with Amberlite IR C 50 (H +) ion-exchange resin (5 g dry weight) for 1 h.the supernatant liquid was decanted,and the resin rinsed with several portions of water.The adsorbed bases were then eluted by shaking the resin with 100 mL 2 N acetic acid for 1 h and filtering [13].Hordatines A and B could be obtained by solid-phase extraction [12] or by cationic exchange resin using buffer (0.05 M NaCl/0.13 M NaOH),pH 13 at 95 °C in a mixture form.[17].Hordatine A is probably synthesized by oxidative dimerization of coumaroylagmatine [11].Hordatine B could be biosynthesized in two consecutive reactions.In the first,agmatine coumaroyltransferase (ACT) catalyzes the conjugation of agmatine and p-coumaroyl-CoA or feruloyl-CoA.In the second reaction peroxidase catalyzes the oxidative coupling of agmatine conjugates by linking coumaroylagmatine and feruloylagmatine [12].Identification of hordatines A and B is achieved using TLC of Avicel (Rf0.54 for A) and (Rf0.53 for B) developed with the upper phase of n-butanol—water—acetic acid (4:5:1) in pre-saturated tanks.The Sakaguchi reagent (specific for guanidines),diazotized nitroaniline solution,and alcoholic bromocresol green were used as chromogenic sprays [13].

        Since 40 natural compounds were subjected to virtual screening using two different molecular docking protocols against 3 protease and one RNA polymerase targets of COVID-19.The compounds exhibited variable degrees of affinities toward COVID-19 targets comparing to the native inhibitor.Seven compounds were found to interact with all COVID-19 targets by exhibiting the most acceptable binding affinity through forming strong hydrogen bond with the catalytic sites.For RNA polymerase target of COVID-19(PDB ID:7bV2),these seven compounds were found to have better binding scores than the native ligand,remdesivir,the well-known antiviral drug.Importantly,hordatine (23 and 24)phenolic compounds present in barley,were found to interact with both protease and polymerase by exhibiting the highest binding affinity through forming strong hydrogen bonds with the catalytic residues,as well as significant extra interactions with other receptor-binding residues.Such compounds are recommended to be tested clinically for proposed activity against COVID-19.They may be tested either alone or in combinations.In addition,our results may facilitate the future design and synthesis of new candidates against COVID-19.

        Table 2 MOE binding energies S (Kcal mol -1) of best binding pose for compounds 3,16,23,24,25,29,40 and native ligands into 7BQY and 7bV2 (London dG as score function)

        3 Experimental Section

        3.1 Literature Search and Compounds Selection

        To find a natural inhibitor for COVID-19; search was conducted in the following databases:Science Direct,PubMed and Google Scholar for published articles.Selected compounds in this study were included based on structural similarities with the native ligands (Fig.3) which contain terminal aromatic ring(s) and aliphatic chain with ester or amide groups.Forty compounds belong to phenolic amides,phenolic esters and amide alkaloids were selected.

        Table 3 MOE binding energies S (Kcal mol- 1) of best binding pose for compounds 3,1 6,23,24,25,29,40 and native ligands into 7BQY and 7bV2 (ASE as score function)

        3.2 Molecular Docking Analysis

        Molecular docking is a structure-based drug design approach to identify the essential amino acid interactions between the selected protein and generated ligands with low energy conformation.[18] Molecular operating environment MOE,package version 2014.09 software was used for computational analysis.The compound was subjected to 3D protonation and energy minimization up to 0.01 gradient.Crystal structures of (PDB IDs:6M0K,6Y2F,7BQY and 7bV2)were selected and obtained from Protein Data Bank (https://www.rscb.org) with good resolutions [19—22].The crystal structures were imported into MOE The structure preparation wizard of MOE was used to correct all the issues in protein structures.The hydrogen atoms were added to structures in their standard geometry,all solvent molecules were removed from the structures and then subjected to energy minimization.The final optimized structures were saved in the working directory.Triangle matcher and refinement methods were used for performing docking studies.We run two docking protocols with two different score functions,London dG (Table 2) and ASE (Table 3).The obtained compound—receptor complexes were then used to study the predicted ligand-receptor attachments at the target sites and their binding energies.In order to find a potential candidate for treating COVID-19,molecular docking studies were performed over 40 natural molecules on the binding pocket of COVID-19 enzymes (PDB IDs:6M0K,6Y2F,7BQY and 7bV2) (Fig.2).The list of drugs tested for docking study is depicted in (Fig.1).All these 40 molecules were docked against the 4 targets and ranked based on their dock score.Compounds having dock score of - 7.5 or less are considered better agent for inhibition of the COVID-19 target(Figs.5 and 6).

        Data availabilityThe docking results are available upon request from the Hatem S.Abbass.

        Compliance with Ethical Standards

        Conflict of interestThe authors declare that they have no conflict of interest

        Human and Animal RightsThis article does not contain any studies with human participants or animals performed by any of the authors.

        Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License,which permits use,sharing,adaptation,distribution and reproduction in any medium or format,as long as you give appropriate credit to the original author(s) and the source,provide a link to the Creative Commons licence,and indicate if changes were made.The images or other third party material in this article are included in the article’s Creative Commons licence,unless indicated otherwise in a credit line to the material.If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use,you will need to obtain permission directly from the copyright holder.To view a copy of this licence,visit http://creat iveco mmons.org/licen ses/by/4.0/.

        97成人精品国语自产拍| 四虎精品国产一区二区三区| 亚洲男人天堂av在线| 国内自拍视频在线观看| 国产一区二区在线免费视频观看| 91丝袜美腿亚洲一区二区| 猫咪av成人永久网站在线观看| 久久精品99久久香蕉国产色戒| 久久免费视亚洲无码视频| 亚洲精品国产av一区二区| 日本加勒比精品一区二区视频| 一本色道久久hezyo无码| 中文字幕丰满伦子无码| √最新版天堂资源在线| 午夜视频免费观看一区二区| 亚洲av日韩av高潮潮喷无码| 亚洲AV无码久久久一区二不卡| 91精品国产无码在线观看| 亚洲av网站在线免费观看| 风韵丰满熟妇啪啪区99杏| 国产精品妇女一二三区| 亚洲国产精品嫩草影院久久| 精品国产性色av网站| 国产丝袜在线福利观看| 国产成人亚洲一区二区| 亚洲日韩欧美一区、二区| 国产精品jizz在线观看老狼| 午夜不卡亚洲视频| 日本免费一区二区在线| 久久久久av综合网成人| 中文www新版资源在线| 99国产超薄丝袜足j在线播放| 久久久精品人妻一区二| 亚洲日本中文字幕高清在线| 美女内射毛片在线看免费人动物| 18禁裸男晨勃露j毛免费观看| 一个人免费观看在线视频播放| 精品一区二区三区老熟女少妇| 久久综网色亚洲美女亚洲av| 久久99国产精一区二区三区| 国产欧美日韩网站|