亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Torque teno virus in liver diseases and after liver transplantation

        2020-12-25 07:27:10AnnaMrzljakTatjanaVilibicCavlek
        World Journal of Transplantation 2020年11期

        Anna Mrzljak, Tatjana Vilibic-Cavlek,

        Anna Mrzljak, Department of Medicine, Merkur University Hospital, School of Medicine, University of Zagreb, Zagreb 10000, Croatia

        Tatjana Vilibic-Cavlek, Department of Virology, Croatian Institute of Public Health; School of Medicine, University of Zagreb, Zagreb 10000, Croatia

        Abstract Torque teno virus (TTV) has been proposed as a surrogate biomarker for immune monitoring in different patient cohorts. Historically, TTV has been associated with different liver diseases such as post-transfusion hepatitis, hepatitis B, and hepatitis C, but the virus's pathogenicity is controversial. TTV is a ubiquitous DNA virus, highly prevalent and mostly indolent in the general population. Thus, TTV viral load is more relevant than prevalence to understand TTV infection. In the context of liver transplantation, TTV viral load is modulated by the immune, viral, and inflammatory status. After liver transplantation, the TTV viral load positively correlates with the intensity of immunosuppression (IS), and low TTV viral burden is a predictor of acute rejection episodes, making it an attractive marker for the efficacy of IS. However, the TTV role as a single or a panel biomarker needs to be evaluated in further independent prospective trails.

        Key Words: Torque teno virus; Solid-organ transplantation; Biomarker; Liver disease; Liver transplant; Immune system

        INTRODUCTION

        The presence of torque teno virus (TTV) DNA has been proposed as a novel and attractive surrogate biomarker for the efficacy of immunosuppression in different patient cohorts[1-3]. In solid-organ transplant recipients, immunosuppressive therapy is aimed to prevent rejection and increase organ and patient survival. Usually, a combination of drugs with different action mechanisms is used to control the immune system and prevent/treat the rejection[4,5]. However, the immune monitoring strategies are still based on rough surrogates such as the immunosuppressive drug levels, liver function tests, and biopsies. Other currently available tools are still suboptimal or impractical for the assessment of personalized immune system control[6-8]. In an attempt to optimize the immune system's control, a search for an optimal monitoring tool (e.g., a biomarker) is an ongoing challenge.

        TTV

        TTV is a non-enveloped, circular single-strand deoxyribonucleic acid (DNA) virus, first identified in Japanese patients with acute post-transfusion hepatitis in 1997[9]. TTV is a member of the Anellovirus family, together with two additional viruses, torque teno mini virus and torque teno midi virus, thus named because of their smaller genomes[10]. Its biological significance is still unknown and evolving. TTV has a high genetic diversity with five genogroups and 29 genotypes identified so far[11]. TTV is ubiquitous, present in water, air, soil, and different human samples[12,13]. The virus's replication has been demonstrated in hematopoietic cells, mononuclear cells and granulocytes, lymphocytes, hepatocytes, and lungs[14-19], reaching far beyond the initially assumed viral hepatotropism. There is no generally standardized diagnostic algorithm for TTV. Polymerase chain reaction (PCR) methods that target TTV can be distinguished as universal, which amplifies most, if not all, the human TTVs, and species-specific, which permits grouping of the virus in one of the 29 TTV genotypes. The diagnosis is focused on the possible pathologic consequence of TTV infection and is performed to measure the kinetics of TTV viremia in selected populations, such as patients treated with immunosuppressive therapy[12].

        TTV AND LIVER DISEASES

        The first reports on TTV showed low prevalence rates in the general population and patients with liver diseases, most likely due to the use of inappropriate PCR primers[20]. More recent reports demonstrate significantly higher prevalence rates in various liver patients: 77% hepatitis C virus (HCV), 77.7 % hepatitis A virus, 87.6% hepatitis E virus(HEV) and 92% non-A-E hepatitis patients[21]. Historically TTV, has been associated with different liver diseases from post-transfusion hepatitis, HCV, and hepatitis B virus (HBV); however, the pathogenicity of the virus is controversial[13]. The fast-growing evidence shows that the virus infects a great majority of people without causing overt disease. More recent epidemiological studies showed that TTV viremia prevalence rates are over 80%-90% in some populations[22-25], with higher viral load in immunosuppressed patients compared to a healthy population[26]. In addition, the results of one Italian study suggested TTV's role in immune senescence and the prediction of all-cause mortality risk in the elderly. Three-year survival differed significantly by TTV load in a cohort of 379 elderly subjects. The proportion of patients that died after 3 years was estimated to be 21.9% for patients with TTV DNA copies ≥ 4.0 log and 5.4% for patients with TTV copies < 4.0 log. These results indicated that TTV may represent an additional virus that establishes latency after primary infection and reactivates in aging when the immune system is compromised[27].

        TTV AND LIVER TRANSPLANTATION

        Regardless of the high prevalence and mostly indolent role in the general population, the TTV role in immunocompromised populations needs to be further elucidated. Given the high global prevalence, TTV viral load is more relevant than the prevalence itself to understand the TTV infection[28]. In patients with compromised immune response, TTV viral load increases as the replication of the virus is inversely correlated with the number and function of T lymphocytes[26,29-31]. A substantial body of evidence supports that TTV is more an associated co-factor, but not a major pathogen itself, in the development of post-transplant outcomes. In immunocompromised patients, the low TTV viral burden has been associated with the development of acute rejection episodes in populations after different organ transplantations[32-34]. In addition, higher TTV levels, isolated from the post-transplant lymphoproliferative disease (PTLD) tissues, are shown to predict independently predict death within 5 years of PTLD diagnosis[35]. Studies show that TTV viral load is modulated by immune, viral, and inflammatory status after liver transplantation (LT). Studies evaluating TTV viral load in pediatric[28]and adult LT[3,26,30,36-39]provided evidence that in the early post-LT period, the viral load is higher than before the transplant. Accordingly, the TTV viral load positively correlates with the intensity of immunosuppression[3,26,37]. It progressively increases and peaks around 3 mo post-transplant[3,26,30,37]. After that, the viral load declines, reflecting the progressive reduction of immunosuppressive drugs, to reach a baseline level, on average, after the 1styear of transplant[3]. The viral load is lower in patients with post-LT chronic hepatitis and HEV immunoglobulin M/immunoglobulin G positive patients[28], possibly because the liver is one of the sites of TTV replication. The TTV viral load, however, is not associated with the level of liver enzymes[28]. The pre-transplant TTV status inversely correlates with the acute cellular rejection (ACR) episodes, suggesting that higher immunocompetence in TTV negative patients before the transplant could be responsible for the higher incidence of ACR within 1 year post-LT[38]. Moreover, as confirmed in other transplant populations, lower TTV viral load is associated with the ACR in LT recipients. TTV DNA shows high sensitivity and negative predictive value in the diagnosis of ACR and therefore could be regarded as a non-invasive tool to rule out moderate ACR episodes[3]. Besides, TTV viral loads are associated with the recipient cytomegalovirus (CMV) status; lower levels are present in CMV negative patients[3,30], and early TTV viral load (0-10 d post-LT) is a predictor of CMV reactivation within first 4 mo post-LT[30]. In the context of HBV reactivation in immunocompromised patients including LT recipients, TTV viral load in addition to HBV viral load and HBV genotype are not associated with the development of acute liver/graft failure[40]. Multiple genogroups are frequently found in a single individual infected with TTV. Their distribution differs before and after transplantation, yet it does not affect LT outcomes[28]. Major key points of the LT studies are presented in Table 1.

        CONCLUSION

        Sophisticated and non-invasive tools to define and/or predict properly the immunerelated events in the post-transplant period are still lacking. The currently available instruments are based on the occurrence of robust clinical events such as rejection or infection episodes. The development and implementation of non-invasive and reliable biomarkers to personalize the immune system's control after transplant remain a challenge. In a search for such a biomarker, collaborative effort over the past decade has brought TTV to the frontline of the medical literature as a promising marker of immune status. The TTV association with the immune status in the immunocompromised transplant population is indisputable. However, we are still looking to understand the impact and the mechanisms behind this interplay. The TTV role as a single or a panel biomarker needs to be evaluated in further independent prospective trials.

        Table 1 Torque teno virus in the context of liver transplantation: Major key points

        亚洲97成人精品久久久| 欧美一区波多野结衣第一页| 亚洲欧美日韩精品高清| 91亚洲夫妻视频网站| 青青草国产在线视频自拍 | 亚洲成av人片在线观看麦芽 | 国产欧美日韩专区| 日本女优一区二区在线免费观看 | 欧美疯狂性xxxxxbbbbb| 国产真实伦在线观看| 欧美a级在线现免费观看| 在线精品亚洲一区二区三区| 国内自拍色第一页第二页| 精品人妻无码视频中文字幕一区二区三区 | 久久精品国产亚洲av网在| 综合图区亚洲另类偷窥| 日日澡夜夜澡人人高潮| 免费观看一区二区| 女人天堂av免费在线| 男人添女人囗交做爰视频| 亚洲国产精品久久亚洲精品| 成人无码网www在线观看| 亚洲中文字幕在线第六区| 凹凸国产熟女精品视频app| 久久这里只精品国产免费10| 久久国产精品超级碰碰热| 亚洲不卡av一区二区三区四区| 日本阿v片在线播放免费| 日日摸夜夜添夜夜添无码免费视频| 久久精品国产亚洲av桥本有菜| 亚洲精品视频中文字幕| 无码国模国产在线观看| 伊人精品无码AV一区二区三区| 国内精品女同一区二区三区| 亚洲av乱码一区二区三区林ゆな | 亚洲一区二区三区影院| 亚洲黄色电影| 99久久亚洲精品加勒比| 亚洲一区毛片在线观看| 黄色视频免费在线观看| 国产成人精品人人做人人爽|