亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于便攜式三波段作物生長(zhǎng)監(jiān)測(cè)儀的水稻長(zhǎng)勢(shì)監(jiān)測(cè)

        2020-12-25 07:15:30林維潘李懷民蔣小平
        關(guān)鍵詞:水稻生長(zhǎng)

        林維潘,李懷民,倪 軍,蔣小平,朱 艷

        ·農(nóng)業(yè)信息與電氣技術(shù)·

        基于便攜式三波段作物生長(zhǎng)監(jiān)測(cè)儀的水稻長(zhǎng)勢(shì)監(jiān)測(cè)

        林維潘,李懷民,倪 軍,蔣小平,朱 艷※

        (1. 南京農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,南京 210095;2. 國(guó)家信息農(nóng)業(yè)工程技術(shù)中心,南京 210095;3. 教育部智慧農(nóng)業(yè)工程研究中心,南京 210095;4. 江蘇省物聯(lián)網(wǎng)技術(shù)與應(yīng)用協(xié)同創(chuàng)新中心,南京 210095)

        針對(duì)現(xiàn)有兩波段光譜儀在實(shí)際應(yīng)用中存在的植被指數(shù)單一、生長(zhǎng)指標(biāo)反演精度低等問題,該研究研發(fā)了一款便攜式三波段作物生長(zhǎng)監(jiān)測(cè)儀CGMD303(Crop-Growth Monitoring and Diagnosis,CGMD)并于2018年7—9月開展了水稻田間試驗(yàn)研究。結(jié)果表明,CGMD303獲取的植被指數(shù)與商用儀器ASD FieldSpec HandHeld2呈良好的線性相關(guān)關(guān)系,同時(shí)基于CGMD303構(gòu)建的水稻生長(zhǎng)監(jiān)測(cè)模型可以有效預(yù)測(cè)葉面積指數(shù)、葉片干質(zhì)量、葉片氮質(zhì)量分?jǐn)?shù)和葉片氮積累量,決定系數(shù)分別為0.85、0.72、0.45和0.68,相對(duì)均方根誤差分別為0.21、0.32、0.13和0.39。CGMD303可以有效獲取冠層光譜反射率,構(gòu)建的水稻指標(biāo)監(jiān)測(cè)模型可以精確預(yù)測(cè)葉面積指數(shù)、生物量和氮素指標(biāo),可為水稻田間栽培工作提供決策依據(jù)。

        水稻;監(jiān)測(cè);光譜;模型;生長(zhǎng)參數(shù);便攜式監(jiān)測(cè)儀

        0 引 言

        水稻是中國(guó)重要的主糧作物,提高水稻生產(chǎn)水平對(duì)保障國(guó)家糧食安全和農(nóng)民經(jīng)濟(jì)收入至關(guān)重要[1]。隨著農(nóng)業(yè)栽培技術(shù)的發(fā)展和農(nóng)業(yè)機(jī)械化水平的提高,水稻的生產(chǎn)管理也逐漸走向精確化、智能化,而有效獲取水稻的生長(zhǎng)信息是精準(zhǔn)農(nóng)業(yè)的重要前提[2]。傳統(tǒng)的實(shí)驗(yàn)室分析方法雖然可以準(zhǔn)確地獲取水稻的生長(zhǎng)指標(biāo)及各項(xiàng)農(nóng)學(xué)參數(shù),但需要破壞性取樣,操作繁瑣,耗時(shí)較長(zhǎng),污染環(huán)境且在時(shí)空尺度上很難滿足實(shí)時(shí)、快速、無損的要求,無法適用于現(xiàn)代農(nóng)業(yè)生產(chǎn)。近年來,光譜監(jiān)測(cè)技術(shù)的發(fā)展使實(shí)時(shí)、快速、無損地獲取水稻生長(zhǎng)信息成為可能[3]。

        不同的地物目標(biāo)對(duì)不同波長(zhǎng)(或頻率)的電磁波的吸收、反射和透射特性均存在差異,而細(xì)胞結(jié)構(gòu)、生物化學(xué)成分和形態(tài)學(xué)特征共同決定了作物的光譜反射特性,綠色植物在350~2 500 nm范圍內(nèi)具有典型的反射光譜特征[4]。國(guó)內(nèi)外學(xué)者針對(duì)作物生長(zhǎng)指標(biāo)與光譜反射率的定量關(guān)系展開了一系列研究。李映雪等[5]指出,810 nm附近近紅外波段反射率是作物葉面積指數(shù)的最敏感波段。姚霞等[6]研究發(fā)現(xiàn),小麥的葉片氮質(zhì)量分?jǐn)?shù)監(jiān)測(cè)最佳波段位于紅邊和近紅外波段。馮偉等[7]和Zhang等[8]指出,紅光波段和近紅外波段是生物量指標(biāo)的重要敏感波段。Zhu等[9]和Chu等[10]研究發(fā)現(xiàn),近紅外(810 nm)和紅光波段(660 nm)組合的植被指數(shù)對(duì)水稻和小麥的氮積累量的監(jiān)測(cè)效果最好。此外,已有研究表明,三波段植被指數(shù)對(duì)一些生長(zhǎng)指標(biāo)的監(jiān)測(cè)效果要優(yōu)于兩波段植被指數(shù),適當(dāng)增加光譜儀波段數(shù)有利于提高監(jiān)測(cè)精度[11-13]。因此,同時(shí)配置可見光、紅邊和近紅外波段的多波段作物生長(zhǎng)監(jiān)測(cè)設(shè)備更加符合作物生長(zhǎng)監(jiān)測(cè)的需要。綜合考慮各生長(zhǎng)指標(biāo)對(duì)應(yīng)的敏感波段,課題組開發(fā)了一款便攜式三波段作物生長(zhǎng)監(jiān)測(cè)儀CGMD303,該光譜儀可同時(shí)獲取660、730和815 nm的波段反射率,針對(duì)不同作物的生長(zhǎng)指標(biāo)建模需要,可選擇適宜的植被指數(shù),在實(shí)際應(yīng)用中更具靈活性[14-16]。

        本研究通過水稻大田小區(qū)試驗(yàn),利用CGMD303作物生長(zhǎng)監(jiān)測(cè)診斷儀獲取了不同品種、不同生育期水稻冠層反射光譜,并同步采集水稻相應(yīng)部位葉面積指數(shù),通過分析不同波段下水稻冠層反射光譜的變化特征,探討構(gòu)建的光譜植被指數(shù)與葉面積指數(shù)(Leaf Area Index,LAI)、葉片干質(zhì)量(Leaf Dry Weight,LDW)、葉片氮質(zhì)量分?jǐn)?shù)(Leaf Nitrogen Content,LNC)和葉片氮積累量(Leaf Nitrogen Accumulation,LNA)的定量關(guān)系,建立基于CGMD303的水稻光譜監(jiān)測(cè)模型。本研究在此基礎(chǔ)上評(píng)價(jià)了CGMD303作物生長(zhǎng)監(jiān)測(cè)診斷儀在水稻田間生產(chǎn)實(shí)際中的性能,為水稻生長(zhǎng)的實(shí)時(shí)監(jiān)測(cè)提供參考依據(jù)。

        1 材料與方法

        1.1 田間試驗(yàn)

        于2018年7—9月在江蘇省如皋市國(guó)家信息農(nóng)業(yè)工程技術(shù)試驗(yàn)示范基地(32°27′N,120°77′E)開展水稻田間試驗(yàn)。試驗(yàn)設(shè)置了2個(gè)水稻品種,分別為Ⅱ優(yōu) 728和淮稻5號(hào),旱地育秧后移栽;3個(gè)氮肥水平,分別為N0(0 kg/hm2)、N1(150 kg/hm2)、N2(360 kg/hm2),按基肥40%、分蘗肥20%、促花肥20%、?;ǚ?0%施入,施基肥時(shí)搭配施入P2O5135 kg/hm2和K2O 220 kg/hm2;2個(gè)密度處理,分別為D1(行距×株距為 30 cm×15 cm)和D2(行距×株距為50 cm×15 cm)。試驗(yàn)采用裂區(qū)設(shè)計(jì),以品種為主區(qū),氮肥水平和密度處理為副區(qū),12種處理,3次重復(fù),共計(jì)36個(gè)小區(qū)。小區(qū)的長(zhǎng)和寬分別為6 和5 m,小區(qū)面積為30 m2。小區(qū)梗上覆蓋塑料薄膜,每個(gè)小區(qū)獨(dú)立排灌。其他栽培管理措施同一般高產(chǎn)田。

        1.2 便攜式三波段作物生長(zhǎng)監(jiān)測(cè)儀

        CGMD303由三波段傳感器、傳感器支架、水平儀等部件組成。其中,多光譜作物生傳感器在結(jié)構(gòu)上分為上行光傳感器和下行光傳感器。上行光傳感器可以接收太陽(yáng)光在660、730和815 nm波段處的輻射信息;下行光傳感器用于接收作物冠層在對(duì)應(yīng)波段的反射輻射信息,通過對(duì)上下行光傳感器的輻射信息處理獲取660、730和815 nm波段的水稻冠層反射率。CGMD303質(zhì)量較輕,攜帶方便,適合于田間操作,如圖1所示。

        1.三波段傳感器 2.傳感器支架 3.處理器 4.屏蔽電纜線 5.水平儀

        1.3 數(shù)據(jù)獲取方法

        1.3.1 光譜數(shù)據(jù)

        選擇無風(fēng)無云的正午進(jìn)行水稻冠層光譜數(shù)據(jù)測(cè)試,測(cè)試的物候期為水稻拔節(jié)期、孕穗期、抽穗期,獲取660、730和815 nm 3個(gè)波段處的冠層反射光譜。試驗(yàn)使用高光譜儀(Analytical Spectral Devices FieldSpec HandHeld 2,ASD)同步獲取作物冠層反射光譜用于對(duì)比。每個(gè)小區(qū)選擇3個(gè)點(diǎn)進(jìn)行監(jiān)測(cè),最終結(jié)果取每個(gè)小區(qū)監(jiān)測(cè)結(jié)果的平均值。

        1.3.2 生長(zhǎng)指標(biāo)

        在光譜數(shù)據(jù)測(cè)定同期破壞性取樣獲取水稻的生長(zhǎng)指標(biāo)。每個(gè)小區(qū)選擇50 cm具有代表性的水稻植株,在實(shí)驗(yàn)室按照植株器官進(jìn)行分樣。取樣時(shí)使用冠層分析儀LAI-2200C同步獲取葉面積指數(shù)(Leaf Area Index,LAI),每個(gè)小區(qū)選取3個(gè)點(diǎn)進(jìn)行監(jiān)測(cè),取每個(gè)小區(qū)監(jiān)測(cè)結(jié)果的平均值。樣品在105 ℃下殺青30 min,再于80 ℃條件下將植株烘干至恒質(zhì)量,稱取葉片干質(zhì)量(Leaf Dry Weight,LDW,g/m2)。樣品粉碎后用凱氏定氮法測(cè)定葉片氮質(zhì)量分?jǐn)?shù)(Leaf Nitrogen Content,LNC,%)。葉片氮積累量(Leaf Nitrogen Accumulation,LNA,g/m2),如式(1)所示

        LNA=LNC?LDW (1)

        1.4 數(shù)據(jù)分析方法

        1.4.1 植被指數(shù)計(jì)算

        本研究參考了常見的歸一化植被指數(shù)(Normalized Difference Vegetation Index,NDVI)和差值植被指數(shù)(Difference Vegetation Index,DVI)的構(gòu)建形式,在原植被指數(shù)的基礎(chǔ)上增加一個(gè)波段,使其保留物理特性的同時(shí)增加信息量[17]。其中,三波段植被指數(shù)-1(Three-band Vegetation Index-1,TVI-1)的構(gòu)建借鑒了NDVI 的構(gòu)建原理及形式,以(red+red-edge)代替NDVI中的紅光波段,并將近紅外波段乘以2使其在數(shù)值上與(red+red-edge)相當(dāng)。三波段植被指數(shù)-2(Three-band Vegetation Index-2,TVI-2)的構(gòu)建借鑒了DVI的構(gòu)建原理及形式,同樣以(red+red-edge)代替DVI中的紅光波段,將近紅外波段乘以2使其在數(shù)值上與(red+red-edge)相當(dāng)。上述植被指數(shù)如式(2)和式(3)所示

        TVI-1(2?R1-R2-R3)/(2?R1+R2+R3)(2)

        TVI-22?R1-R2-R3(3)

        式中R1、R2、R3分別為3種波長(zhǎng)的冠層反射率。

        1.4.2 數(shù)據(jù)分析

        使用EXCEL2016軟件進(jìn)行數(shù)據(jù)處理和圖表制作。將獲取的作物冠層光譜信息構(gòu)建的植被指數(shù)與農(nóng)學(xué)參數(shù)進(jìn)行擬合,通過回歸分析構(gòu)建作物生長(zhǎng)監(jiān)測(cè)模型。采用決定系數(shù)(coefficient of determination,2)和相對(duì)均方根誤差(Relative Root Mean Square Error,RRMSE)來綜合評(píng)價(jià)模型的性能。數(shù)據(jù)分析如式(4)和式(5)所示

        2=SSR/SST (4)

        2 結(jié)果與分析

        2.1 便攜式三波段作物生長(zhǎng)監(jiān)測(cè)儀獲取水稻植被指數(shù)的性能評(píng)價(jià)

        為評(píng)價(jià)CGMD303獲取水稻植被指數(shù)的性能,將CGMD303和ASD獲取的植被指數(shù)進(jìn)行回歸分析。如圖 2所示,CGMD303獲取的TVI-1和TVI-2與商用儀器ASD獲取的對(duì)應(yīng)值的擬合結(jié)果均呈線性關(guān)系,但不同植被指數(shù)的擬合精度存在一定差異。TVI-1的擬合結(jié)果優(yōu)于TVI-2,趨勢(shì)線接近1∶1線,R達(dá)到0.70,RRMSE為0.20,而TVI-2的相關(guān)性較低,R為0.25,RRMSE為0.49。該結(jié)果反映出CGMD303獲取的660、730和815 nm反射率數(shù)值與ASD存在一定差異,因此兩者獲取的TVI-2性質(zhì)差異也較大,而TVI-1在TVI-2的基礎(chǔ)上除以(2815-730-660),一定程度上抵消了兩者數(shù)值上的差異,因此TVI-1的擬合相關(guān)性更高。需要注意的是,盡管CGMD303和ASD獲取的TVI-2的性質(zhì)存在差異,但并不意味著TVI-2的穩(wěn)定性較差,植被指數(shù)的性能仍需要與水稻生長(zhǎng)指標(biāo)進(jìn)行擬合并驗(yàn)證。

        圖2 便攜式三通道作物生長(zhǎng)監(jiān)測(cè)儀與便攜式地物高光譜儀的植被指數(shù)測(cè)定值擬合關(guān)系

        2.2 植被指數(shù)與生長(zhǎng)指標(biāo)的擬合結(jié)果

        將CGMD303獲取的三波段植被指數(shù)TVI-1和TVI-2分別與水稻生長(zhǎng)指標(biāo)LAI、LDW、LNC和LNA進(jìn)行擬合構(gòu)建監(jiān)測(cè)模型。張洪程等[18]研究表明,水稻秈粳亞種之間在冠層結(jié)構(gòu)、生理生化指標(biāo)等方面均存在較大差異。因此,本研究將秈稻品種Ⅱ優(yōu)728和粳稻品種淮稻5號(hào)獨(dú)立構(gòu)建監(jiān)測(cè)模型,結(jié)果如圖3所示。

        植被指數(shù)與水稻LAI的擬合結(jié)果較高,TVI-1和TVI-2與各品種呈指數(shù)關(guān)系,而相同植被指數(shù)下Ⅱ優(yōu)728的LAI數(shù)值大于淮稻5號(hào)。2種植被指數(shù)與LAI的擬合結(jié)果相近,其中TVI-1與秈、粳亞種LAI擬合的2分別為0.90、0.74,RRMSE分別為0.12、0.21,而TVI-2 的2分別為0.90、0.71,RRMSE分別為0.12、0.21。植被指數(shù)與LDW的擬合關(guān)系與LAI類似,也表現(xiàn)為Ⅱ優(yōu)728的LAI數(shù)值大于淮稻5號(hào)。其中,TVI-1與淮稻5號(hào)LDW的擬合結(jié)果較好,2為0.62,RRMSE為0.21,而TVI-2與Ⅱ優(yōu)728的擬合結(jié)果優(yōu)于TVI-1,2為0.74,RRMSE為0.17。不同亞種水稻LNC的性質(zhì)與LAI和LDW存在較大差異,淮稻5號(hào)的數(shù)值大于Ⅱ優(yōu)728,TVI-1對(duì)兩者的監(jiān)測(cè)效果均優(yōu)于TVI-2,2分別為0.70、0.38,RRMSE分別為0.11、0.16。LNA為L(zhǎng)DW和LNC相乘獲取的生長(zhǎng)指標(biāo),同時(shí)包含了生物量和氮素的信息,因此秈粳亞種間的差異相比相比其他生長(zhǎng)指標(biāo)較小。其中,TVI-1與兩種品種的擬合相關(guān)性均較高,2分別為0.79、0.59,RRMSE分別為0.22、0.31。上述結(jié)果表明,秈稻的生物量和LAI指標(biāo)大于粳稻,而粳稻的氮素指標(biāo)則大于秈稻,因此獨(dú)立建模有利于提高模型的預(yù)測(cè)精度。

        圖3 植被指數(shù)與水稻生長(zhǎng)指標(biāo)的擬合關(guān)系

        對(duì)構(gòu)建的水稻生長(zhǎng)指標(biāo)監(jiān)測(cè)模型的預(yù)測(cè)效果進(jìn)行驗(yàn)證,各生長(zhǎng)指標(biāo)的實(shí)測(cè)值與預(yù)測(cè)值的擬合關(guān)系如圖4所示。TVI-2對(duì)LAI、LDW、LNA的預(yù)測(cè)效果較好,2分別為0.85、0.72、0.68,RRMSE分別為0.21、0.32、0.39,而TVI-1則對(duì)LNC的預(yù)測(cè)效果優(yōu)于TVI-2,2為0.45,RRMSE為0.13。該結(jié)果說明,TVI-1更適用于氮素指標(biāo)的監(jiān)測(cè),而TVI-2則對(duì)LAI和生物量等指標(biāo)更加敏感。

        圖4 水稻生長(zhǎng)指標(biāo)監(jiān)測(cè)模型驗(yàn)證結(jié)果

        3 討 論

        國(guó)內(nèi)外研究機(jī)構(gòu)基于作物光譜監(jiān)測(cè)技術(shù)開發(fā)了一系列作物生長(zhǎng)監(jiān)測(cè)設(shè)備[19-20]。與GreenSeeker等兩波段光譜儀相比,CGMD303豐富的信息量可以選擇對(duì)應(yīng)的最佳植被指數(shù)。盡管ASD FieldSpec等高光譜儀可以獲取更多的植被指數(shù),但這些設(shè)備獲取的數(shù)據(jù)冗余過大且操作復(fù)雜,因此很難投入實(shí)際應(yīng)用。CGMD303的3個(gè)波段經(jīng)過前人研究篩選,對(duì)多種生長(zhǎng)指標(biāo)敏感,操作更加方便,更適合投入到田間實(shí)際應(yīng)用中。

        秈稻品種Ⅱ優(yōu)728和粳稻品種淮稻5號(hào)在冠層結(jié)構(gòu)和葉片氮質(zhì)量分?jǐn)?shù)方面均有較大差異。秈稻的植株高大,LAI和生物量指標(biāo)相對(duì)較大,而粳稻葉色更深,LNC等氮素指標(biāo)更大。Jacquemoud等[21]和Knyazikhin等[22]的研究表明,冠層反射率受葉片生理生化指標(biāo)和冠層結(jié)構(gòu)2個(gè)方面影響。葉片生理生化指標(biāo)為葉綠素、氮素、鉀素、含水量等指標(biāo),而冠層結(jié)構(gòu)指標(biāo)包括葉面積指數(shù)、覆蓋度、葉傾角、葉方位角等指標(biāo),這些指標(biāo)均會(huì)對(duì)光譜反射率造成不同程度的影響[23-24]。因此,在對(duì)水稻LNC進(jìn)行監(jiān)測(cè)的同時(shí)難免會(huì)受到來自冠層結(jié)構(gòu)的影響,而僅依靠光譜儀無法分辨不同因素對(duì)信號(hào)的影響,從而形成“同物異譜”和“同譜異物”的現(xiàn)象[25-26]。因此,本研究將水稻品種作為一種先驗(yàn)信息有效地將目標(biāo)群體分類從而提升了模型精度,在以后的研究中可以考慮通過先驗(yàn)信息對(duì)不同種植密度、生育期的群體進(jìn)行進(jìn)一步分類,降低冠層結(jié)構(gòu)對(duì)光譜監(jiān)測(cè)的干擾,這要求操作者具備一定農(nóng)學(xué)知識(shí)或者在監(jiān)測(cè)過程中使用其他傳感器獲取除光譜外的輔助數(shù)據(jù)[27-28]。

        CGMD303對(duì)水稻LNC的監(jiān)測(cè)能力始終低于其他生長(zhǎng)指標(biāo)。Verstraete等[29]指出,最佳植被指數(shù)應(yīng)當(dāng)與目標(biāo)指標(biāo)敏感性較高,而與其他指標(biāo)敏感性較低。本研究所構(gòu)建的植被指數(shù)與冠層群體大小指標(biāo)敏感性較高,在進(jìn)行LNC監(jiān)測(cè)時(shí)難免會(huì)受到冠層群體大小的影響。薛利紅等[30]指出綠光波段與藍(lán)光波段組合構(gòu)建的比值和歸一化植被指數(shù)與水稻葉片氮質(zhì)量分?jǐn)?shù)呈顯著負(fù)相關(guān),預(yù)測(cè)精度達(dá)到80.09%。Tian等[31-32]使用藍(lán)光和綠光波段對(duì)水稻進(jìn)行監(jiān)測(cè),發(fā)現(xiàn)綠光新型比值植被指數(shù)SR(545,538)估測(cè)LNC的2達(dá)到0.73,而對(duì)LAI的敏感性較低,一定程度上消除了冠層大小對(duì)LNC預(yù)測(cè)的影響;藍(lán)光波段構(gòu)建的三波段植被指數(shù)434/(496+401)預(yù)測(cè)水稻LNC的2達(dá)到0.84,普適性也較好。因此,未來多光譜作物生長(zhǎng)傳感器的開發(fā)可以考慮選擇綠光、藍(lán)光等更多波段組合的傳感器。

        4 結(jié) 論

        1)本研究使用便攜式三波段作物生長(zhǎng)監(jiān)測(cè)儀CGMD303(Crop-Growth Monitoring and Diagnosis,CGMD)獲取了拔節(jié)期、孕穗期和抽穗期的水稻冠層植被指數(shù)并與商用高光譜儀(Analytical Spectral Devices FieldSpec HandHeld 2,ASD)進(jìn)行了擬合,結(jié)果表明,CGMD303與ASD獲取的植被指數(shù)呈線性關(guān)系,其中TVI-1的擬合結(jié)果更好,決定系數(shù)(coefficient of determination,2)達(dá)到0.70,相對(duì)均方根誤差(Relative Root Mean Square Error,RRMSE)為0.20。CGMD303可以有效獲取水稻冠層光譜數(shù)據(jù),數(shù)據(jù)獲取精確、穩(wěn)定。

        2)利用CGMD303獲取的三波段植被指數(shù)TVI-1和TVI-2可以實(shí)現(xiàn)對(duì)水稻葉面積指數(shù)(Leaf Area Index,LAI)、葉片干質(zhì)量(Leaf Dry Weight,LDW)、葉片氮質(zhì)量分?jǐn)?shù)(Leaf Nitrogen Content,LNC)、葉片氮積累量(Leaf Nitrogen Accumulation,LNA)的有效預(yù)測(cè),2分別為0.85、0.72、0.45和0.68,RRMSE分別為0.21、0.32、0.13和0.39。CGMD303監(jiān)測(cè)精度高、操作簡(jiǎn)單、性價(jià)比高,可用于水稻田間栽培指導(dǎo)工作。

        [1] 朱德峰,程式華,張玉屏,等. 全球水稻生產(chǎn)現(xiàn)狀與制約因素分析[J]. 中國(guó)農(nóng)業(yè)科學(xué),2010,43(3):474-479. Zhu Defeng, Cheng Shihua, Zhang Yuping, et al. Analysis of status and constraints of rice production in the world[J]. 2010, 43(3): 474-479. (in Chinese with English abstract)

        [2] 凌啟鴻,張洪程,丁艷鋒,等. 水稻高產(chǎn)技術(shù)的新發(fā)展:精確定量栽培[J]. 中國(guó)稻米,2005,11(1):3-7. Ling Qihong, Zhang Hongcheng, Ding Yanfeng, et al. Development of rice high-yielding techniques: Precisely fixed quantity planting[J]. 2005, 11(1): 3-7. (in Chinese with English abstract)

        [3] 曹衛(wèi)星,朱艷,田永超,等. 作物精確栽培技術(shù)的構(gòu)建與實(shí)現(xiàn)[J]. 中國(guó)農(nóng)業(yè)科學(xué),2011,44(19):3955-3969. Cao Weixing, Zhu Yan, Tian Yongchao, et al. Development and implementation of crop precision cultivation technology[J]. Scientia Agricultura Sinica, 2011, 44(19): 3955-3969. (in Chinese with English abstract)

        [4] 姚霞. 小麥冠層和單葉氮素營(yíng)養(yǎng)指標(biāo)的高光譜監(jiān)測(cè)研究[D].南京:南京農(nóng)業(yè)大學(xué),2009. Yao Xia. Monitoring Nitrogen Status at Canopy and Leaf Scales with Hyperspectral Sensing in Wheat[D]. Nanjing: Nanjing Agricultural University, 2009. (in Chinese with English abstract)

        [5] 李映雪,朱艷,戴廷波,等. 小麥葉面積指數(shù)與冠層反射光譜的定量關(guān)系[J]. 應(yīng)用生態(tài)學(xué)報(bào),2006,17(8):1443-1447. Li Yingxue, Zhu Yan, Dai Tingbo, et al. Quantitative relationships between leaf area index and canopy reflectance spectra of wheat[J]. Chinese Journal of Applied Ecology, 2006, 17(8): 1443-1447. (in Chinese with English abstract)

        [6] 姚霞,朱艷,田永超,等. 小麥葉層氮含量估測(cè)的最佳高光譜參數(shù)研究[J]. 中國(guó)農(nóng)業(yè)科學(xué),2009,42(8):2716-2725. Yao Xia, Zhu Yan, Tian Yongchao, et al. Research of the optimum hyperspectral vegetation indices on monitoring the nitrogen content in wheat leaves[J]. Scientia Agricultura Sinica, 2009, 42(8): 2716-2725. (in Chinese with English abstract)

        [7] 馮偉,朱艷,姚霞,等. 基于高光譜遙感的小麥葉干重和葉面積指數(shù)監(jiān)測(cè)[J]. 植物生態(tài)學(xué)報(bào),2009,33(1):34-44. Feng Wei, Zhu Yan, Yao Xia, et al. Monitoring leaf dry weight and leaf area index in wheat with hyperspectral remote sensing[J]. Chinese Journal of Plant Ecology, 2009, 33(1): 34-44. (in Chinese with English abstract)

        [8] Zhang Jiayi, Liu Xia, Liang Yan, et al. Using a portable active sensor to monitor growth parameters and predict grain yield of winter wheat[J]. Sensors, 2019, 19(5): 1108-1125.

        [9] Zhu Yan, Yao Xia, Tian Yongchao, et al. Analysis of common canopy vegetation indices for indicating leaf nitrogen accumulations in wheat and rice[J]. International Journal of Applied Earth Observation and Geoinformation, 2008, 10(1): 1-10.

        [10] Chu Xu, Guo Yongjiu, He Jiaoyang, et al. Comparison of different hyperspectral vegetation indices for estimating canopy leaf nitrogen accumulation in rice[J]. Agronomy Journal, 2014, 106(5): 1911-1920.

        [11] Datt B. A new reflectance index for remote sensing of chlorophyll content in higher plants: Tests using eucalyptus leaves[J]. Journal of Plant Physiology, 1999, 154(1): 30-36.

        [12] Rodriguez D, Fitzgerald G J, Belford R, et al. Detection of nitrogen deficiency in wheat from spectral reflectance indices and basic crop eco-physiological concepts[J]. Australian Journal of Agricultural Research, 2006, 57(7): 781-789.

        [13] Wang Wei, Yao Xia, Yao Xinfeng, et al. Estimating leaf nitrogen concentration with three-band vegetation indices in rice and wheat[J]. Field Crops Research, 2012, 129: 90-98.

        [14] 楊建寧,張井超,朱艷,等. 便攜式作物生長(zhǎng)監(jiān)測(cè)診斷儀性能試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(4):208-212,201. Yang Jianning, Chao Jingchao, Zhu Yan, et al. Experiments on performance of portable plant growth monitoring diagnostic instrument[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(4): 208-212, 201. (in Chinese with English abstract)

        [15] 倪軍,姚霞,田永超,等. 便攜式作物生長(zhǎng)監(jiān)測(cè)診斷儀的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(6):150-156. Ni Jun, Yao Xia, Tian Yongchao, et al. Design and experiments of portable apparatus for plant growth monitoring and diagnosis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(6): 150-156. (in Chinese with English abstract)

        [16] Ni Jun, Zhang Jingchao, Wu Rusong, et al. Development of an apparatus for crop-growth monitoring and diagnosis[J]. Sensors, 2018, 18(9): 3129-3149.

        [17] 田永超. 基于高光譜遙感的水稻氮素營(yíng)養(yǎng)參數(shù)監(jiān)測(cè)研究[D].南京:南京農(nóng)業(yè)大學(xué),2008. Tian Yongchao. Monitoring Nitrogen Nutrition Parameters with Hyperspectral Remote Sensing in Rice[D]. Nanjing: Nanjing Agricultural University, 2008. (in Chinese with English abstract)

        [18] 張洪程,許軻,張軍,等. 雙季晚粳生產(chǎn)力及相關(guān)生態(tài)生理特征[J]. 作物學(xué)報(bào),2014,40(2):283-300. Zhang Hongcheng, Xu Ke, Zhang Jun, et al. Productivity and eco-physiological characteristics of late Japonica rice in double-cropping system[J]. Acta Agronomica Sinica, 2014, 40(2): 283-300. (in Chinese with English abstract)

        [19] Erdle K, Mistele B, Schmidhalter U. Comparison of active and passive spectral sensors in discriminating biomass parameters and nitrogen status in wheat cultivars[J]. Field Crops Research, 2011, 124(1): 74-84.

        [20] Hansen P M, Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression[J]. Remote Sensing of Environment, 2003, 86(4): 542-553.

        [21] Jacquemoud S, Baret F. PROSPECT: A model of leaf optical properties spectra[J]. Remote Sensing of Environment, 1990, 34(2): 75-91.

        [22] Knyazikhin Y, Schull M A, Stenberg P, et al. Hyperspectral remote sensing of foliar nitrogen content[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(3): 811-812.

        [23] Jia Min, Li Wei, Wang Kangkang, et al. A newly developed method to extract the optimal hyperspectral feature for monitoring leaf biomass in wheat[J]. Computers and Electronics in Agriculture, 2019, 165(1): 104942-104948.

        [24] Vanderbilt V C, Grant L. Plant canopy specular reflectance model[J]. IEEE Transactions on Geoscience and Remote Sensing, 1985, 23(5): 722-730.

        [25] Ustin S L. Remote sensing of canopy chemistry[J]. Proceedings of the National Academy of Sciences, 2013, 110(3): 804-805.

        [26] Townsend P A, Serbin S P, Kruger E L, et al. Disentangling the contribution of biological and physical properties of leaves and canopies in imaging spectroscopy data[J/OL]. Proceedings of the National Academy of Sciences, 2013, 110(12), [2013-03-19], https: //doi. org/10. 1073/pnas. 1300952110.

        [27] Darvishzadeh R, Skidmore A, Atzberger C, et al. Estimation of vegetation LAI from hyperspectral reflectance data: Effects of soil type and plant architecture[J]. International Journal of Applied Earth Observation and Geoinformation, 2008, 10(3): 358-373.

        [28] Peng Yi, Nguy-Robertson A, Arkebauer T, et al. Assessment of canopy chlorophyll content retrieval in maize and soybean: Implications of hysteresis on the development of generic algorithms[J]. Remote sensing, 2017, 9(3): 226-241.

        [29] Verstraete M M, Pinty B. Designing optimal spectral indexes for remote sensing applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(5): 1254-1265.

        [30] 薛利紅,楊林章,范小暉. 基于碳氮代謝的水稻氮含量及碳氮比光譜估測(cè)[J]. 作物學(xué)報(bào),2006,32(3):430-435. Xue Lihong, Yang Linzhang, Fan Xiaohui. Estimation of nitrogen content and C/N in rice leaves and plant with canopy reflectance spectra[J]. Acta Agronomica Sinica, 2006, 32(3): 430-435. (in Chinese with English abstract)

        [31] Tian Yongchao, Yao Xia, Yang Jie, et al. Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground- and space-based hyperspectral reflectance[J]. Field Crops Research, 2011, 120(2): 299-310.

        [32] Tian Yongchao, Gu Kaijian, Chu Xu, et al. Comparison of different hyperspectral vegetation indices for canopy leaf nitrogen concentration estimation in rice[J]. Plant and Soil, 2014, 376(1/2): 193-209.

        Monitoring rice growth based on a portable three-band instrument for crop growth monitoring and diagnosis

        Lin Weipan, Li Huaimin, Ni Jun, Jiang Xiaoping, Zhu Yan※

        (1.,,210095,; 2.,210095,; 3.,,210095,; 4.,210095,)

        The development of instruments for monitoring and diagnosing crop growth quickly and non-destructively obtain crop growth information, which is very helpful for the production and management of crop fields.Aimed at the problems with the existing two-band instrument used for crop growth monitoring and diagnosis, such as relying on a single vegetation index and low accuracy of growth index retrieval, this study developed a portable three-band instrument for crop-growth monitoring and diagnosis CGMD303 (Crop-Growth Monitoring and Diagnosis, CGMD).The CGMD303 instrument consisted of a multi-spectral crop growth sensor, processor system, sensor holder, level, shielded cable, and other components. Multi-spectral crop sensors were divided into upward light sensors and downward light sensors in structure. The upward light sensor could receive solar radiation information in the 660, 730, and 815 nm bands; the downward light sensor consisted of three detector lenses, which were used to detect the characteristic wavelengths of 660, 730, and 815 nm, respectively. The radiation information would be processed after being converted to electrical signals through the photoelectric detector. To test the monitoring performance of CGMD303 on rice growth, rice field experiments were conducted from July 2018 to September 2018 at the demonstration base of the National Engineering and Technology Center for Information Agriculture in Rugao City, Jiangsu Province, China (32°27′N, 120°77′E), and 2 varieties (Liangyou 728 and Huaidao NO.5), 3 nitrogen levels (0, 150 and 360 kg/hm2) and 2 planting density levels (30 cm×15 cm and 50 cm×15 cm) were set in the rice experiments. The canopy spectral reflectance of 660, 730, and 815 nm was obtained at the jointing stage, booting stage, and heading stage of rice and 2 new three-band vegetation indices were constructed. Fitting results of the vegetation indices obtained by CGMD303 and the commercial instrument ASD FieldSpec HandHeld2 showed a good linear correlation, indicating that CGMD303 effectively obtained rice canopy reflectance. Two three-band vegetation indices obtained by CGMD303 and rice growth parameters were fitted to construct rice growth monitoring models. The highest coefficient of determination values of the three-band vegetation indices and leaf area index, leaf dry weight, leaf nitrogen content, and leaf nitrogen accumulation of indica rice were 0.90, 0.74, 0.70, 0.79, respectively, and the relative root mean square error was 0.12, 0.17, 0.11, 0.22, respectively;the highest coefficient of determination values of the three-band vegetation indices and corresponding growth indices of Japonica rice were 0.74, 0.62, 0.38, 0.59, respectively, and the relative root mean square error was 0.21, 0.21, 0.16, 0.31, respectively. The prediction accuracy of the rice growth monitoring models based on CGMD303 for each growth parameters was tested and the coefficient of determination of leaf area index, leaf dry weight, leaf nitrogen content, and leaf nitrogen accumulation of rice were 0.85, 0.72, 0.45, 0.68, respectively, and the relative root mean square error were 0.21, 0.32, 0.13, 0.39, respectively.Verification results showed that CGMD303 could accurately predict leaf area index, biomass, and nitrogen indices of rice.CGMD303 had the advantages of accurate and stable data acquisition, simple operation, high-cost performance, etc. It was suitable for field operations and had high application potential.

        rice; monitoring; spectra; models; growth parameters; portable monitor

        林維潘,李懷民,倪軍,等. 基于便攜式三波段作物生長(zhǎng)監(jiān)測(cè)儀的水稻長(zhǎng)勢(shì)監(jiān)測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(20):203-208.doi:10.11975/j.issn.1002-6819.2020.20.024 http://www.tcsae.org

        Lin Weipan, Li Huaimin, Ni Jun, et al. Monitoring rice growth based on a portable three-band instrument for crop growth monitoring and diagnosis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(20): 203-208. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.20.024 http://www.tcsae.org

        2020-07-01

        2020-09-06

        國(guó)家重點(diǎn)研發(fā)計(jì)劃(2017YFD0201501);江蘇省六大人才高峰項(xiàng)目(XYDXX-049);江蘇省重點(diǎn)研發(fā)計(jì)劃(BE2018399)

        林維潘,主要從事農(nóng)學(xué)信息工程領(lǐng)域的研究。Email:2018814037@njau.edu.cn

        朱艷,教授,博士生導(dǎo)師,主要從事農(nóng)業(yè)信息技術(shù)領(lǐng)域的研究。Email:yanzhu@njau.edu.cn

        10.11975/j.issn.1002-6819.2020.20.024

        S237,TP73

        A

        1002-6819(2020)-20-0203-06

        猜你喜歡
        水稻生長(zhǎng)
        什么是海水稻
        有了這種合成酶 水稻可以耐鹽了
        水稻種植60天就能收獲啦
        軍事文摘(2021年22期)2021-11-26 00:43:51
        油菜可以像水稻一樣實(shí)現(xiàn)機(jī)插
        碗蓮生長(zhǎng)記
        小讀者(2021年2期)2021-03-29 05:03:48
        一季水稻
        文苑(2020年6期)2020-06-22 08:41:52
        共享出行不再“野蠻生長(zhǎng)”
        水稻花
        文苑(2019年22期)2019-12-07 05:29:00
        生長(zhǎng)在哪里的啟示
        野蠻生長(zhǎng)
        NBA特刊(2018年21期)2018-11-24 02:48:04
        青青草成人在线免费视频| 欧美日韩免费一区中文字幕| 午夜一区二区三区在线视频| 水蜜桃视频在线观看入口| 电影内射视频免费观看| 亚洲国产韩国欧美在线| 国产在线精品福利大全| 精品人妻一区二区三区不卡毛片 | 亚洲乱码一区二区av高潮偷拍的| 国产综合精品一区二区三区 | 久久精品亚洲国产成人av| 精品人妻中文av一区二区三区| 久久久久亚洲av成人无码| 国产天堂在线观看| 国产综合一区二区三区av| 久久久中文字幕日韩精品| 亚洲av中文无码乱人伦在线播放 | 国产大片内射1区2区| 日韩乱码人妻无码中文字幕视频| 九九在线精品视频xxx| 中文字幕在线亚洲精品一区| 久久99国产精品久久99| 国产亚洲av人片在线观看| 国产精品一区二区AV不卡| 日韩人妻免费视频一专区 | 亚洲国产欧美久久香综合| 国产一区二区三区在线av| 欧洲熟妇色xxxx欧美老妇软件| 色一情一区二| 国产精品国产三级国产三不| 国产高清精品一区二区| 亚洲av日韩av在线观看| 久草午夜视频| 国产精品区二区东京在线| 成人无码av免费网站| 日韩人妻精品无码一区二区三区| 亚洲欧美变态另类综合| 女同一区二区三区在线观看| 亚洲中文字幕无码一久久区| 狠狠久久精品中文字幕无码| 翘臀诱惑中文字幕人妻|