劉媛媛,孫嘉慧,張書(shū)杰,于海業(yè),王躍勇
用多閾值多目標(biāo)無(wú)人機(jī)圖像分割優(yōu)化算法檢測(cè)秸稈覆蓋率
劉媛媛1,孫嘉慧1,張書(shū)杰1,于海業(yè)2,王躍勇3※
(1. 吉林農(nóng)業(yè)大學(xué)信息技術(shù)學(xué)院,長(zhǎng)春 130118;2. 吉林大學(xué)工程仿生教育部重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)春 130025;3. 吉林農(nóng)業(yè)大學(xué)工程技術(shù)學(xué)院,長(zhǎng)春 130118)
為了適應(yīng)航拍采集秸稈覆蓋圖像大尺度處理需求,提高當(dāng)前多閾值差分灰狼優(yōu)化算法(Differential Evolution Grey Wolf Optimizer,DE-GWO)的圖像分割質(zhì)量和速度,提出一種用于檢測(cè)秸稈覆蓋率的圖像分割優(yōu)化算法。該研究借鑒了人工蜂群多目標(biāo)灰狼優(yōu)化算法(Artificial Bee Colony Survey Multi-Objective Grey Wolf Optimizer,AS-MOGWO),在DE-GWO算法中加入了多目標(biāo)灰狼優(yōu)化算法(Multi-Objective Grey Wolf Optimizer,MOGWO)的外部存檔,引入多目標(biāo)的概念,并添加了人工蜂群算法(Artificial Bee Colony,ABC)中觀察蜂的搜索策略,提出了基于多閾值的多目標(biāo)秸稈覆蓋圖像自動(dòng)分割的優(yōu)化算法(Differential Evolution Artificial Bee Colony Survey Multi-Objective Grey Wolf Optimization,DE-AS-MOGWO)。該算法不僅繼承了DE-GWO算法的自動(dòng)分割特性,還兼?zhèn)銩S-MOGWO算法的高效收斂性,提高了圖像分割的準(zhǔn)確性和處理速度。分析結(jié)果顯示,在無(wú)外界影響的情況下,該研究提出的DE-AS-MOGWO優(yōu)化算法與人工實(shí)際測(cè)量法匹配的誤差可控制在8%以內(nèi)。在算法性能方面,DE-AS-MOGWO相比于PSO(Particle Swarm Optimization)、GWO(Grey Wolf Optimizer)、DE-GWO和DE-MOGWO在平均匹配率上分別提高了4.967、3.617、2.188和3.404個(gè)百分點(diǎn),平均誤分率分別降低了0.168、0.131、0.089和0.116個(gè)百分點(diǎn),而算法耗時(shí)分別降低了82%、84%、17%和32%。試驗(yàn)結(jié)果表明,多閾值多目標(biāo)圖像分割方法在大尺度無(wú)人機(jī)圖像中可獲得較好的分割效果,且針對(duì)不同秸稈覆蓋率圖像均具有普遍適用性,為大面積秸稈覆蓋率檢測(cè)以及其他相關(guān)圖像檢測(cè)提供了高效算法支持。
秸稈; 算法;灰狼優(yōu)化算法;多閾值;多目標(biāo);觀察策略;秸稈覆蓋率
基于無(wú)人機(jī)采集圖像進(jìn)行秸稈覆蓋率檢測(cè),有效利用無(wú)人機(jī)靈活的特點(diǎn)獲取待測(cè)區(qū)域的完整圖像,采用圖像分割的方法簡(jiǎn)單、易行,亦為監(jiān)督作物長(zhǎng)勢(shì)[1-3]、預(yù)估作物產(chǎn)量[4]等提供了圖像和方法依據(jù)。因此,針對(duì)無(wú)人機(jī)航拍采集圖像,開(kāi)發(fā)高效的智能算法來(lái)檢測(cè)秸稈覆蓋率成為了當(dāng)務(wù)之急。
針對(duì)航拍圖像秸稈覆蓋率檢測(cè),目前已有的差分灰狼優(yōu)化算法(DE-GWO)[5]是一種將灰狼優(yōu)化算法(Grey wolf optimizer,GWO)[6]和差分進(jìn)化算法(Differential evolution,DE)[7-10]相結(jié)合的一種高效的多閾值圖像分割優(yōu)化處理方法,該算法可以有效地解決傳統(tǒng)灰狼優(yōu)化算法易于陷入局部最優(yōu)和處理速度較慢等特點(diǎn),實(shí)現(xiàn)航拍圖像的多閾值分割[11]。但是,實(shí)際應(yīng)用中,基于航拍的秸稈覆蓋采集圖像尺寸較大,圖像處理速度和處理效果往往不能同時(shí)令人滿意,因此,亟待尋求一種兼容處理效果和耗時(shí)較短的圖像智能分割算法。
多目標(biāo)灰狼優(yōu)化算法(Multi-Objective Grey Wolf Optimizer,MOGWO)[12]是在灰狼優(yōu)化算法(GWO)中加入了一個(gè)外部存檔Archive,用該存檔來(lái)保存或檢索灰狼所獲得的非支配的Pareto最優(yōu)解[13],然后利用該存檔來(lái)定義狼群的社會(huì)層次結(jié)構(gòu),模擬多目標(biāo)空間[14]中灰狼的狩獵行為,進(jìn)而對(duì)所擁有多個(gè)不同解的問(wèn)題中的各個(gè)解之間能夠進(jìn)行協(xié)調(diào)處理,使所有目標(biāo)盡可能達(dá)到最優(yōu)。MOGWO算法不僅繼承了傳統(tǒng)灰狼優(yōu)化算法的特點(diǎn),而且擁有更快的收斂速度,實(shí)現(xiàn)了多目標(biāo)優(yōu)化,但容易陷入局部最優(yōu)的缺陷[15]仍然有待改善。
本文將DE-GWO算法從單目標(biāo)擴(kuò)展到多目標(biāo)DE-MOGWO,實(shí)現(xiàn)多目標(biāo)優(yōu)化,大大提升了多閾值圖像分割的準(zhǔn)確度,增強(qiáng)了算法對(duì)采集圖像中不同的地物提取和分類(lèi)[16],但是算法也擁有了MOGWO算法的容易陷入局部最優(yōu)的缺陷[15]。人工蜂群算法(Artificial Bee Colony,ABC)[17]是一種模擬蜜蜂采食行為提出的一種優(yōu)化方法,該算法通過(guò)對(duì)所求問(wèn)題的解進(jìn)行優(yōu)劣的比較,使群體中的全局最優(yōu)解脫穎而出。為了進(jìn)一步提高算法在秸稈覆蓋率檢測(cè)應(yīng)用中圖像自動(dòng)分割的質(zhì)量和處理速度,本文又借鑒了AS-MOGWO算法[15]通過(guò)在多目標(biāo)灰狼算法中添加蜂群算法的觀察階段,以此來(lái)解決MOGWO算法不穩(wěn)定、易陷入局部最優(yōu)的缺點(diǎn),從而增強(qiáng)算法穩(wěn)定性和尋優(yōu)能力的思維。在DE-MOGWO算法加入了人工蜂群算法[17-20]中觀察蜂的觀察策略,提出了改進(jìn)的差分灰狼優(yōu)化算法(Differential Evolution Artificial Bee Colony Survey Multi-Objective Grey Wolf Optimization,DE-AS-MOGWO),在質(zhì)量和速度方面更加高效地解決秸稈覆蓋率圖像分割問(wèn)題,使得檢測(cè)效果進(jìn)一步提高。
圖像采集來(lái)源于無(wú)人機(jī)實(shí)地高空俯視平行地面拍攝的田間現(xiàn)場(chǎng)圖像。在無(wú)人機(jī)拍攝采集的圖像中除秸稈和土壤外,還有雜草、雜物等因素的干擾,其中秸稈覆蓋部分和雜草部分顏色極其接近,已還田的部分和土壤的顏色較為接近。雜草的識(shí)別可以進(jìn)行作物下一周期的針對(duì)性處理,提高土地的養(yǎng)分利用率和生長(zhǎng)空間,達(dá)到穩(wěn)產(chǎn)、增產(chǎn)的作用,也可以根據(jù)用戶需求將雜草和秸稈部分合并計(jì)算覆蓋率,如圖1(部分截取)。
1.農(nóng)具 2.秸稈 3.已耕作土地 4.土壤 5.雜草
利用無(wú)人機(jī)拍攝獲取的田間秸稈圖像,結(jié)合秸稈覆蓋率現(xiàn)場(chǎng)復(fù)雜情況及圖像灰度直方圖的特點(diǎn),設(shè)計(jì)算法尋求最優(yōu)閾值,利用該閾值來(lái)對(duì)圖像進(jìn)行分割,快速準(zhǔn)確地將感興趣區(qū)域進(jìn)行分割,并計(jì)算出各部分像素點(diǎn)個(gè)數(shù),利用秸稈部分的像素點(diǎn)個(gè)數(shù)與圖像總像素點(diǎn)的個(gè)數(shù)比來(lái)求得秸稈的覆蓋率[5],如公式(1)。
本文提出DE-AS-MOGWO算法來(lái)對(duì)所得秸稈覆蓋圖進(jìn)行分割,并利用形態(tài)學(xué)算法[21-22]對(duì)圖像分割出的各部分進(jìn)行提取,再對(duì)秸稈覆蓋的面積進(jìn)行計(jì)算,秸稈覆蓋率檢測(cè)方法流程圖如圖2所示。
本文利用多閾值圖像分割算法,可根據(jù)圖像內(nèi)容選擇適當(dāng)數(shù)量的閾值,對(duì)圖像灰度級(jí)進(jìn)行分類(lèi)。因此,灰度級(jí)范圍在相同閾值區(qū)域內(nèi)時(shí),光照等外界條件不影響檢測(cè)結(jié)果。
圖2 秸稈覆蓋率檢測(cè)方法流程圖
此外,利用無(wú)人機(jī)現(xiàn)場(chǎng)拍攝的照片通常會(huì)受到采集設(shè)備等外界因素的影響,具有明顯的噪聲,直接影響圖像分割的準(zhǔn)確性,進(jìn)而導(dǎo)致秸稈覆蓋率檢測(cè)結(jié)果的偏差。本文采用了基于頻域的平滑濾波方法[23]對(duì)圖像的亮度不均的問(wèn)題進(jìn)行修正,消除圖像在數(shù)字化過(guò)程中的噪聲,為后續(xù)的圖像閾值分割做好準(zhǔn)備。
灰狼算法(GWO)[6]通過(guò)模擬狼群的狩獵行為來(lái)處理函數(shù)的優(yōu)化問(wèn)題,在狼群社會(huì)中有著嚴(yán)格的等級(jí)制度,從高到低依次為:頭狼、探狼、猛狼和最低層次的狼。
灰狼算法的基本思想是:在某一待尋優(yōu)空間中,選取其中適應(yīng)度值最佳的狼作為頭狼,在圖像分割過(guò)程中即是最佳閾值。
由于田間實(shí)際圖像干擾因素較多,且圖像灰度級(jí)相近。本文選擇可以推廣到非廣義系統(tǒng)的Tsallis熵[24-25]作為核心算法的適應(yīng)度函數(shù)[5]。在確定了Tsallis熵后,使用灰狼算法讓灰狼個(gè)體的位置不斷迭代更新,并將當(dāng)前位置的最好的前3個(gè)解分別標(biāo)記為狼、狼和狼,將其他的解記為狼,在狼群狩獵的過(guò)程中,狼、狼和狼會(huì)領(lǐng)導(dǎo)整個(gè)狼群向目標(biāo)獵物逼近,找到最優(yōu)解。該過(guò)程可以用如下方程表示
DE-GWO算法[5]是在灰狼算法(GWO)算法[6]的基礎(chǔ)上混入差分算法(DE)[7],DE算法流程類(lèi)似于遺傳算法,采用迭代方法逐步進(jìn)化完成最優(yōu)解的搜索過(guò)程,其中變異、交叉和選擇操作增加了尋優(yōu)的多向性、加快了收斂速度,解決了基本灰狼算法閾值局部最優(yōu)的缺陷,加快了圖像分割的處理速度。針對(duì)實(shí)際采集的田間秸稈圖像處理顏色接近、圖像信息量大的實(shí)際應(yīng)用問(wèn)題,DE-GWO算法從分割處理效果和處理速度較GWO算法明顯占優(yōu)勢(shì)。
AS-MOGWO算法是由崔明朗等[15]在多目標(biāo)灰狼優(yōu)化算法(Multi-Objective Grey Wolf Optimizer,MOGWO)[12]的基礎(chǔ)上通過(guò)借鑒人工蜂群算法(Artificial Bee Colony,ABC)[17]中的觀察蜂的觀察策略,提出的一種改進(jìn)型優(yōu)化算法。通過(guò)在多目標(biāo)灰狼算法中添加狼群的觀察階段,和對(duì)控制參數(shù)的調(diào)整策略的改進(jìn),克服了MOGWO算法不穩(wěn)定、易陷入局部最優(yōu)的缺點(diǎn),增強(qiáng)了算法的穩(wěn)定性和尋優(yōu)能力。
MOGWO算法在原有的GWO中集成了一個(gè)固定大小的外部存檔,保存或檢索當(dāng)前獲得的非支配的Pareto最優(yōu)解[13],然后利用該存檔來(lái)定義狼群社會(huì)層次結(jié)構(gòu),模擬多目標(biāo)空間中灰狼的狩獵行為。在算法迭代的過(guò)程中,將新得到的非優(yōu)勢(shì)解與存檔內(nèi)的數(shù)據(jù)進(jìn)行比較和更新。在外部存檔并對(duì)狼群位置進(jìn)行更新的過(guò)程中存在3種可能的更新策略:1)如果新的非優(yōu)勢(shì)解被至少一個(gè)存檔內(nèi)的數(shù)據(jù)主導(dǎo),該解決方案不允許存入存檔;2)如果新的非優(yōu)勢(shì)解主導(dǎo)存檔中的一個(gè)或多個(gè)方案,將該非優(yōu)勢(shì)解替換原存檔中的數(shù)據(jù);3)如果新的非優(yōu)勢(shì)解和存檔中的數(shù)據(jù)互不主導(dǎo),將新的非優(yōu)勢(shì)解存入存檔中。如果存檔文件已滿,則重新安排目標(biāo)空間,插入新的解,以確保Pareto最優(yōu)解的多樣性。
在多目標(biāo)狼群算法中,由于Pareto解的最優(yōu)性很難選擇出像原GWO算法中的狼領(lǐng)導(dǎo)狼群向有希望的區(qū)域空間進(jìn)行搜索,但是存檔中所儲(chǔ)存的數(shù)據(jù)為當(dāng)前的最優(yōu)解,沒(méi)有優(yōu)劣之分,因此,該算法采用輪流選擇的方法對(duì)存檔中的所有數(shù)據(jù)進(jìn)行選擇,選出3個(gè)頭狼引領(lǐng)狼群,稱(chēng)之為頭狼選擇策略。每一個(gè)數(shù)據(jù)被選擇的概率如下
然而在實(shí)際運(yùn)行中,因?yàn)閭€(gè)體狼會(huì)盲目的跟隨頭狼逼近目標(biāo),所以存在著探索能力不足,容易陷入局部最優(yōu)而導(dǎo)致效果不穩(wěn)定的問(wèn)題。針對(duì)這些缺陷,AS-MOGWO算法借鑒了ABC[17-19]中觀察蜂的搜索策略,使狼群中的每只狼在位置更新后,都會(huì)觀察附近的狀況并評(píng)估自己所在的位置,進(jìn)行移動(dòng)和更新,其遵循的公式如下
DE-AS-MOGWO算法的核心思想是在DE-GWO算法的基礎(chǔ)上加入了MOGWO算法的外部存檔,嵌入多目標(biāo)算法的搜索機(jī)制,采用Tsallis熵對(duì)算法效率進(jìn)行評(píng)估,同時(shí)為了彌補(bǔ)多目標(biāo)灰狼算法探索能力不足,容易陷入局部最優(yōu)而導(dǎo)致效果不穩(wěn)定的問(wèn)題,該算法又引入了蜂群算法中觀察蜂的觀察策略,從而得到了一種高效的全局優(yōu)化多目標(biāo)隨機(jī)搜索方法。
DE-AS-MOGWO算法原理如下:首先,建立外部存檔,更新狼群位置,將優(yōu)秀個(gè)體存檔;其次,對(duì)存檔內(nèi)種群差分進(jìn)化,保留優(yōu)秀個(gè)體,實(shí)現(xiàn)多目標(biāo)優(yōu)秀種群全局優(yōu)化隨機(jī)搜索;再次,采用Tsallis熵求個(gè)體適應(yīng)度函數(shù),輪盤(pán)賭[26]方式選出3只頭狼;然后,采用人工蜂群算法中觀察蜂的觀察策略,避免局部最優(yōu),提升狼群探索能力;最后,使用變異和交叉操作更新種群位置,直至達(dá)到最大迭代次數(shù),得出理想目標(biāo)閾值,并依照該閾值對(duì)圖像進(jìn)行分割。算法流程示意如圖3。
圖3 DE-AS-MOGWO流程圖
運(yùn)用基于DE-AS-GWO算法對(duì)玉米秸稈圖像進(jìn)行二閾值分割,并與DE-GWO算法和DE-MOGWO算法所求得的秸稈覆蓋率進(jìn)行比較,驗(yàn)證算法的有效性和準(zhǔn)確性。采用Photoshop CS6軟件中手動(dòng)精準(zhǔn)檢測(cè)面積的方法來(lái)手動(dòng)標(biāo)準(zhǔn)分割圖像,通過(guò)匹配率,誤分率和準(zhǔn)確率(見(jiàn)公式11-13)來(lái)評(píng)判算法對(duì)秸稈覆蓋圖像的分割效果[27]。手動(dòng)精準(zhǔn)測(cè)量方法步驟為:調(diào)整圖像的色階直方圖,將土地部分調(diào)整到最暗,并且調(diào)整全部通道視圖,選擇秸稈部分和雜草部分,從直方圖中的像素部分可以得出手動(dòng)檢測(cè)像素值。
此外,本文采用平均值和標(biāo)準(zhǔn)差[28]衡量算法匹配率,誤分率和準(zhǔn)確率的穩(wěn)定性。
為控制變量得到精準(zhǔn)數(shù)據(jù),全程試驗(yàn)環(huán)境為:Mircrosoft Windows 10 Professional;CPU: Inter ?Core? i5-9400 @ 2.90 GHZ-2.90 GHZ;RAM:16GB;顯卡:GeForce GTX 1650;Visual Studio 2015 Professional軟件開(kāi)發(fā)環(huán)境。
本文算法參數(shù)設(shè)置如下:灰狼種群規(guī)模設(shè)為50,迭代次數(shù)為100,交叉概率為0.9,Archive種群最大個(gè)體數(shù)為100。為了避免隨機(jī)性,每張圖像運(yùn)行100次,每10次為一組取平均值。為了加強(qiáng)秸稈覆蓋率檢測(cè)的準(zhǔn)確性,將圖像分割為秸稈圖像、土壤圖像和雜草圖像。5種算法對(duì)圖像的分割結(jié)果如圖4。
注:從左到右依次為:原始圖像、秸稈圖像、土壤圖像、雜草圖像。
表1 算法判定結(jié)果對(duì)比
注:MR為匹配率,%;MER為誤分率,%;AR為準(zhǔn)確率,%,下同。
Note:MRis the matching rate,%;MERis the error rate,%;ARis the accuracy,%,the same below.
由圖4可以看出,DE-AS-MOGWO算法用于秸稈覆蓋率檢測(cè)圖像分割時(shí)較PSO、GWO、DE-GWO和DE-MOGWO算法具有更佳的秸稈、土地以及雜草的分割效果。由表1可知,DE-AS-MOGWO算法的平均匹配率高達(dá)96.562%,較PSO、GWO、DE-GWO和DE-MOGWO分別提高了4.967、3.617、2.029和3.288個(gè)百分點(diǎn);DE-AS-MOGWO算法平均準(zhǔn)確率達(dá)到96.444%,對(duì)比另外4種算法分別提高了5.135、3.748、2.188和3.404個(gè)百分點(diǎn);DE-AS-MOGWO算法平均誤分率為0.118%,對(duì)比另外4種算法分別降低了0.168、0.131、0.089和0.116個(gè)百分點(diǎn);同時(shí),衡量算法耗時(shí),DE-AS-MOGWO算法比另外4種算法耗時(shí)分別降低了82%、84%、17%和32%。綜上所述,DE-AS-MOGWO算法通過(guò)DE算法解決傳統(tǒng)灰狼優(yōu)化算法易于陷入局部最優(yōu)和處理速度較慢,擴(kuò)展多目標(biāo)提升了多閾值圖像分割的準(zhǔn)確度,ABC算法對(duì)所求問(wèn)題的解進(jìn)行優(yōu)劣的比較,增強(qiáng)算法穩(wěn)定性和尋優(yōu)能力。DE-AS-MOGWO算法應(yīng)用于秸稈覆蓋率檢測(cè)圖像分割時(shí)較PSO、GWO、DE-GWO和DE-MOGWO算法可靠性更高,分割效果更佳,耗時(shí)更短。
為了驗(yàn)證本文算法的普遍適用性,本文運(yùn)用基于DE-AS-MOGWO圖像分割的算法對(duì)4幅具有不同特征的代表性秸稈圖像進(jìn)行二閾值分割。圖像A為旋耕后耕地圖像,秸稈和雜草含量較少;圖像B為秸稈粉碎還田后圖像,含有大量秸稈和少量雜草;圖像C為秸稈收割后莖茬殘余圖像,僅含有莖茬,不含有雜草;圖像D為秸稈焚燒后耕地圖像,僅含有少量殘余秸稈。每張圖像運(yùn)行100次,每10次為一組取平均值求得秸稈的覆蓋率,并利用與3.1中相同的方法求得匹配率、誤分率、準(zhǔn)確率以及標(biāo)準(zhǔn)差。其處理結(jié)果如圖5,試驗(yàn)結(jié)果見(jiàn)表2。
由表2可以得知,對(duì)于4種不同特征的秸稈覆蓋圖像,本文提出的DE-AS-MOGWO算法均可以得到較高的匹配率和準(zhǔn)確率,較低的誤分率,且耗時(shí)較短,因此說(shuō)明該算法在秸稈檢測(cè)分割處理時(shí)具有普遍適用性。
本文采用DJI大疆悟2代inspire2無(wú)人機(jī)搭載X5S云臺(tái)相機(jī),采集時(shí)間為2017年10月21日、2018年11月5日,采集地點(diǎn)為中國(guó)吉林省榆樹(shù)市大崗鄉(xiāng),采集范圍地理坐標(biāo)分別為(126.261 675°E,45.097 652°N)、(126.287 043°E,45.101 012°N)、(126.262 969°E,45.074 335°N)、(126.300 194°E,45.075 098°N),采集條件為自然光照,垂直地面距離:50 m。
為了驗(yàn)證DE-AS-MOGWO算法不同閾值下對(duì)秸稈圖像分割的效果,本文選取了3組采集的圖像,分別用DE-MOGWO算法,DE-GWO算法和本文提出的DE-AS-MOGWO算法,根據(jù)圖像的復(fù)雜程度使用了不同的閾值進(jìn)行分割處理。根據(jù)灰度分級(jí)[29-30],已耕作部分為0~56,土壤部分為56~109,其他部分為109~165,秸稈部分為165~214,雜草部分為214~255。利用本文的DE-AS-MOGWO算法,不同閾值分割結(jié)果如圖6,提取出圖像中的不同元素,并記錄時(shí)間,通過(guò)提取的秸稈的像素點(diǎn)和整個(gè)圖像的像素點(diǎn)求出秸稈覆蓋的面積。
圖像面積與無(wú)人機(jī)fov視角有關(guān)[31],本文圖像與實(shí)際面積轉(zhuǎn)換公式為
注:從左到右依次為:原始圖像、秸稈圖像、土壤圖像、雜草圖像。
表2 秸稈特征圖像分割結(jié)果
表3 不同閾值分割數(shù)據(jù)
注:Ⅰ~Ⅶ依次為:原始圖像、分割圖像、已耕作圖像、土壤圖像、其他(農(nóng)具)圖像、秸稈覆蓋圖像、雜草圖像。
Note: From Ⅰ to Ⅶ, they are original image,segmentation image, cultivated image,soil image, other (farm tools) image,straw mulching image,weed image.
圖6 不同閾值的分割圖像
Fig.6 Segmentation images with different thresholds
為避免偶然性,對(duì)每個(gè)圖片每個(gè)閾值的每種算法運(yùn)行30次求平均值得到表3,通過(guò)圖6以及表3可知,3種算法對(duì)秸稈覆蓋圖像進(jìn)行不同閾值的分割處理,DE-AS-MOGWO算法耗時(shí)明顯少于其他兩種算法,且該算法可以根據(jù)復(fù)雜程度對(duì)不同圖像進(jìn)行準(zhǔn)確的多閾值分割處理。
將表3中的數(shù)據(jù)與在Photoshop軟件中手動(dòng)精準(zhǔn)檢測(cè)所得到的數(shù)據(jù)進(jìn)行比較可以得知,DE-AS-MOGWO算法分割的結(jié)果與人工測(cè)得的秸稈覆蓋面積最為接近,其中在二閾值分割圖像中,手動(dòng)精準(zhǔn)檢測(cè)得到實(shí)際秸稈覆蓋面積為2 092 m2,DE-AS-MOGWO算法求得面積為2 027.93 m2,本文算法準(zhǔn)確度高達(dá)96.94 %,時(shí)間縮短為手動(dòng)測(cè)量時(shí)間的1/2 603。在3閾值圖像中,2種方法分別求得面積為2 089 m2和2 038.26 m2,本文算法時(shí)間縮短為手動(dòng)測(cè)量的1/2 305,準(zhǔn)確度高達(dá)97.54%;在4閾值圖像中,兩種方法分別求得面積為2 072 m2和1 915.85 m2,本文算法準(zhǔn)確度高達(dá)92.43%,時(shí)間縮短為手動(dòng)的1/2 628。其誤差主要來(lái)源于農(nóng)具等外界因素影響。應(yīng)用本文所提出的DE-AS-MOGWO算法來(lái)檢測(cè)秸稈的覆蓋面積相對(duì)手動(dòng)精準(zhǔn)檢測(cè)的測(cè)量結(jié)果,不同的閾值及不同的圖像的精確度均可高達(dá)92.4%以上,平均耗時(shí)可縮短至1/2 511。考慮到圖像的大小可能會(huì)對(duì)算法的檢測(cè)結(jié)果產(chǎn)生影響。
為了能夠更加直觀的體現(xiàn)出本文算法對(duì)于不同圖像以及不同閾值的分割效果,本文從兩個(gè)方面:1)利用3種算法對(duì)10幅采集圖像進(jìn)行不同閾值的分割,并將最終的計(jì)算數(shù)據(jù)與手動(dòng)檢測(cè)所得的數(shù)據(jù)進(jìn)行對(duì)比;2)選取了10幅大小不同的采集圖像進(jìn)行分割,并將計(jì)算數(shù)據(jù)與手準(zhǔn)檢測(cè)進(jìn)行對(duì)比。結(jié)果如圖7。
圖7 人工測(cè)量與算法計(jì)算對(duì)比圖
由圖7可知,本文算法對(duì)不同像素大小的圖片的處理結(jié)果與人工測(cè)量的數(shù)據(jù)均可達(dá)到較高的匹配度,然而當(dāng)圖像越大時(shí),該算法的準(zhǔn)確度越高,二閾值的分割效果最佳。
為方便使用及推廣,在本文算法的基礎(chǔ)上開(kāi)發(fā)了一套秸稈覆蓋面積檢測(cè)軟件系統(tǒng),系統(tǒng)由輸入圖像,參數(shù)設(shè)置以及結(jié)果輸出3個(gè)部分組成。其中,系統(tǒng)的輸入采用了路徑選擇的方式對(duì)已經(jīng)儲(chǔ)存在計(jì)算機(jī)內(nèi)部的圖像進(jìn)行選擇,圖像輸入系統(tǒng)后,即可設(shè)置所需的算法以及參數(shù),該系統(tǒng)可以選擇GWO、DE-GWO、DE-MOGWO和本文所提出的DE-AS-MOGWO算法,用于不同算法處理結(jié)果的對(duì)比,所需設(shè)置的參數(shù)根據(jù)不同的算法包括種群規(guī)模、迭代次數(shù)、交叉概率,Archive種群數(shù)目及相機(jī)fov視角、拍攝的高度等。輸出部分則包括原始的輸入圖像,算法處理后秸稈覆蓋部分的圖像,已耕作部分的圖像,土壤部分的圖像和其他部分的圖像,以及各部分圖像的像素?cái)?shù)量;并根據(jù)這些數(shù)值計(jì)算出圖像采集區(qū)域的秸稈覆蓋面積和秸稈覆蓋率。該軟件系統(tǒng)的部分界面如圖8、9。
圖8 秸稈覆蓋面積檢測(cè)軟件參數(shù)界面
圖9 秸稈覆蓋面積檢測(cè)軟件主界面
1)提出一種圖像自動(dòng)分割的優(yōu)化算法多閾值差分灰狼優(yōu)化算法DE-AS-MOGWO,運(yùn)用該算法可以實(shí)現(xiàn)對(duì)圖像的多閾值分割處理,并對(duì)秸稈覆蓋率進(jìn)行精確的檢測(cè)。
2)DE-AS-MOGWO算法較PSO、GWO、DE-GWO、DE-MOGWO算法分別耗時(shí)縮短82%、84%、17%、32%,具有更高的匹配率和準(zhǔn)確率、更小的誤分率,大大縮短了時(shí)間消耗。
3)將本文算法實(shí)際應(yīng)用于秸稈覆蓋率的檢測(cè),結(jié)果表明,使用DE-AS-MOGWO算法對(duì)秸稈覆蓋率檢測(cè)的誤差被控制在了8%以內(nèi),為人工測(cè)量平均耗時(shí)的1/2 511,且算法對(duì)較大尺度圖像分割準(zhǔn)確率較高,適合秸稈覆蓋率大面積檢測(cè)需求,極大地提高了檢測(cè)效率,滿足實(shí)際的檢測(cè)需求。
4)依據(jù)本文算法開(kāi)發(fā)了秸稈覆蓋面積檢測(cè)軟件,大大地方便了人員對(duì)秸稈覆蓋率的實(shí)地檢測(cè),亦為基于航拍圖像處理提供了高效的分割算法支持。
[1] Lucas-Borja M E, Plaza-álvarez P A, Romero J G, et al. Short-term effects of prescribed burning in Mediterranean pine plantations on surface runoff, soil erosion and water quality of runoff[J]. Science of The Total Environment in press, 2019, (674): 615-622.
[2] 田慎重,張玉鳳,邊文范,等. 深松和秸稈還田對(duì)旋耕農(nóng)田土壤有機(jī)碳活性組分的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(2):185-192. Tian Shenzhong, Zhang Yufeng, BianWenfan, et al. Effects of subsoiling and straw return on soil labile organic carbon fractions in continuous rotary tillage cropland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(2): 185-192. (in Chinese with English abstract)
[3] 龔振平,杜婷婷,閆超,等. 玉米秸稈還田及施磷量對(duì)黑土磷吸附與解吸特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(22):161-169. Gong Zhenping, Du Tingting, Yan Chao, et al. Effects of corn straw returning and phosphorus application rate on phosphorus adsorption and desorption characteristics of black soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(22): 161-169. (in Chinese with English abstract)
[4] Yang Q, Zheng J, Zhu H. Influence of spatiotemporal change of temperature and rainfall on major grain yields in southern Jiangsu Province, China[J]. Global Ecology and Conservation, 2020, 21.
[5] 劉媛媛,王躍勇,于海業(yè),等. 基于多閾值圖像分割算法的秸稈覆蓋率檢測(cè)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(12):34-42,62. Liu Yuanyuan, Wang Yueyong, Yu Haiye, et al. Detection of straw coverage rate based on multi-threshold image segmentation algorithm[J]. Transactions of The Chinese SocietyforAgricultural Machinery, 2018, 49(12): 34-42,62. (in Chinese with English abstract)
[6] Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69(3): 46-61.
[7] Storn R, Price K. Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359.
[8] 劉暢,何俊杰,肖可,等. 一種基于差分進(jìn)化神經(jīng)網(wǎng)絡(luò)的模糊控制方法[J]. 福建電腦,2018,34(3):3-6,167.
[9] 姜海燕,趙空暖,湯亮,等. 基于自適應(yīng)差分進(jìn)化算法的水稻物候期預(yù)測(cè)模型參數(shù)自動(dòng)校正[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(21):176-184. Jiang Haiyan, Zhao Kongnuan, Tang Liang, et al. Automatic calibration of parameters for crop phenological predicting model based on adaptive differential evolution algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(21): 176-184. (in Chinese with English abstract)
[10] 厲玉康,王玉琳,黃海鴻. 改進(jìn)差分進(jìn)化算法在大型工件平面度評(píng)定中的應(yīng)用[J]. 光學(xué)精密工程,2019,27(12):2659-2667. Li Yukang, Wang Yulin, Huang Haihong. Application of improved differential evolution algorithm in flatness evaluation of large work-pieces[J]. Optics and Precision Engineering, 2019, 27(12): 2659-2667. (in Chinese with English abstract)
[11] 巢淵,戴敏,陳愷,等. 基于廣義反向粒子群與引力搜索混合算法的多閾值圖像分割[J]. 光學(xué)精密工程,2015,23(3):879-886. Chao Yuan, Dai Min, Chen Kai, et al. Image segmentation of multilevel threshold using hybrid PSOGSA with generalized opposition-based learning[J]. Optics and Precision Engineering, 2015, 23(3): 879-886. (in Chinese with English abstract)
[12] Mirjalili S, Saremi S, Mirjalili S M, et al. Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization[J]. Expert Systems with Applications, 2016, 47: 106-119.
[13] Engau A, Sigler D. Pareto solutions in multicriteria optimization under uncertainty[J]. European Journal of Operational Research, 2020, 281(2): 357-368.
[14] 宋懷波,牛滿堂,姬存慧,等. 基于視頻分析的多目標(biāo)奶牛反芻行為監(jiān)測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(18):211-218. Song Huaibo, Niu Mantang, Ji Cunhui, et al. Monitoring of multi-target cow ruminant behavior based on video analysis technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 211-218. (in Chinese with English abstract)
[15] 崔明朗,杜海文,魏政磊,等. 多目標(biāo)灰狼優(yōu)化算法的改進(jìn)策略研究[J]. 計(jì)算機(jī)工程與應(yīng)用,2018,54(5):156-164. Cui Minglang, Du Haiwen, Wei Zhenglei, et al. Research on improved strategy for multi-objective gray wolf optimization[J]. Computer Engineering and Application, 2018, 54(5): 156-164. (in Chinese with English abstract)
[16] 楊晨,黃雪冰,劉文俊,等. 山麻鴨卵泡發(fā)育的形態(tài)學(xué)及激素分泌調(diào)控基因的表達(dá)研究[J]. 仲愷農(nóng)業(yè)工程學(xué)院學(xué)報(bào),2019,32(2):17-22. Yang Chen, Huang Xuebing, Liu Wenjun, et al. Morphology of the follicular development and the expression of hormone secretion regulating genes in Shan Partridge duck[J]. Journal of Zhongkai University of Agricultural Engineering, 2019, 32(2): 17-22. (in Chinese with English abstract)
[17] Akay B, Karaboga D. Artificial bee colony algorithm for large-scale problems and engineering design optimization[J]. Journal of Intelligent Manufacturing, 2012, 23(4): 1001-1014.
[18] 董娜,劉欣宇,吳愛(ài)國(guó). 基于人工蜂群的新型圓形交通標(biāo)志識(shí)別算法[J]. 天津大學(xué)學(xué)報(bào)(自然科學(xué)與工程技術(shù)版),2019,52(6):585-593. Dong Na, Liu Xinyu, Wu Aiguo. Detection method for circular traffic signs based on artificial bee colony[J]. Journal of Tianjin University (Science and Technology), 2019, 52(6): 585-593. (in Chinese with English abstract)
[19] Lo ChiChun, Tsai ShangHo, Lin BorShyh. Economic dispatch of chiller plant by improved ripple bee swarm optimization algorithm for saving energy[J]. Applied Thermal Engineering, 2016, 100(5): 1140-1148.
[20] 孫俊,叢孫麗,毛罕平,等. 基于高光譜的油麥菜葉片水分CARS-ABC-SVR預(yù)測(cè)模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(5):178-184. Sun Jun, Cong Sunli, Mao Hanping, et al. CARS-ABC-SVR model for predicting leaf moisture of leaf-used lettuce based on hyperspectral[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(5): 178-184. (in Chinese with English abstract)
[21] 王春雷,盧彩云,陳婉芝,等. 基于遺傳算法和閾值濾噪的玉米根茬行圖像分割[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(16):198-205. Wang Chunlei, Lu Caiyun, Chen Wanzhi, et al. Image segmentation of maize stubble row based on genetic algorithm and threshold filtering noise[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(16): 198-205. (in Chinese with English abstract)
[22] 王躍勇,于海業(yè),劉媛媛. 基于形態(tài)學(xué)圖像檢測(cè)的機(jī)械手移栽穴苗識(shí)別技術(shù)[J]. 光學(xué)精密工程,2016,24(3):651-658. Wang Yueyong, Yu Haiye, Liu Yuanyuan. Recognition of seedlings in mechanical transplanting processing by morphological image detection [J]. Optics and Precision Engineering, 2016, 24(3): 651-658. (in Chinese with English abstract)
[23] 孫穎,張志佳. 基于頻域?yàn)V波的自適應(yīng)條帶噪聲去除算法[J]. 儀表技術(shù)與傳感器,2006,43(2):57-59. Sun Ying, Zhang Zhijia. Adaptively de-striping algorithm based on frequency filtering[J]. Instrument Technique and Sensor, 2006, 43(2): 57-59. (in Chinese with English abstract)
[24] 張新明,張貝,涂強(qiáng). 廣義概率Tsallis熵的快速多閾值圖像分割[J]. 數(shù)據(jù)采集與處理,2016,31(3):502-511. Zhang Xinming, Zhang Bei, Tu Qiang. Fast multilevel thresholding for image segmentation based on Generalized Probability Tsallis entropy[J]. Journal of Data Acquisition and Processing, 2016, 31(3): 502-511. (in Chinese with English abstract)
[25] Sholehkerdar A, Tavakoli J, Liu Z. Theoretical analysis of Tsallis entropy-based quality measure for weighted averaging image fusion[J]. Information Fusion, 2020, 58: 69-81.
[26] 余敏建,游航航,韓其松,等. 基于改進(jìn)煙花算法的空戰(zhàn)指揮引導(dǎo)對(duì)策生成[J]. 系統(tǒng)工程與電子技術(shù),2019,41(12):2780-2788. Yu Minjian, You Hanghang, Han Qisong, et al. Generation of air combat command and guidance countermeasures based on improved fireworks algorithm[J]. Systems Engineering and Electronic, 2019, 41(12): 2780-2788. (in Chinese with English abstract)
[27] Camargo A, Smith J S. An image-processing based algorithm to automatically identify plant disease visual symptoms[J]. Biosystems Engineering, 2009, 102(1): 9-21.
[28] 張解語(yǔ),仇原鷹,寧博,等. 筒形件姿態(tài)的非接觸無(wú)靶標(biāo)自動(dòng)綜合測(cè)量及求解[J]. 光學(xué)精密工程,2018,26(12):2963-2970. Zhang Jieyu, Qiu Yuanying, Ning Bo, et al. Automatic comprehensive noncontact measurement and solution method for cylindrical workpieces without targets[J]. Optics and Precision Engineering, 2018, 26(12): 2963-2970. (in Chinese with English abstract)
[29] Dey A, Dey S, Bhattacharyya S, et al. Novel quantum inspired approaches for automatic clustering of gray level images usingparticle swarm optimization, spider monkey optimization and ageist spider monkey optimization algorithms[J]. Applied Soft Computing, 2020, 88: 1-29.
[30] Kamoona A M, Patra J C. A novel enhanced cuckoo search algorithm for contrast enhancement of gray scale images[J]. Applied Soft Computing Journal, 2019, 85: 1-20.
[31] 呂振義,何誠(chéng),舒立福,等. 無(wú)人機(jī)視角下的林木爆燃火特性研究[J]. 光譜學(xué)與光譜分析,2019,39(12):3946-3952. Lv Zhenyi, He Cheng, Shu Lifu, et al. Deflagration characteristics of forest trees from the perspective of UAV[J]. Spectroscopy and Spectral Analysis, 2019, 39(12): 3946-3952. (in Chinese with English abstract)
Detection of straw coverage based on multi-threshold and multi-target UAV image segmentation optimization algorithm
Liu Yuanyuan1, Sun Jiahui1, Zhang Shujie1, Yu Haiye2, Wang Yueyong3※
(1.,130118,; 2.,,,130025,; 3.,,130118,)
Straw mulching has been an efficient solution to reduce soil loss in environmental protection and sustainable development in modern agriculture. Therefore, a rapid detection of straw coverage can contribute to the efficiency and accuracy in the process of straw mulching. In this study, a novel algorithm was proposed to optimize large-scale image segmentation for the aerial image of straw coverage during straw mulching. An artificial bee colony survey multi-objective grey wolf optimization algorithm (AS-MOGWO) was used to upgrade via introducing the design concept of multi-objective integration. Specifically, an external archive of multi-objective grey wolf optimization algorithm (MOGWO) was added into the differential evolution (DE) GWO, and the search strategy of observed bees in artificial colony algorithm. The DE algorithm can be used to solve the problem that the traditional gray wolf optimization algorithm (GWO) is easy to fall into the local optimal and the slow processing speed. Extending to multi-objective can also improve the accuracy of multi-threshold image segmentation. The Observation phase of artificial bee colony algorithm (ABC) can be used to compare the solution of problem, and further to enhance the stability and optimization ability of algorithm. The DE-GWO algorithm was extended from single target to multi-target DE-MOGWO, thereby to achieve multi-objective optimization. The accuracy of multi-threshold image segmentation was greatly improved, while, the algorithm was enhanced to extract and classify different ground objects in the collected images. The observation phase of ABC algorithm was added in the detection of straw coverage, further to improve the quality and processing speed of automatic image segmentation. The stability and optimization ability of algorithm can be enhanced after the integration of various methods. The upgraded algorithm inherited the automatic segmentation of DE-GWO, while gained the efficient convergence of AS-MOGWO, indicating an improved stability and processing speed for image segmentation. An optimal threshold was set using the gray-scale histogram of straw image, then to segment the images, and finally to calculate the number of pixels in each part and the coverage of straw. The experimental results showed that the matching error was less than 8% between the DE-AS-MOGWO optimization algorithm and the manual measurement method. Compared with the PSO, GWO, DE-GWO, and DE-MOGWO algorithms, the average matching rate of DE-AS-MOGWO improved 4.967, 3.617, 2.188 and 3.404 percentage point, respectively, whereas, the average error rate reduced 0.168, 0.131, 0.089 and 0.116 percentage point, respectively. Furthermore, the algorithm time reduced 82%, 84%, 17% and 32%, respectively. A software system was also developed for the area detection of straw coverage based on the proposed algorithm, where the straw covering area and straw coverage rate can be calculated from the acquisition area of aerial images. The GWO, DE-GWO, DE-MOGWO and DE-AS-MOGWO algorithms can also be selected for the comparison of different results. The DE-AS-MOGWO algorithm can produce a better segmentation, while processing with large-scale UAV images in a short time, indicating an excellent applicability under various conditions in the images of straw coverage. The finding can provide a promising potential way to improve the segmentation accuracy for the detection of straw coverage in modern agriculture.
straw; algorithm;grey wolf optimizer; multi-threshold; multi-objective; observe the strategy; straw coverage
劉媛媛,孫嘉慧,張書(shū)杰,等. 用多閾值多目標(biāo)無(wú)人機(jī)圖像分割優(yōu)化算法檢測(cè)秸稈覆蓋率[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(20):134-143.doi:10.11975/j.issn.1002-6819.2020.20.016 http://www.tcsae.org
Liu Yuanyuan, Sun Jiahui, Zhang Shujie, et al. Detection of straw coverage based on multi-threshold and multi-target UAV image segmentation optimization algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2020, 36(20): 134-143.(in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.20.016 http://www.tcsae.org
2020-06-17
2020-10-02
國(guó)家自然科學(xué)基金(42001256);吉林省科技廳重點(diǎn)科技項(xiàng)目(20180201014NY);吉林省發(fā)改委創(chuàng)新資金項(xiàng)目(2019C054)
劉媛媛,博士,講師,主要從事農(nóng)業(yè)信息化圖像和視頻信號(hào)處理方面研究。Email:liuyuanyuan@jlau.edu.cn
王躍勇,博士,副教授,主要從事智能系統(tǒng)、生物環(huán)境與能源工程研究。Email:yueyongw@jlau.edu.cn
10.11975/j.issn.1002-6819.2020.20.016
S24;TP751
A
1002-6819(2020)-20-0134-10