李兆東,楊文超,武堯堯,何 順,王韋韋,陳黎卿
·農(nóng)業(yè)裝備工程與機(jī)械化·
油菜氣力盤式精量排種器槽齒輔助充種性能分析與試驗(yàn)
李兆東1,2,楊文超1,3,武堯堯1,何 順1,王韋韋1,2,陳黎卿1,2※
(1. 安徽農(nóng)業(yè)大學(xué)工學(xué)院,合肥 230036;2. 安徽省智能農(nóng)機(jī)裝備工程實(shí)驗(yàn)室,合肥 230036;3. 中國(guó)農(nóng)業(yè)大學(xué)工學(xué)院,北京 100083)
針對(duì)油菜氣力盤式精量排種器高速排種過(guò)程中存在漏播嚴(yán)重和工作負(fù)壓需求大的問(wèn)題,該研究提出了一種槽齒定向擾動(dòng)輔助充種種盤,采用質(zhì)點(diǎn)動(dòng)力學(xué)分析、EDEM軟件、高速攝像技術(shù)和正交試驗(yàn)相結(jié)合的方法,對(duì)不同槽齒型式和槽齒厚度的種群流動(dòng)性與輔助充種性能進(jìn)行了研究。使用EDEM軟件模擬分析了不同槽齒型式和槽齒厚度對(duì)種群流動(dòng)性的影響,以種群平均動(dòng)能和種群平均動(dòng)能總和為量化指標(biāo),得出齒厚0.5~1.5 mm的直線型槽齒具有較好的輔助充種作用,有助于改善種子流動(dòng)性和抑制種群拖帶。選用華油雜62為試驗(yàn)材料,進(jìn)行了槽齒型式優(yōu)選試驗(yàn),并以優(yōu)選出的槽齒型式為對(duì)象開(kāi)展了槽齒厚度、種盤轉(zhuǎn)速和工作負(fù)壓對(duì)充種性能影響的試驗(yàn)研究。結(jié)果表明:在工作負(fù)壓不小于1 500 Pa條件下,作業(yè)速度小于6.0 km/h時(shí),3種槽齒型式種盤的充種性能差異較小,當(dāng)作業(yè)速度為6.0~9.5 km/h時(shí),直線型槽齒輔助充種性能優(yōu)于圓弧型槽齒和無(wú)槽齒的平面盤;三因素四水平正交試驗(yàn)優(yōu)選出槽齒厚度為1.0 mm時(shí)充種性能最優(yōu),并明確了槽齒厚度、工作負(fù)壓和作業(yè)速度對(duì)充種性能的影響規(guī)律;在槽齒厚度為1.0 mm、工作負(fù)壓1 500~2 500 Pa、作業(yè)速度2.6~9.5 km/h條件下,種子吸附合格率不低于96%,漏吸率不大于4%。研究結(jié)果可為油菜氣力盤式高速精量排種器結(jié)構(gòu)優(yōu)化設(shè)計(jì)提供參考。
農(nóng)業(yè)機(jī)械;種子;試驗(yàn);氣力式排種器;充種性能;油菜
油菜是重要的油料作物,其用途日趨多樣化,兼具蔬菜、能源、綠肥、飼料、蜜源、旅游等[1]。長(zhǎng)江流域是油菜主產(chǎn)區(qū),機(jī)直播合理密植是提高油菜生產(chǎn)效益與肥料利用效率的重要途徑[2]。
油菜精量排種器是調(diào)控直播機(jī)播種量的核心部件,其工作性能決定了種植質(zhì)量[3-4]。氣力式排種技術(shù)具有傷種率低、種子適應(yīng)性好、播量可調(diào)范圍大等優(yōu)點(diǎn)[5-7]。國(guó)內(nèi)外學(xué)者從不同角度進(jìn)行了排種器充種性能相關(guān)研究。Anantachar等[8]通過(guò)優(yōu)化充種室結(jié)構(gòu)提高了充種性能。邢赫等[9]為改善不同種類水稻精量直播,基于多流道吸室結(jié)構(gòu)設(shè)計(jì)了水稻播量可調(diào)氣力式排種器。賈洪雷等[10-12]根據(jù)理論分析在種盤增設(shè)輔助裝置可提高充種性能。Gaikwad等[13]采用振動(dòng)擾種與針孔吸附組合技術(shù)為蔬菜育秧開(kāi)發(fā)了一種氣力式排種器。崔濤等[14]為解決低功耗下玉米充種效果差等問(wèn)題,研制了一種內(nèi)充氣吹式玉米精量排種器。Li等[15-17]應(yīng)用EDEM軟件仿真了油菜、大豆、玉米等排種裝置工作過(guò)程中種子顆粒的運(yùn)動(dòng)特性,為排種裝置結(jié)構(gòu)優(yōu)化提供依據(jù)。Arzu等[18-19]對(duì)氣吸式精量排種器的工作負(fù)壓和吸孔直徑進(jìn)行了優(yōu)化,旨在提高播種粒距的均勻性。Yazgi等[20-21]研究了氣力式排種器吸室真空度、吸孔直徑、吸孔數(shù)量和種盤轉(zhuǎn)速對(duì)排種性能影響試驗(yàn),建立了參數(shù)之間的數(shù)學(xué)模型。叢錦玲等[22]運(yùn)用高速攝像技術(shù)對(duì)充種區(qū)油菜和小麥種子層的流動(dòng)特性進(jìn)行了研究。Wang等[23]結(jié)合高速攝像與圖像目標(biāo)追蹤技術(shù)分析了玉米種子落種軌跡運(yùn)移規(guī)律。廖宜濤等[24]運(yùn)用高速攝像技術(shù)拍攝連續(xù)運(yùn)移的型孔,進(jìn)行了吸種效果影響因素研究。上述研究表明,在種盤上增設(shè)輔助充種裝置或優(yōu)化充種室結(jié)構(gòu)可有效提高不同作物氣力式排種器的排種性能,理論分析、數(shù)值模擬、高速攝像和試驗(yàn)優(yōu)化等手段尋求提高排種性能的關(guān)鍵要素取得了較佳的試驗(yàn)效果。然而,針對(duì)現(xiàn)有油菜氣力盤式精量排種器高速排種過(guò)程中種子難以從無(wú)序堆積的種群中快速分離被吸孔精準(zhǔn)捕獲并穩(wěn)固吸附、易產(chǎn)生漏吸降低排種性能的問(wèn)題仍是需要解決的技術(shù)難點(diǎn)。
作者團(tuán)隊(duì)基于輔助充種原理,采用種盤自擾動(dòng)與吸孔吸附組合技術(shù)設(shè)計(jì)了一種油菜氣力槽齒盤式精量排種器[25],但槽齒結(jié)構(gòu)對(duì)充種性能的影響尚不清楚。本文采用質(zhì)點(diǎn)動(dòng)力學(xué)理論、EDEM數(shù)值模擬、高速攝像技術(shù)和正交試驗(yàn)相結(jié)合的方法,進(jìn)行油菜氣力盤式精量排種器槽齒輔助充種性能分析與試驗(yàn)研究,以明確槽齒輔助充種的關(guān)鍵要素和各試驗(yàn)因素對(duì)試驗(yàn)指標(biāo)的影響規(guī)律,旨在為油菜氣力盤式精量排種器結(jié)構(gòu)優(yōu)化提供依據(jù)。
油菜氣力槽齒盤式高速精量排種器采用多行并聯(lián)組合的方式實(shí)施播種,主要由氣力槽齒盤式排種器、氣流分配器、氣力管道、輸種管道、旋渦風(fēng)泵和種溝開(kāi)溝器等組成,如圖1a所示。其中氣力槽齒盤式排種器是實(shí)施精量播種的核心工作部件,如圖1b所示。
1. 氣流分配器 2.氣流主管道 3.氣流支管道 4.旋渦風(fēng)泵 5.排種器 6.輸種管道 7.種溝開(kāi)溝器 8.種箱 9.充種室 10.排種殼體 11.種盤 12.正壓管 13.導(dǎo)種管 14.負(fù)壓管 15.傳動(dòng)軸 16.吸室殼體 17卸種篩 18.種箱蓋 I.吸種區(qū) II.投種區(qū) III.過(guò)渡區(qū)
表1 氣力槽齒盤式精量排種器主要技術(shù)參數(shù)
排種器工作時(shí),種箱內(nèi)無(wú)序堆積的種群在重力作用下流入充種室,傳動(dòng)軸帶動(dòng)種盤轉(zhuǎn)動(dòng),種盤上的槽齒對(duì)充種室內(nèi)的種群定向擾動(dòng),打破種群在重力作用下形成擠壓堆積的穩(wěn)定狀態(tài),與種盤接觸的薄層種子在槽齒的作用下快速?gòu)姆N群中分離出來(lái),被種盤上均勻分布的型孔精確捕獲并吸附隨種盤轉(zhuǎn)動(dòng),進(jìn)入投種區(qū)時(shí),在正壓氣流作用下種子與型孔分離進(jìn)入導(dǎo)種管并經(jīng)由輸種管道落出,完成排種過(guò)程。假定油菜種子為材質(zhì)均勻的剛體,以吸附單顆種子為對(duì)象,不考慮種子之間碰撞以及振動(dòng)等因素影響,建立槽齒與種子相互作用下吸孔吸附種子的力學(xué)模型,如圖2所示。
注:G為種子重力,N;Fl為種子離心力,N;F¢f為槽齒作用下種子間的內(nèi)摩擦力,N;T¢為槽齒作用下Fl、G與F¢f矢量合外力,N;F¢s為槽齒盤吸孔對(duì)種子的吸附力,N;FN為擾種齒對(duì)種子的等效支持力,N;N為側(cè)面矢量合外力,N;θ為T¢與FN作用線間夾角,(°),θ∈[0°,90°);B為種子重心到種盤吸種面的距離,m;C為擾種齒厚度,m;ω為種盤角速度,rad·s-1;R為吸孔回轉(zhuǎn)半徑,m;d為吸孔直徑,m。
根據(jù)質(zhì)點(diǎn)動(dòng)力學(xué)理論,槽齒定向擾動(dòng)作用下種子受力方程為
由式(1)可得:
式中0為無(wú)輔助擾種作用下吸孔捕獲單顆種子所需吸附壓強(qiáng),Pa;F為無(wú)輔助擾種下種子間的內(nèi)摩擦力,N;
槽齒輔助充種增大了種群的擾動(dòng)強(qiáng)度,改善充種室內(nèi)種群的流動(dòng)性,利于種子從種群中分離被吸附[11,26-28]。
根據(jù)上文槽齒定向擾動(dòng)下吸孔吸附單粒種子瞬間所需最小吸附壓強(qiáng)可知,當(dāng)吸孔直徑一定時(shí),在種盤上增設(shè)一定厚度的槽齒比無(wú)槽齒條件下吸孔吸附種子所需的吸附壓強(qiáng)要小。本文以油菜氣力盤式精量排種器為對(duì)象,借助離散元軟件EDEM進(jìn)行槽齒結(jié)構(gòu)對(duì)種群定向擾動(dòng)的仿真分析,并通過(guò)臺(tái)架高速攝像試驗(yàn)驗(yàn)證,探尋不同槽齒擾動(dòng)下種群流動(dòng)性對(duì)排種器充種性能的影響。
仿真試驗(yàn)采用的3種種盤結(jié)構(gòu)型式如圖3所示。為較好地約束變量,各種盤型孔數(shù)量、型孔位置、型孔直徑均一致,圓弧型槽齒盤和直線型槽齒盤的齒數(shù)、齒厚、齒槽寬和齒高均相同。
圖3 種盤結(jié)構(gòu)示意圖
種盤輔助充種是依靠槽齒厚度對(duì)種群實(shí)施定向擾動(dòng),使少量種子快速脫離種群束縛,有助于少量種子與吸孔緊密接觸,實(shí)現(xiàn)精確吸附。由于槽齒僅對(duì)貼近種盤的薄層種群進(jìn)行擾動(dòng),因此槽齒厚度應(yīng)不大于油菜種子的最大直徑,即
h≤max(5)
式中max為油菜種子的最大直徑,m。一般油菜種子最大直徑不大于2.5×10-3m[29],故槽齒厚度的取值范圍h∈(0,2.5] ×10-3m。
皖江地區(qū)油菜機(jī)械化種植多集中在丘陵和平原地域,稻-油輪作是該區(qū)域最為典型的大田種植模式,丘陵區(qū)機(jī)組前進(jìn)速度一般不超過(guò)5 km/h,平原區(qū)機(jī)組前進(jìn)速度可達(dá)6~8 km/h[30-31]。為適應(yīng)該區(qū)域油菜精量播種需要,本文設(shè)定理論株距為0.06 m[31],一次性實(shí)現(xiàn)開(kāi)畦溝、施肥、旋耕、開(kāi)種溝、播種等聯(lián)合作業(yè),配套動(dòng)力一般在58.8 kW以上,選用東方紅拖拉機(jī)動(dòng)力底盤和該排種器常用作業(yè)速度進(jìn)行匹配,將作業(yè)速度設(shè)定為4個(gè)梯度,根據(jù)設(shè)定的理論株距換算出不同作業(yè)速度對(duì)應(yīng)的種盤角速度對(duì)應(yīng)關(guān)系,如表2所示。
表2 作業(yè)速度對(duì)應(yīng)種盤角速度
為提高仿真過(guò)程的運(yùn)算速度,將排種器簡(jiǎn)化為排種殼體、種箱和種盤,并將其三維模型導(dǎo)入EDEM軟件,根據(jù)實(shí)際加工的排種器,排種殼體和種盤材料為鋁合金。由于油菜種子球形度高且粒徑范圍差異小,仿真中油菜顆粒模型設(shè)為2 mm的硬球模型[29]。
考慮到油菜種子表面光滑且無(wú)黏附力,仿真采用Hertz-Mindlin接觸模型,種子和種盤材料參數(shù)及種子與種盤接觸參數(shù)設(shè)置參考文獻(xiàn)[32-33]。
為明確槽齒定向擾動(dòng)對(duì)種群流動(dòng)性的影響,開(kāi)展了帶有圓弧型槽齒、直線型槽齒和無(wú)槽齒3種型式種盤對(duì)種群擾動(dòng)的仿真試驗(yàn),以種群平均動(dòng)能量化不同種盤與種群相互作用后種子的流動(dòng)程度,獲得較優(yōu)槽齒型式,再以較優(yōu)的槽齒型式為對(duì)象,探究不同槽齒厚度對(duì)種群流動(dòng)性的影響,槽齒厚度設(shè)為0、0.5、1.0、1.5、2.0和2.5 mm共6個(gè)梯度。設(shè)置5 000顆油菜種子,時(shí)間步長(zhǎng)為1.72×10-5s,總仿真時(shí)間為10 s,提取3~10 s種子顆粒的平均動(dòng)能。
2.4.1 種盤型式對(duì)種群擾動(dòng)強(qiáng)度的影響
本研究設(shè)計(jì)的排種器由電機(jī)驅(qū)動(dòng),所研制的播種機(jī)應(yīng)同時(shí)適應(yīng)丘陵區(qū)和平原區(qū),其作業(yè)速度為3~8 km/h,本文以種盤常用角速度5.23 rad/s為例進(jìn)行仿真,圖4為3種不同結(jié)構(gòu)型式種盤輔助擾動(dòng)下種群平均動(dòng)能隨時(shí)間變化趨勢(shì)圖。從圖中可知:平面盤的種群平均動(dòng)能在(0~0.2)×10-9J,仿真曲線幾乎沒(méi)有波動(dòng),說(shuō)明無(wú)輔助擾動(dòng)下種子的流動(dòng)性較差;圓弧型槽齒盤的種群平均動(dòng)能在(0.3~1.3)×10-9J,仿真曲線波動(dòng)較為明顯,說(shuō)明在圓弧型槽齒盤擾動(dòng)下種子的流動(dòng)性較好;直線型槽齒盤的種群平均動(dòng)能為(0.5~1.3)×10-9J,仿真曲線波動(dòng)明顯且波動(dòng)強(qiáng)度比圓弧型槽齒盤更為劇烈,說(shuō)明直線型槽齒盤對(duì)種群的擾動(dòng)強(qiáng)度更大。由此得出3種種盤對(duì)種子流動(dòng)性擾動(dòng)強(qiáng)度從大到小順序?yàn)橹本€型槽齒盤、圓弧型槽齒盤、平面盤。
根據(jù)圖5仿真結(jié)果可知,當(dāng)種盤角速度增大時(shí),3種種盤的種群平均動(dòng)能總和均呈明顯上升趨勢(shì),而平面盤的種群平均動(dòng)能總和波動(dòng)很小且遠(yuǎn)低于圓弧型槽齒盤和直線型槽齒盤;相同角速度下,直線型槽齒盤對(duì)種群輔助擾動(dòng)特性明顯優(yōu)于平面盤和圓弧型槽齒盤,其數(shù)值從大到小排序?yàn)橹本€型槽齒盤、圓弧型槽齒盤、平面盤。直線型槽齒盤與種群相互作用時(shí)種子的瞬時(shí)流動(dòng)性最為劇烈,且可以提供持續(xù)有效擾動(dòng),更容易在相互碰撞和負(fù)壓吸附等外力作用下進(jìn)入型孔完成充種。由此看出,直線型槽齒盤具有輔助充種優(yōu)勢(shì)。
圖4 不同種盤的種子平均動(dòng)能隨時(shí)間變化曲線
圖5 種盤轉(zhuǎn)速與種子平均動(dòng)能總和之間的關(guān)系
2.4.2 槽齒厚度對(duì)種群擾動(dòng)強(qiáng)度的影響
為進(jìn)一步研究種盤輔助擾動(dòng)裝置結(jié)構(gòu)對(duì)種群流動(dòng)性的影響,開(kāi)展了槽齒厚度對(duì)種群擾動(dòng)強(qiáng)度影響的仿真試驗(yàn)。以種群平均動(dòng)能作為量化種群擾動(dòng)強(qiáng)度的指標(biāo),種盤角速度選取7.33和11.51 rad/s用于匹配中、高速作業(yè)工況,分別進(jìn)行這2個(gè)速度下的仿真試驗(yàn),并獲取不同齒厚下種子顆粒的平均動(dòng)能,結(jié)果如圖6所示。
從圖6a和6b可以看出,不同齒厚條件下種群平均動(dòng)能曲線有明顯差異,隨著種盤齒厚的增加其種群平均動(dòng)能曲線整體呈臺(tái)階式增長(zhǎng)趨勢(shì)。轉(zhuǎn)速為7.33 rad/s時(shí),齒厚從0增至1.0 mm時(shí),平均動(dòng)能曲線增幅較快,齒厚從1.0 mm增至2.5 mm時(shí),平均動(dòng)能曲線增幅相對(duì)較慢;11.51 rad/s下,不同齒厚下平均動(dòng)能曲線增幅較為明顯,齒厚越大,種群平均動(dòng)能越明顯。仿真結(jié)果說(shuō)明槽齒厚度是打破種群堆積狀態(tài)的關(guān)鍵要素,增加齒厚可顯著改善種子的流動(dòng)特性,利于少量種子從種群中快速分離并被吸孔捕獲后穩(wěn)固吸附。
根據(jù)上述分析,齒厚對(duì)種群拖帶有助于改善充種性能,但槽齒上易帶種導(dǎo)致排種精度下降,本文對(duì)齒厚1.5、2.0和2.5 mm的種盤帶種情況進(jìn)行數(shù)值模擬。利用EDEM軟件中Analyst后處理模塊隨機(jī)捕獲3.25、5.25、7.25和9.25 s共4個(gè)時(shí)刻3種齒厚的種盤帶種情況,如圖7所示。根據(jù)4個(gè)瞬時(shí)時(shí)刻的仿真結(jié)果,齒厚1.5 mm的槽齒在充種區(qū)帶種不明顯,而齒厚2.0和2.5 mm的槽齒在充種區(qū)域上均存在明顯帶種現(xiàn)象(圖中黑色方框),隨著種盤轉(zhuǎn)動(dòng)槽齒上的種子被直接拖帶至導(dǎo)種管中,造成重播。而對(duì)于無(wú)擾動(dòng)的平面盤,增大種盤轉(zhuǎn)速對(duì)其平均動(dòng)能影響不明顯,且數(shù)值在最低位徘徊,表明平面盤對(duì)種群擾動(dòng)強(qiáng)度最小,難以將少量種子從種群中分離出來(lái),影響種盤高速作業(yè)下的充種性能。通過(guò)EDEM仿真分析可知,擾種齒厚度0.5~1.5 mm時(shí)具有較好輔助充種優(yōu)勢(shì),為進(jìn)行臺(tái)架試驗(yàn)提供依據(jù)。
圖6 不同轉(zhuǎn)速下齒厚對(duì)種子平均動(dòng)能的影響
圖7 不同齒厚條件下充種區(qū)的種盤帶種情況仿真結(jié)果
充種試驗(yàn)在自主設(shè)計(jì)的排種器閉環(huán)控制性能檢測(cè)裝置上進(jìn)行,該裝置主要由氣力槽齒盤式精量排種器、F-86BYG步進(jìn)電機(jī)、控制器、旋轉(zhuǎn)編碼器、漩渦風(fēng)泵(浙江森森牌HG-250型)、正負(fù)壓氣力管道、U型測(cè)壓計(jì)和i-velocity 3高速攝像系統(tǒng)(日本OLYMPUS 公司)等,試驗(yàn)裝置如圖 8所示。試驗(yàn)中,根據(jù)文獻(xiàn)[31]設(shè)定播種理論株距為0.06 m,由旋轉(zhuǎn)編碼器模擬油菜精量直播機(jī)行駛速度,再由控制器采集編碼器模擬車速的脈沖信號(hào),控制排種步進(jìn)電動(dòng)機(jī)轉(zhuǎn)速。
選用湖北國(guó)科高新技術(shù)有限公司生產(chǎn)的華油雜62成品種子為試驗(yàn)材料,其千粒質(zhì)量4.4 g,球形度91.5%,含水率7.6%。借助高速攝像技術(shù)進(jìn)行槽齒優(yōu)選試驗(yàn)和槽齒輔助充種性能試驗(yàn)。根據(jù)仿真模型參數(shù)試制了無(wú)槽齒的平面種盤、圓弧型槽齒式種盤和直線型槽齒式種盤,試驗(yàn)時(shí)將其分別安裝在油菜氣力式精量排種器上,為方便觀察,排種殼體采用透明材料加工。以優(yōu)選出的種盤為對(duì)象,以槽齒厚度、作業(yè)速度和工作負(fù)壓為試驗(yàn)因素,以漏吸率和吸附合格率為試驗(yàn)指標(biāo),進(jìn)行三因素四水平正交試驗(yàn),探究各因素對(duì)充種性能的影響。
1.高速攝像 2.排種器 3.控制器 4.步進(jìn)電機(jī) 5.旋轉(zhuǎn)編碼器 6.氣力管道 7.U型測(cè)壓計(jì) 8.旋渦風(fēng)泵
利用高速攝像系統(tǒng)拍攝吸種區(qū)和過(guò)渡區(qū)2個(gè)區(qū)域的種子吸附和種子堵孔情況,吸種區(qū)種子吸附檢測(cè)是以種盤上的吸孔隨軸轉(zhuǎn)動(dòng)離開(kāi)充種室為觀察起始點(diǎn),以吸孔轉(zhuǎn)至種盤最高點(diǎn)為觀察終點(diǎn);過(guò)渡區(qū)種子堵孔檢測(cè)以吸孔隨種盤轉(zhuǎn)動(dòng)離開(kāi)投種區(qū)為觀察起始點(diǎn),以吸孔轉(zhuǎn)至種盤最低點(diǎn)為觀察終點(diǎn)。每組試驗(yàn)獲取并統(tǒng)計(jì)240個(gè)連續(xù)運(yùn)移的吸孔影像,每組重復(fù)3次取平均值作為試驗(yàn)結(jié)果。以GB/T 6973—2005《單粒(精密)播種機(jī)試驗(yàn)方法》為參照,各試驗(yàn)指標(biāo)計(jì)算公式為
NP組患者的TTP為1.4~23個(gè)月,中位進(jìn)展時(shí)間為8.2個(gè)月;TP組患者的TTP為1.6~22.3個(gè)月,中位進(jìn)展時(shí)間為6.5個(gè)月;GP組患者的TTP為1.7~21.3個(gè)月,中位進(jìn)展時(shí)間為7.9個(gè)月。3組患者的TTP比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。1年生存率的比較分析結(jié)果顯示,NP、TP以及GP組患者分別為72.22%,65.79%以及77.78%,3組比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。
式中為漏吸率,%;為吸附合格率,%;為堵孔率,%;為型孔理論吸附種子數(shù);1為型孔吸附0粒種子穴數(shù);2為1~2 粒種子穴數(shù);3為種子堵孔穴數(shù)。
表3為不同負(fù)壓條件下種盤優(yōu)選試驗(yàn)結(jié)果。根據(jù)表3可知,在工作負(fù)壓為1 000~2 000 Pa條件下,種子漏吸率隨作業(yè)速度增大而上升,吸附合格率隨作業(yè)速度增大而降低;工作負(fù)壓小于1 500 Pa時(shí),作業(yè)速度在4.3~9.5 km/h工況下,種盤型式對(duì)充種性能影響明顯,直線型槽齒盤最大漏吸率不大于20%,圓弧型槽齒盤最大漏吸率高于30%,平面盤最大漏吸率高于45%;工作負(fù)壓不低于1 500 Pa情況下,作業(yè)速度小于6 km/h時(shí),各種盤漏吸率和吸附合格率差異不大,當(dāng)作業(yè)速度超過(guò)6 km/h時(shí),各種盤的漏吸率和吸附合格率差異明顯,直線型槽齒盤最大漏吸率小于8%,圓弧型槽齒盤最大漏吸率高于13%,平面盤最大漏吸率高于20%,直線型槽齒盤的充種性能均優(yōu)于其他2個(gè)種盤。
工作負(fù)壓1 000~2 000 Pa、作業(yè)速度為4.3~9.5 km/h范圍內(nèi),平面盤漏吸率超過(guò)45%、吸附合格率低于55%,圓弧型槽齒盤漏吸率超過(guò)30%,吸附合格率低于70%,直線型槽齒盤漏吸率低于20%、吸附合格率超過(guò)80%,高速攝像顯示,這3 種型式的種盤在試驗(yàn)過(guò)程中均未出現(xiàn)吸孔堵塞情況,堵孔率為0。
結(jié)合仿真和臺(tái)架試驗(yàn),直線型槽齒盤對(duì)種群擾動(dòng)強(qiáng)度最大且種子流動(dòng)性最好,有助于少量種子從種群中快速分離被吸孔吸附,有效改善種盤在高速作業(yè)的充種性能。
表3 不同負(fù)壓條件下種盤型式對(duì)充種性能的影響
3.4.1 試驗(yàn)因素水平
以優(yōu)選出的直線型槽齒盤為研究對(duì)象,選取仿真所用的4個(gè)作業(yè)速度4.3、6.0、7.8和9.5 km/h,工作負(fù)壓選取1 000、1 500、2 000和2 500 Pa,槽齒厚度選取0、0.5、1.0和1.5 mm,試驗(yàn)因素水平如表4所示。
表4 試驗(yàn)因素水平
為確定各試驗(yàn)因素對(duì)試驗(yàn)指標(biāo)的影響,利用Design-Expert軟件進(jìn)行試驗(yàn)方案設(shè)計(jì),并進(jìn)行了極差和方差分析,如表5和表6所示。
由表5極差分析結(jié)果可知,種盤漏吸率越低、吸附合格率越高,其充種性能越好。影響漏吸率的主次順序?yàn)椤?、,影響吸附合格率的主次因素為、、;種盤漏吸率較優(yōu)組合為342,種盤吸附合格率較優(yōu)組合為34C1。根據(jù)吸附合格率和漏吸率的最優(yōu)參數(shù)組合可知,槽齒厚度為1.0 mm可有效提高吸附合格率、降低漏吸率。
由表6方差分析結(jié)果可知,槽齒厚度、工作負(fù)壓和作業(yè)速度對(duì)漏吸率均有顯著影響;槽齒厚度和工作負(fù)壓對(duì)吸附合格率影響顯著,作業(yè)速度對(duì)吸附合格率影響不顯著。槽齒厚度對(duì)漏吸率和吸附合格率均有顯著影響,由此看出,合理的種盤結(jié)構(gòu)設(shè)計(jì)有助于改善充種室種群擾動(dòng)強(qiáng)度,進(jìn)而提高油菜籽粒精量充種性能。
表5 試驗(yàn)方案及結(jié)果
注:、、分別為槽齒厚度、工作負(fù)壓和作業(yè)速度3個(gè)因素的編碼值,下同。
Note:,, andare the factor code values of the groove-tooth thickness, the negative pressure, and the velocity, the same as below.
實(shí)際工作時(shí),工作負(fù)壓由旋渦風(fēng)泵提供,正常作業(yè)時(shí)工作負(fù)壓一般在合理區(qū)間波動(dòng),作業(yè)速度由拖拉機(jī)檔位控制,需根據(jù)實(shí)際工況實(shí)時(shí)切換檔位,而高速作業(yè)時(shí)種盤漏吸率高降低了排種性能,導(dǎo)致油菜出苗效果不佳,這是制約油菜高速精播的瓶頸。結(jié)合高速攝像分析可知,在固定工作負(fù)壓條件下,當(dāng)槽齒厚度較小時(shí),種盤對(duì)種群輔助擾動(dòng)小,種子流動(dòng)性差,不利于種子從種群中分離,以致高速作業(yè)時(shí)吸孔難以在短暫時(shí)間捕獲并穩(wěn)固吸附種子,導(dǎo)致漏吸率升高(見(jiàn)圖 9a);當(dāng)槽齒厚度較大時(shí),種盤對(duì)種群輔助擾動(dòng)大,種子流動(dòng)性好,較多的種子被從種群中分離出來(lái),但此時(shí)槽齒上會(huì)帶有少量的種子,導(dǎo)致部分吸孔有一定比例的重吸,降低了充種性能(見(jiàn)圖9b);當(dāng)槽齒厚度選擇適當(dāng)時(shí),種盤對(duì)種群定向擾動(dòng)過(guò)程中,少量種子從種群中快速分離并被吸孔精準(zhǔn)吸附(見(jiàn)圖9c)。解決了前期依靠更換大功率旋渦風(fēng)泵增大工作負(fù)壓改善高速作業(yè)條件下油菜充種性能的問(wèn)題。
表6 方差分析
注:**表示極顯著(< 0.01),*表示顯著(0.01 << 0.05)。
Note:** is very significant (< 0.01), * is significant (0.01 << 0.05).
圖9 高速攝像捕獲不同齒厚條件下的種子吸附狀態(tài)
根據(jù)仿真和臺(tái)架試驗(yàn)結(jié)果,為考查試驗(yàn)因素對(duì)充種性能的影響規(guī)律,選取作業(yè)速度2.6、4.3、6.0、7.8、9.5 km/h和工作負(fù)壓1 000、1 500、2 000、2 500 Pa進(jìn)行兩因素的不同槽齒厚度對(duì)充種性能影響的全因子對(duì)比試驗(yàn),如圖10所示。由試驗(yàn)結(jié)果可知:當(dāng)工作負(fù)壓一定時(shí),隨著作業(yè)速度的增加,漏吸率逐漸上升、吸附合格率下降;在同一作業(yè)速度下,漏吸率隨工作負(fù)壓的增大逐漸降低,吸附合格率隨工作負(fù)壓的增大逐漸升高。當(dāng)槽齒厚度為1.0 mm、工作負(fù)壓1 500~2 500 Pa、作業(yè)速度2.6~9.5 km/h條件下,吸附合格率不低于96%,漏吸率不大于4%。
為進(jìn)一步檢驗(yàn)前述優(yōu)選試驗(yàn)和正交試驗(yàn)確定的較優(yōu)齒厚1.0 mm直線型槽齒盤對(duì)排種性能的影響,以4行串聯(lián)集中排種為例進(jìn)行多路排種性能試驗(yàn),作用速度設(shè)定2.6~9.5 km/h共9個(gè)梯度,工作負(fù)壓2 200 Pa由HG-550型漩渦氣泵提供,氣力管路連接方式與田間播種保持一致。試驗(yàn)時(shí),待多路排種性能檢測(cè)試驗(yàn)臺(tái)進(jìn)入穩(wěn)定工作狀態(tài)后,采用集種筒收集4個(gè)排種器出種口排出的油菜種子,并用天秤稱出收集的油菜種子凈質(zhì)量,收集過(guò)程以3 min為時(shí)間間隔,每組試驗(yàn)重復(fù)5次。試驗(yàn)結(jié)果如圖11所示,排種量隨作業(yè)速度的增加呈直線上升趨勢(shì),排種速率可調(diào)范圍13~53 g/min,各行排量一致性變異系數(shù)低于3.5%,試驗(yàn)過(guò)程中未發(fā)現(xiàn)種子破損現(xiàn)象,試驗(yàn)結(jié)果滿足NY/T 1143—2006《播種機(jī)質(zhì)量評(píng)價(jià)技術(shù)規(guī)范》和皖江地區(qū)油菜種植需要。
圖10 因素交互對(duì)吸附合格率和漏吸率的影響
圖11 作業(yè)速度對(duì)排種性能的影響
針對(duì)油菜氣力盤式精量排種器高速排種過(guò)程中因充種效果不佳導(dǎo)致漏播嚴(yán)重和工作負(fù)壓需求大的問(wèn)題,提出了一種槽齒定向擾動(dòng)輔助充種種盤,進(jìn)行了槽齒輔助充種性能分析與試驗(yàn)研究,主要結(jié)論如下:
1)不同槽齒型式和槽齒厚度對(duì)種子擾動(dòng)強(qiáng)度的仿真分析結(jié)果表明,齒厚0.5~1.5 mm的直線型槽齒具有較好的輔助充種作用,有助于改善種子流動(dòng)性和抑制種群拖帶。
2)工作負(fù)壓不低于1 500 Pa條件下,作業(yè)速度小于6.0 km/h時(shí),3種型式種盤的充種性能差異較小,作業(yè)速度在6.0~9.5 km/h范圍內(nèi),直線型槽齒盤最大漏吸率小于8%,圓弧型槽齒盤最大漏吸率高于13%,平面盤最大漏吸率高于20%,表明直線型槽齒輔助充種性能優(yōu)于圓弧型槽齒和無(wú)槽齒的平面盤。
3)以直線型槽齒型式為對(duì)象進(jìn)行了三因素四水平正交試驗(yàn),明確了槽齒厚度、工作負(fù)壓和作業(yè)速度對(duì)充種性能的影響規(guī)律;充種性能試驗(yàn)結(jié)果表明,在槽齒厚度為1.0 mm、工作負(fù)壓1 500~2 500 Pa、作業(yè)速度2.6~9.5 km/h條件下,吸附合格率不低于96%,漏吸率不大于4%。
本文試驗(yàn)過(guò)程中均未發(fā)現(xiàn)有種子破損,其原因在于:圓弧型槽齒和直線型槽齒對(duì)種群定向擾動(dòng)過(guò)程中,貼近槽齒的薄層種子隨槽齒側(cè)向移動(dòng),由于油菜種子的球形度高、流動(dòng)性好,種群隨機(jī)流動(dòng)性大,槽齒與種子、種子與種子之間的相互作用力?。粌?yōu)選出槽齒厚度為1.0 mm,僅為油菜種子平均直徑的一半,槽齒僅與貼近種盤表面的薄層種子相互作用,槽齒對(duì)種子的剪切作用很小,不足以使種子破損。影響該氣力式排種器充種性能的因素較多,如充種室結(jié)構(gòu)型式、型孔結(jié)構(gòu)型式與參數(shù)、種盤材料、充種高度、輔助充種機(jī)構(gòu)型式與參數(shù)以及排種器振動(dòng)等,后期將深入探討與種群有作用關(guān)系的排種器結(jié)構(gòu)對(duì)充種性能的影響機(jī)理。
[1] 廖慶喜,雷小龍,廖宜濤,等. 油菜精量播種技術(shù)研究進(jìn)展[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(9):1-16. Liao Qingxi, Lei Xiaolong, Liao Yitao, et al. Research progress of precision seeding for rapeseed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 1-16. (in Chinese with English abstract)
[2] 蒯婕,王積軍,左青松,等. 長(zhǎng)江流域直播油菜密植效應(yīng)及其機(jī)理研究進(jìn)展[J]. 中國(guó)農(nóng)業(yè)科學(xué),2018,51(24):4625-4632. Kuai Jie, Wang Jijun, Zuo Qingsong, et al. Effects and mechanism of higher plant density on directly-sown rapeseed in the Yangtze River basin of China[J]. Scientia Agricultura Sinica, 2018, 51(24): 4625-4632. (in Chinese with English abstract)
[3] 雷小龍,廖宜濤,叢錦玲,等. 油菜小麥兼用氣送式直播機(jī)集排器參數(shù)優(yōu)化與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(12):16-26. Lei Xiaolong, Liao Yitao, Cong Jinling, et al. Parameter optimization and experiment of air-assisted centralized seed-metering device of direct seeding machine for rape and wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(12): 16-26. (in Chinese with English abstract)
[4] 吳明亮,官春云,羅海峰,等. 2BYD-6型油菜淺耕直播施肥聯(lián)合播種機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(11):136-140. Wu Mingliang, Guan Chunyun, Luo Haifeng, et al. Design and experiments of 2BYD-6 shallow tilling and fertilizing seeder for rapes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(11): 136-140. (in Chinese with English abstract)
[5] 李玉環(huán),楊麗,張東興,等. 豆類作物一器雙行氣吸式高速精量排種器設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(7):61-73. Li Yuhuan, Yang Li, Zhang Dongxing, et al. Design and experiment of pneumatic precision seed-metering device with single seed-metering plate for double-row[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(7): 61-73. (in Chinese with English abstract)
[6] Liao Yitao, Wei Lei, Liao Qingxi. Design and test of an inside-filling pneumatic precision centralized seed-metering device for rapeseed[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(2): 56-62.
[7] Khobragade H M, Kamble A K, Dave A K. Performance evaluation of pneumatic seed metering device for paddy in puddle[J]. International Journal of Agricultural Engineering, 2012, 5(1): 98-102.
[8] Anantachara M, Prasanna Kumarb G V, Guruswamy T. Development of artificial neural network models for the performance prediction of an inclined plate seed metering device[J]. Applied Soft Computing, 2011, 11: 3753-3763.
[9] 邢赫,臧英,王在滿,等. 水稻氣力式播量可調(diào)排種器設(shè)計(jì)與參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(4):20-28. Xing He, Zang Ying, Wang Zaiman, et al. Design and parameter optimization of rice pneumatic seeding metering device with adjustable seeding rate[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(4): 20-28. (in Chinese with English abstract)
[10] 賈洪雷,陳玉龍,趙佳樂(lè),等. 氣吸機(jī)械復(fù)合式大豆精密排種器設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(4):75-86,139. Jia Honglei, Chen Yulong, Zhao Jiale, et al. Design and experiment of pneumatic-mechanical combined precision metering device for soybean[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 75-86, 139. (in Chinese with English abstract)
[11] 丁力,楊麗,劉守榮,等. 輔助充種種盤玉米氣吸式高速精量排種器設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(22):1-11. Ding Li, Yang Li, Liu Shourong, et al. Design of air suction high velocity precision maize seed metering device with assistant seed filling plate[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 1-11. (in Chinese with English abstract)
[12] 張國(guó)忠,臧英,羅錫文,等. 水稻氣力式排種器導(dǎo)向型攪種裝置的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(12):1-8. Zhang Guozhong, Zang Ying, Luo Xiwen, et al. Design and experiment of oriented seed churning device on pneumatic seed metering device for rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(12): 1-8. (in Chinese with English abstract)
[13] Gaikwad B B, Sirohi N P S. Design of a low-cost pneumatic seeder for nursery plug trays[J]. Biosystems Engineering, 2008, 99(10): 322-329.
[14] 崔濤,韓丹丹,殷小偉,等. 內(nèi)充氣吹式玉米精量排種器設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(1):8-16. Cui Tao, Han Dandan, Yin Xiaowei, et al. Design and experiment of inside-filling air-blowing maize precision seed metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(1): 8-16. (in Chinese with English abstract)
[15] Li Zhaodong, Liao Yitao, Zhang Wenyu, et al. EDEM-based numerical simulation and analysis on filling performance of centralized seed metering device[J]. International Agricultural Engineering Journal, 2017, 26(4): 140-148.
[16] Woo S M, Daniel Uyeh, Sagong M S, et al. Development of seeder for mixed planting of corn and soybeans[J]. Int J Agric & Biol Eng, 2017, 10(3): 95-101.
[17] 史嵩,張東興,楊麗,等. 基于EDEM 軟件的氣壓組合孔式排種器充種性能模擬與驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(3):62-69. Shi Song, Zhang Dongxing, Yang Li, et al. Simulation and verification of seed-filling performance of pneumatic-combined holes maize precision seed-metering device based on EDEM[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(3): 62-69. (in Chinese with English abstract)
[18] Arzu Y, Adnan D. Measurement of seed spacing uniformity performance of a precision metering unit as function of the number of holes on vacuum plate[J]. Measurement, 2014, 56: 128-135.
[19] Arzu Y, Adnan D. Optimization of the seed spacing uniformity performance of a vacuum-type precision seeder using response surface methodology[J]. Biosystems Engineering, 2007, 97: 347-356.
[20] Yazgi A, Degirmencioglu A. Measurement of seed spacing uniformity performance of a precision metering unit as function of the number of holes on vacuum plate[J]. Measurement, 2014, 56(6): 128-135.
[21] Yazgi A, Degirmencioglu A, Onal I, et al. Mathematical modeling and optimization of the performance of a metering unit for precision corn seeding[J]. Journal of Agricultural Machine Science, 2010, 6(2): 107-113.
[22] 叢錦玲,廖慶喜,曹秀英,等. 油菜小麥兼用吸種盤的排種器充種性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(8):30-39. Cong Jinling, Liao Qingxi, Cao Xiuying, et al. Seed filling performance of dual-purpose seed plate in metering device forboth rapeseed & wheat seed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(8): 30-39. (in Chinese with English abstract)
[23] Wang J W, Tang H, Wang J F, et al. Measurement and analysis of restitution coefficient between maize seed and soil based on high-velocity photography[J]. Int J Agric & Biol Eng, 2017, 10(3): 102-114.
[24] 廖宜濤,廖慶喜,王磊,等. 氣力式小粒徑種子精量排種器吸種效果影響因素研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(24):10-17. Liao Yitao, Liao Qingxi, Wang Lei, et al. Investigation on vacuum singulating effect influencing factors of pneumatic precision seed metering device for small particle size of seeds[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(24): 10-17. (in Chinese with English abstract)
[25] 李兆東,楊文超,張?zhí)?,? 油菜高速精量排種器槽齒組合式吸種盤設(shè)計(jì)與充種性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(1):12-22. Li Zhaodong, Yang Wenchao, Zhang Tian, et al. Design and filling performance test of seed plate combined with groove-tooth structure on high velocity precision metering device of rapeseed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(1): 12-22. (in Chinese with English abstract)
[26] 都鑫,劉彩玲,姜萌,等. 自擾動(dòng)內(nèi)充型孔輪式玉米精量排種器設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(13):23-34. Du Xin, Liu Cailing, Jiang Meng, et al. Design and experiment of self-disturbance inner-filling cell wheel maize precision seed-metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(13): 23-34. (in Chinese with English abstract)
[27] 顏丙新,張東興,崔濤,等. 排種盤和負(fù)壓腔室同步旋轉(zhuǎn)氣吸式玉米精量排種器設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(23):15-23. Yan Bingxin, Zhang Dongxing, Cui Tao, et al. Design of pneumatic maize precision seed-metering device with synchronous rotating seed plate and vacuum chamber[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(23): 15-23. (in Chinese with English abstract)
[28] 張濤,劉飛,趙滿全,等. 基于離散元的排種器排種室內(nèi)玉米種群運(yùn)動(dòng)規(guī)律[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(22):27-35. Zhang Tao, Liu Fei, Zhao Manquan, et al. Movement law of maize population in seed room of seed metering device based on discrete element method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(22): 27-35. (in Chinese with English abstract)
[29] 叢錦玲. 油菜小麥兼用型氣力式精量排種系統(tǒng)及其機(jī)理研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2014. Cong Jinling. Study on Seeding System and Mechanism of Pneumatic Precision Metering Device for Wheat and Rapeseed[D]. Wuhan: Huazhong Agricultural University, 2014. (in Chinese with English abstract)
[30] 雷小龍,廖宜濤,李兆東,等. 種層厚度對(duì)油麥兼用集排器供種裝置充種性能的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(6):11-19. Lei Xiaolong, Liao Yitao, Li Zhaodong, et al. Effects of seed layer thickness on seed filling performance of seed feeding device for rapeseed and wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(6): 11-19. (in Chinese with English abstract)
[31] 李兆東,雷小龍,曹秀英,等. 油菜精量氣壓式集排器的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(7):9-17. Li Zhaodong, Lei Xiaolong, Cao Xiuying, et al. Design and experiment of pneumatic-typed precision centralized metering device for rapeseed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(7): 9-17. (in Chinese with English abstract)
[32] 廖慶喜,張朋玲,廖宜濤,等. 基于EDEM的離心式排種器排種性能數(shù)值仿真[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(2):109-114. Liao Qingxi, Zhang Pengling, Liao Yitao, et al. Numerical simulation on seeding performance of centrifugal rape-seed metering device based on EDEM[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(2): 109-114. (in Chinese with English abstract)
[33] 曹秀英,廖宜濤,廖慶喜,等. 油菜離心式精量集排器枝狀閥式分流裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(9):77-84. Cao Xiuying, Liao Yitao, Liao Qingxi, et al. Design and experiment on value-branch distributor of centrifugal precision metering device for rapeseed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(9): 77-84. (in Chinese with English abstract)
Performance analysis and experiments of seed filling assisted by groove-tooth of pneumatic disc precision metering device for rapeseed
Li Zhaodong1,2, Yang Wenchao1,3, Wu Yaoyao1, He Shun1, Wang Weiwei1,2, Chen Liqing1,2※
(1.,,230036,; 2.,230036,; 3.,,100083,)
High precision of seed metering device is becoming essential to regulate the seeding amount of a direct seeding machine, and to enhance the quality of planting density. A pneumatic seeding technology can be highly expected, due to its low injury rate, good seed adaptability, and large adjustable range of sowing volume. In planting rapeseed, the filling problem can occur during the seeding process with a high velocity using the pneumatic precision metering device, easy to cause serious missed seeding and large working negative pressure. Therefore, an assistant filling plate with groove-tooth directional disturbance was proposed to deal with the filling problem. This study aims to investigate the effects of groove-tooth structure on filling performance in a plate-type pneumatic seed metering device with high velocity and precision for planting rapeseed. An EDEM software, high velocity camera technology and orthogonal test were combined to explore the assisted filling performance, the seed-group mobility under different types and thickness of groove-tooth. This method can be used to alleviate the serious leakage and large demanding for wind pressure power in the seeding process. The EDEM numerical simulation was performed to analyze the influence of different thickness and types of groove-tooth on seed-group mobility during planting. The average kinetic energy and its sum were selected as the quantitative indicators. The results showed that there was a better assistant filling effect in a seed churning device with a linear groove-tooth structure in the thickness from 0.5 mm to 1.5 mm, which helped to improve the seed mobility and inhibit the seed-group drag. In the bench test, the Huayouza 62 was selected, where its 1000-grain weight was 4.4 g, the sphericity was 91.5 %, and the water content was 7.6 %. With the help of high-velocity camera technology, the groove-tooth optimization and assistant filling performance test were carried out to explore the influence of experimental factors on assistant suction performance. According to the model parameters, the smooth plate, arc-shaped and linear seed plate with groove-tooth were produced by the optimized experiment of seed churning device, and thereby they were installed on the top surface of pneumatic precision metering devices during planting rapeseed. It is noted that the seed casing was made of transparent materials for the convenience of observation. Optimized type of groove-tooth was taken as the object, and the thickness of groove-tooth, velocity and negative pressure were taken as experiment factors, while, the leakage absorption rate and the absorption qualification rate were taken as experiment indicators. A three-factor four-level orthogonal experiment was carried out using Design-Expert software. The results showed that when the negative pressure was not less than 1 500 Pa, and the velocity was less than 6.0 km/h, the filling performance for three types of seed plates had little difference. When the velocity was 6.0-9.5 km/h, the assistant filling performance of seed plate with the linear groove-tooth was better than that with the arc groove-tooth and smooth plate. In three factors and four horizontal orthogonal experiments, the optimal was achieved for the filling performance of 1.0 mm thickness, further to clarify the influences of thickness of groove-tooth, negative pressure and velocity on suction performance. The optimal conditions of groove-tooth can be obtained: the thickness of 1.0 mm, the negative pressure of 1 500-2 500 Pa, the velocity of 2.6-9.5 km/h, the adsorption qualification rate was not less than 96 %, and leakage rate was not more than 4 %. The findings can provide a sound reference for the optimal design of pneumatic seed metering device in plate type with high velocity and high precision for planting rapeseed.
agricultural machinery; seeds; experiments; pneumatic seed metering device; filling performance; rape
李兆東,楊文超,武堯堯,等. 油菜氣力盤式精量排種器槽齒輔助充種性能分析與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(20):57-66.doi:10.11975/j.issn.1002-6819.2020.20.008 http://www.tcsae.org
Li Zhaodong, Yang Wenchao, Wu Yaoyao, et al. Performance analysis and experiments of seed filling assisted by groove-tooth of pneumatic disc precision metering device for rapeseed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(20): 57-66. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.20.008 http://www.tcsae.org
2020-05-05
2020-09-25
國(guó)家自然科學(xué)基金資助項(xiàng)目(51805004);安徽省自然科學(xué)基金資助項(xiàng)目(1808085QE170);安徽省教育廳科學(xué)研究項(xiàng)目(KJ2018A0135)
李兆東,博士,副教授,主要從事智能化農(nóng)業(yè)裝備關(guān)鍵技術(shù)及應(yīng)用研究。Email:Lizd@ahau.edu.cn
陳黎卿,教授,博士生導(dǎo)師,主要從事智能農(nóng)機(jī)裝備設(shè)計(jì)理論與技術(shù)研究。Email:lqchen@ahau.edu.cn
10.11975/j.issn.1002-6819.2020.20.008
S223.2+3
A
1002-6819(2020)-20-0057-10