郭南飛,韓智勇,史 瑞,李 浩,劉 潔
農(nóng)村垃圾厭氧-準(zhǔn)好氧時(shí)空聯(lián)合生物反應(yīng)器中微生物群落分析
郭南飛1,2,3,韓智勇1,2,3※,史 瑞1,2,3,李 浩1,2,3,劉 潔4
(1. 地質(zhì)災(zāi)害防治與地質(zhì)環(huán)境保護(hù)國(guó)家重點(diǎn)實(shí)驗(yàn)室(成都理工大學(xué)),成都 610059;2. 國(guó)家環(huán)境保護(hù)水土污染協(xié)同控制與聯(lián)合修復(fù)重點(diǎn)實(shí)驗(yàn)室(成都理工大學(xué)),成都 610059;3. 成都理工大學(xué)生態(tài)環(huán)境學(xué)院,成都 610059;4. 成都大學(xué)建筑與土木工程學(xué)院,成都 610106)
生物反應(yīng)器是處理農(nóng)村中小型固體廢物的有效技術(shù),該研究以時(shí)空聯(lián)合型厭氧-準(zhǔn)好氧生物反應(yīng)器(SASAB,Sequentially Anaerobic/Semi-Aerobic Bioreactor)為研究對(duì)象,利用16S rRNA高通量測(cè)序分析了STASAB中的微生物群落,以期為該反應(yīng)器的高效運(yùn)行提供理論依據(jù)。結(jié)果表明,各生物反應(yīng)器處理單元中將C1、C2和C3生物反應(yīng)器設(shè)為試驗(yàn)組,分別在第66、101和246天開始依次按SASAB操作運(yùn)行的優(yōu)勢(shì)菌門為(18.5%~26.6%)(14.9%~26.6%)(6.6%~25.2%)(8.2%~24.0%)(6.9%~13.8%)。C3處理單元在厭氧階段中的優(yōu)勢(shì)菌屬為vadinBC27_wastewater-sludge_group_2norank_f_(產(chǎn)甲烷菌)等。在STASAB各處理單元中發(fā)現(xiàn)了硝化細(xì)菌以及大量的反硝化細(xì)菌unclassified_o_AKYG587norank_f_等。Venn圖與PCA分析顯示C1、C2具有相似的微生物群落結(jié)構(gòu),C3中的特有菌屬高于其他反應(yīng)器;RDA(Redundancy Analysis)分析表明C1、C2(STASAB)中的微生物群落具有更高的穩(wěn)定性,不易受到外界環(huán)境因素的影響。因此,STASAB的空間布局和運(yùn)行方式能夠有效發(fā)揮厭氧和準(zhǔn)好氧生物反應(yīng)器的優(yōu)勢(shì),高效促進(jìn)產(chǎn)甲烷菌、硝化菌和反硝化菌的共存和生長(zhǎng)代謝,實(shí)現(xiàn)農(nóng)村生活垃圾的快速降解。
農(nóng)村;微生物群落;垃圾處理;高通量測(cè)序;時(shí)空聯(lián)合型厭氧-準(zhǔn)好氧生物反應(yīng)器
隨著農(nóng)村生活水平的不斷提高,農(nóng)村生活垃圾量逐年遞增,我國(guó)每年產(chǎn)生近2.0×108t農(nóng)村生活垃圾[1],由于缺乏有效管理,生活垃圾處理率僅為50%左右[2]。雖然社會(huì)、經(jīng)濟(jì)、自然和其他因素會(huì)使農(nóng)村生活垃圾具有顯著的區(qū)域差異[3],但農(nóng)村生活垃圾普遍具有產(chǎn)率低、產(chǎn)量高、有機(jī)物含量高等特征[4],基于這些特征,生物反應(yīng)器被廣泛認(rèn)為是農(nóng)村地區(qū)中小型固體廢物處理的有效技術(shù)[5]。生物反應(yīng)器技術(shù)通過滲濾液回灌,營(yíng)養(yǎng)物的添加,調(diào)控pH值,增加氧氣含量,微生物接種和調(diào)控溫度來加強(qiáng)微生物作用的過程,加速垃圾中有機(jī)物的降解和轉(zhuǎn)化,促進(jìn)垃圾快速穩(wěn)定。根據(jù)反應(yīng)器運(yùn)行方式的不同,生物反應(yīng)器可分為厭氧、好氧、準(zhǔn)好氧和聯(lián)合生物反應(yīng)器等類型[6]。
目前,大部分學(xué)者將垃圾滲濾液回灌作為主要調(diào)控手段對(duì)生物反應(yīng)器進(jìn)行了廣泛研究。有學(xué)者發(fā)現(xiàn)厭氧生物反應(yīng)器具有加速填埋垃圾穩(wěn)定、降低滲濾液污染強(qiáng)度、可回收利用甲烷氣體等優(yōu)點(diǎn)[7],但由于填埋初期的生活垃圾迅速水解,會(huì)導(dǎo)致有機(jī)酸和氨氮積累[8];好氧或準(zhǔn)好氧生物反應(yīng)器對(duì)垃圾滲濾液中的有機(jī)物和氨氮的去除效果更好[9],但會(huì)抑制甲烷的產(chǎn)生并導(dǎo)致能量無法回收[10],此外,好氧生物反應(yīng)在進(jìn)行曝氣時(shí)還會(huì)消耗大量能源[11]。聯(lián)合型生物反應(yīng)器由不同類型生物反應(yīng)器串聯(lián)組合構(gòu)成,能夠充分利用不同類型生物反應(yīng)器的優(yōu)勢(shì)[12-13]。前期研究表明厭氧-準(zhǔn)好氧聯(lián)合型生物反應(yīng)器(SASAB, Sequentially Anaerobic/Semi-Aerobic Bioreactor)不但能有效加速垃圾的降解速率和提高有機(jī)物、氮的去除率[14-15],并且能克服不同單一類型生物反應(yīng)器的不足,這為農(nóng)村生活垃圾的處理提供了一種新技術(shù)。韓智勇等基于傳統(tǒng)生物反應(yīng)器的不足以及前人對(duì)SASAB的研究,提出了時(shí)空聯(lián)合型厭氧-準(zhǔn)好氧生物反應(yīng)器(STASAB)技術(shù),STASAB通過將多個(gè)SASAB在不同時(shí)間和空間上進(jìn)行結(jié)合,極大地提高了氮的去除率和有機(jī)物的降解速度,實(shí)現(xiàn)了垃圾滲濾液的零排放[16],但其運(yùn)行機(jī)理有待進(jìn)一步研究。因此,本文通過對(duì)STASAB中微生物菌群的結(jié)構(gòu)特征進(jìn)行分析,以期闡明STASAB的脫氮除碳機(jī)理,進(jìn)一步證實(shí)STASAB可為農(nóng)村生活垃圾的處理處置提供一種高效的解決途徑。
厭氧-準(zhǔn)好氧生物反應(yīng)器均采用500 mm×1 200 mm的PVC柱,模型裝置如圖1所示,生物反應(yīng)器自下而上依次為:底座+200 mm礫石層+土工布+900 mm垃圾層+50 mm礫石層。
1.密封蓋 2.布水器 3.氣體導(dǎo)排孔 4.滲濾液回灌孔 5.通風(fēng)管 6.閥門 7.滲滲液收集管 8.礫石層 9.垃圾層
1)裝填
本試驗(yàn)裝填的生活垃圾取自成都理工大學(xué)住宅生活小區(qū),按照2015年在中國(guó)西南部四川省農(nóng)村地區(qū)生活垃圾的濕基組分質(zhì)量分?jǐn)?shù)(廚余(74.30%):紙(10.64%):紡織(5.93%):木竹(3.68%):灰土(5.84%):磚瓦陶瓷(0.52%)),剔除塑料、金屬后分別對(duì)4組反應(yīng)器進(jìn)行裝填。反應(yīng)器的裝填高度為90 cm,裝填質(zhì)量為125 kg,裝填密度為700 kg/m3。
2)運(yùn)行安排
本試驗(yàn)的運(yùn)行參考Han等研究中的試驗(yàn)過程[16]。設(shè)置C0生物反應(yīng)器為對(duì)照組,并按厭氧-準(zhǔn)好氧生物反應(yīng)器(SASAB)運(yùn)行,即在垃圾裝填后,密封反應(yīng)器,通過溫控系統(tǒng)保持反應(yīng)器溫度在(35±2)℃,進(jìn)行滲濾液回灌(回灌頻率為3 d/次,回灌速率為600 mL/min);有機(jī)垃圾在時(shí)間序列上依次經(jīng)歷水解酸化(第1~203 天)、產(chǎn)甲烷階段(第206~246 天)。
為使C1、C2快速進(jìn)入產(chǎn)甲烷階段,從反應(yīng)器C0中各抽取1L滲濾液混入C1、C2滲濾液后進(jìn)行回灌,并添加30%的NaOH溶液調(diào)節(jié)pH值至8.0,待C1進(jìn)入產(chǎn)甲烷階段后停止。當(dāng)厭氧發(fā)酵階段的日產(chǎn)氣量小于10 L和滲濾液中的COD濃度低于5000 mg/L時(shí),打開密封蓋和通風(fēng)管閥門,使其與空氣聯(lián)通,依靠?jī)?nèi)外溫差形成的壓力差實(shí)現(xiàn)自然通風(fēng),從而進(jìn)入準(zhǔn)好氧反應(yīng)階段(第291~482 天)。將C1、C2和C3生物反應(yīng)器設(shè)為試驗(yàn)組,分別在第66、101和246 天開始依次按SASAB操作運(yùn)行,實(shí)現(xiàn)了C1、C2、C3在時(shí)間上的結(jié)合。從293 天開始,C1、C2、C3分別處于準(zhǔn)好氧階段、產(chǎn)甲烷階段和水解酸化階段,通過將3個(gè)反應(yīng)器產(chǎn)生的滲濾液混合后回灌(回灌量等于產(chǎn)生量),從而實(shí)現(xiàn)3個(gè)處于不同階段的反應(yīng)器在空間上的聯(lián)合,形成時(shí)空聯(lián)合型厭氧-準(zhǔn)好氧生物反應(yīng)器(STASAB)。
試驗(yàn)結(jié)束時(shí),從每個(gè)生物反應(yīng)器的上、中、下層各取1個(gè)樣,將同一生物反應(yīng)器所采集的樣品充分混合后均分為3份,1份作為檢測(cè)樣品,另2份作為平行樣。樣品用液氮速凍至?80 ℃以下,并置于干冰中密封保存,送至上海美吉生物醫(yī)藥科技有限公司完成16S rRNA高通量測(cè)序。樣本DNA提取采用美國(guó)MP公司的Fast-DNA SPINTM kit for soil試劑盒,DNA完整性、純度與濃度的檢測(cè)采用瓊脂糖凝膠電泳法和分光光度計(jì)(NanoDrop2000)。選用515F(GTGCCAGC-MGCCGCGC-3′)和970R(CCGTCAATTCMTTTRAGTTT-3′)為PCR引物完成V4-V5區(qū)片段擴(kuò)增并回收擴(kuò)增產(chǎn)物,Miseq建庫測(cè)序。
利用origin 2018統(tǒng)計(jì)分析各反應(yīng)器中脫氮效果以及CH4產(chǎn)生量?;冖?Sanger平臺(tái),使用FLASH和Trimmomatic軟件對(duì)測(cè)序獲得的雙端序列數(shù)據(jù)質(zhì)控。對(duì)相似度為97%的OTU進(jìn)行優(yōu)化序列聚類并按最小樣本序列數(shù)抽平。為了獲得分類學(xué)信息,采用RDP classifier算法對(duì)相似度為97%的OTU進(jìn)行分類學(xué)劃分,細(xì)菌的比對(duì)數(shù)據(jù)庫為Silva庫。在OTU水平上利用mothur計(jì)算分析不同生物反應(yīng)器中微生物群落的Alpha多樣性。基于tax_summary_a數(shù)據(jù)表,利用R語言繪制柱狀圖,揭示不同生物反應(yīng)器中微生物群落組成和豐度。利用R語言繪制Venn圖,結(jié)合基于bary-curtis距離算法的PCA圖分析不同生物反應(yīng)器微生物結(jié)構(gòu)組成差異。利用R語言vegan包繪制RDA分析圖來分析微生物群落與環(huán)境因子之間的相關(guān)性。
根據(jù)之前的研究,試驗(yàn)結(jié)束時(shí),C0、C1、C2生物反應(yīng)器中TN去除率分別為60.3%、95.5%和92.3%;COD去除率分別為93.01%、96.85%和95.74%,且C1、C2、C3(STASAB)水解酸化階段的持續(xù)時(shí)間遠(yuǎn)小于C0(SASAB),詳細(xì)的運(yùn)行效果見Han等[16]所述。表明STASAB的脫氮效果顯著高于SASAB,且STASAB能夠解決厭氧干發(fā)酵過程中的“酸抑制”和“氨積累”難題,快速啟動(dòng)產(chǎn)甲烷階段,促進(jìn)有機(jī)污染物的快速降解。為了闡明STASAB的脫氮除碳機(jī)理,試驗(yàn)結(jié)束時(shí)對(duì)4個(gè)反應(yīng)器中的微生物群落結(jié)構(gòu)特征以及環(huán)境影響因素進(jìn)行了深入分析。
選取Shannon和Chao指數(shù)繪制稀釋曲線,如圖2所示,所有樣本的稀釋曲線均趨于平緩,表明本次試驗(yàn)測(cè)序數(shù)據(jù)可靠,揭示物種全面。由多樣性指數(shù)(表1)可知,樣本的Coverage指數(shù)均在99%水平以上,說明本次測(cè)序深度合理,試驗(yàn)結(jié)果可靠性高。
Shannon指數(shù)呈C3>C0>C1>C2規(guī)律,Simpson指數(shù)揭示的規(guī)律正好相反,表明C3中微生物多樣性最高。Chao、Ace指數(shù)呈C3>C1>C2>C0規(guī)律,表明C1生物反應(yīng)器物種豐富度最高,C0生物反應(yīng)器物種豐富度最低。
注:C0~C3為不同生物反應(yīng)器。
表1 生物反應(yīng)器中微生物屬水平多樣性指數(shù)
注:Shannon、Simpson為物種多樣性指數(shù);Chao、Ace為物種豐富度指數(shù);Coverage表示物種覆蓋率。
Note: Shannon and Simpson are the community diversity index; Chao and Ace are the community richness index; Coverage represents community coverage.
本次測(cè)序所得序列共聚類45個(gè)門,893個(gè)屬。在門水平下合并豐度在1%以下的物種(圖3),4個(gè)反應(yīng)器樣本中的優(yōu)勢(shì)菌門依次為,它們?cè)诜磻?yīng)器中的豐度分別介于18.5%~26.6%、14.9%~26.6%、6.6%~25.2%、8.2%~24.0%、6.9%~13.8%之間。其中是生物降解碳氮磷的主要細(xì)菌門類[17]。有研究表明,為革蘭氏陰性菌,在硝酸鹽降解,硫氧化以及有機(jī)物降解去除等方面具有重要作用[18]。主要為好氧細(xì)菌,可以將反應(yīng)器中的糖類和蛋白質(zhì)降解成水溶性化合物[19],因此在準(zhǔn)好氧階段運(yùn)行時(shí)間最長(zhǎng)的C0中的相對(duì)豐度更大。為發(fā)酵菌門,多為厭氧細(xì)菌,可以將小分子的有機(jī)物轉(zhuǎn)化成水溶性醇類、各種有機(jī)酸以及H2O、CO2、H2等,并且在蛋白質(zhì)的降解中起重要作用[20],由于C3在試驗(yàn)結(jié)束時(shí)還處于厭氧階段,因此其中的相對(duì)豐度遠(yuǎn)大于其他反應(yīng)器,這說明反應(yīng)器中有機(jī)物能夠在厭氧發(fā)酵階段被快速降解。屬于異養(yǎng)菌門,可以分解有機(jī)物質(zhì)供自身生長(zhǎng)使用[21]。在反應(yīng)器中還檢測(cè)到少量的硝化細(xì)菌[22]。此外,菌門中存在大量氨基酸降解和產(chǎn)氫產(chǎn)乙酸的功能細(xì)菌,在連接發(fā)酵型細(xì)菌和產(chǎn)甲烷菌中起重要作用[23],因此在產(chǎn)甲烷階段的C3中的相對(duì)豐度明顯高于其他生物反應(yīng)器。
圖3 生物反應(yīng)器中門水平下的微生物物種豐度
注:0-4表示顏色梯度代表的數(shù)值,數(shù)值越大,表示物種相對(duì)豐度越大。
在屬水平下,對(duì)各反應(yīng)器中豐度排名前25的物種進(jìn)行分析(圖4),從圖4中可以看出不同生物反應(yīng)器中的優(yōu)勢(shì)菌屬具有顯著差異,各優(yōu)勢(shì)菌屬的主要功能如表2所示。norank_f_vadinBC27_wastewater-sludge_group_2等菌類在C3生物反應(yīng)器中的豐度相對(duì)更高,這是因?yàn)樗鼈兌际菄?yán)格厭氧細(xì)菌,C3中的厭氧條件為這些細(xì)菌提供更好的生存環(huán)境。相反,等好氧、需氧菌在處于準(zhǔn)好氧階段的C0、C1、C2中的豐度相對(duì)更高。此外,C1、C2生物反應(yīng)器中還檢測(cè)出Norank_f_Norank_f_Norank_f_等厭氧細(xì)菌,這是由STASAB系統(tǒng)中C1、C2、C3進(jìn)行滲濾液混合回灌導(dǎo)致。
表2 生物反應(yīng)器中優(yōu)勢(shì)菌屬
由venn圖(圖5a)可知,C0、C1、C2、C3中的共有菌屬為379個(gè),其中C0的特有菌屬為19個(gè),C1、C2、C3的特有菌屬分別為C0的2.11、1.05、7.26倍,同時(shí)C0和STASAB其他反應(yīng)器的共有菌屬(C0和C1、C0和C2、C0和C3分別為462、458、400)明顯低于STASAB反應(yīng)器之間的共有菌屬(C1和C2、C1和C3、C2和C3分別為536、474、505),尤其是C1和C2的群落結(jié)構(gòu)最為相似,其共有菌屬占總菌屬的61.2%,這主要是由于STASAB時(shí)空聯(lián)合的運(yùn)行操作方式影響。
主成分分析(PCA)如圖5b所示,由PCA分析結(jié)果可知,2種主成分PC1和PC2可解釋總變異的57.07%和22.13%,C1和C2主要集中在PC1正軸和PC2正軸,且重合部分較大,表明C1和C2反應(yīng)器微生物群落結(jié)構(gòu)較相似,這是因?yàn)樗鼈兌继幱赟TASAB系統(tǒng)中的準(zhǔn)好氧階段,且進(jìn)行滲濾液混合回灌操作。而C0樣品主要集中在PC1負(fù)軸和PC2負(fù)軸,與C1、C2中微生物群落結(jié)構(gòu)差異較大,一方面是由于C0經(jīng)歷了更長(zhǎng)時(shí)間的準(zhǔn)好氧階段,另一方面是由于C1、C2與處于厭氧階段的C3反應(yīng)器進(jìn)行滲濾液混合回灌,C3反應(yīng)器中的特有菌屬進(jìn)入C1、C2。C3樣品主要集中在PC1負(fù)軸與PC2正軸,這是由于C3處于嚴(yán)格的厭氧產(chǎn)甲烷階段而其他反應(yīng)器均處于準(zhǔn)好氧階段,這與venn圖分析結(jié)果一致。
圖5 生物反應(yīng)器中微生物群落組成差異
冗余分析(RDA,Redundancy Analysis)如圖6所示,NH4+-N與溶解性有機(jī)碳(DOC Dissolved Organic Carbon)、氧化還原電位(ORP,Oxidation-Reduction Potential)、pH夾角均為鈍角,表明NH4+-N與DOC、ORP、pH呈負(fù)相關(guān)。這是由于較高的DOC、ORP以及堿性環(huán)境均能促進(jìn)硝化細(xì)菌的生長(zhǎng),有利于生物反應(yīng)器中的氨氮轉(zhuǎn)化成硝氮[45]。從樣品與環(huán)境因子的關(guān)系看,C0受環(huán)境因子DOC、ORP、pH的影響更大,C3受NH4+-N的影響較大,這是由于C0進(jìn)入準(zhǔn)好氧階段的時(shí)間最長(zhǎng),好氧環(huán)境最充分,好氧微生物更多,試驗(yàn)結(jié)束時(shí),其DOC含量相對(duì)STASAB明顯更低,大多數(shù)好氧微生物處于缺乏碳源狀態(tài),因此,DOC和ORP對(duì)C0微生物的影響更大;而C3處在厭氧產(chǎn)甲烷階段,此階段氨氮積累較多,所以受NH4+-N影響明顯;同時(shí)通過STASAB的滲濾液混合回灌運(yùn)行操作,C3為C1和C2補(bǔ)充了大量的碳源,實(shí)現(xiàn)了pH的調(diào)節(jié)、營(yíng)養(yǎng)物的添加、酸抑制和氨抑制的消除,為C1和C2中的微生物提供了適宜的生長(zhǎng)代謝環(huán)境,所以C1、C2對(duì)環(huán)境因子反應(yīng)不明顯,這表明STASAB中的微生物群落多樣性更大,穩(wěn)定性更強(qiáng),不易受到外界環(huán)境的影響。
注:DOC為溶解性有機(jī)碳;ORP為氧化還原電位。
STASAB通過滲濾液混合回灌,將處于不同階段的生物反應(yīng)器在時(shí)間和空間上形成了聯(lián)合,反應(yīng)器內(nèi)部空間同時(shí)存在厭氧、兼氧、好氧環(huán)境,同時(shí)實(shí)現(xiàn)了pH調(diào)節(jié)、微生物接種、營(yíng)養(yǎng)物添加,促進(jìn)了微生物的多樣性和穩(wěn)定性,解決了厭氧干發(fā)酵過程中的“酸抑制”和“氨積累”難題。其作用機(jī)理如圖7所示。
注:圖中英文為參與相關(guān)反應(yīng)細(xì)菌。
對(duì)于有機(jī)氮,首先,處于厭氧發(fā)酵階段的C3中氨氮迅速積累(從232.97至901.13 mg/L),是由于蛋白質(zhì)、氨基酸等含氮物質(zhì)被優(yōu)勢(shì)菌門以及其他厭氧微生物高速降解[20];產(chǎn)生的氨氮通過準(zhǔn)好氧階段的C1和C2中的硝化細(xì)菌以及亞硝化細(xì)菌norank-o-JG30-KF-CM45的作用被轉(zhuǎn)化成硝氮[22,44],最后被STASAB中大量的反硝化菌norank_f_、、AKYG587、norank_f_、unclassified_o_等還原成氮?dú)馊コ齕16]。此外,STASAB中還發(fā)現(xiàn)了短程硝化-反硝化細(xì)菌以及厭氧氨氧化菌(非優(yōu)勢(shì)菌屬)[31,46],這表明反應(yīng)器中還發(fā)生了短程硝化-反硝化和厭氧氨氧化反應(yīng),進(jìn)一步改善了STASAB的脫氮效果。
對(duì)于有機(jī)物,首先,STASAB中的糖類、蛋白質(zhì)等有機(jī)物被降解成小分子的有機(jī)物,可能是由于反應(yīng)器中、vadinBC27_wastewater-sludge_group、_2等厭氧菌的作用[26-27,43];其次,小分子有機(jī)物在unclassified_o_等的作用下被轉(zhuǎn)化為醇類、各種有機(jī)酸以及H2O、CO2、H2等[40];同時(shí),norank_f_可以將有機(jī)酸分解為乙酸并產(chǎn)生氫氣,為消耗氫氣的產(chǎn)甲烷菌提供更好的生存環(huán)境[30];最后,在C3處理單元中優(yōu)勢(shì)菌屬產(chǎn)甲烷細(xì)菌norank_f_的作用下[26],甲酸、乙酸、H2等被轉(zhuǎn)化為CH4和CO2。
1)各生物反應(yīng)器物種豐富度呈C1>C3>C2>C0規(guī)律;為生物反應(yīng)器中主要的優(yōu)勢(shì)菌門。C0中的優(yōu)勢(shì)菌屬為和norank_o_AKYG1722。C1、C2中優(yōu)勢(shì)菌屬為norank_f_、;C3中優(yōu)勢(shì)菌屬為、norank_f_、vadinBC27_wastewater-sludge_ group、_2。
2)C3中的特有菌屬數(shù)量(138)高于其他生物反應(yīng)器(C0、C1、C2分別為19、40、21),C1和C2中微生物共有菌屬為536,占總菌屬的61.2%,群落結(jié)構(gòu)較相似。同時(shí),SASAB系統(tǒng)中的C0處理單元和STASAB系統(tǒng)中的C3處理單元受環(huán)境因子NH4+-N、DOC、ORP、pH的影響較大,而STASAB系統(tǒng)中的C1、C2處理單元受到環(huán)境因子NH4+-N、DOC、ORP、pH的影響小。
3)STASAB可以將處于不同階段的生物反應(yīng)器在時(shí)間和空間上整合,高效促進(jìn)了產(chǎn)甲烷菌、硝化菌以及反硝化菌的共存和代謝。反應(yīng)器內(nèi)部形成厭氧、兼氧、好氧的環(huán)境,同時(shí)實(shí)現(xiàn)了pH調(diào)節(jié)、微生物接種、營(yíng)養(yǎng)物添加,促進(jìn)了微生物群落結(jié)構(gòu)的多樣性和穩(wěn)定性,有效解決了厭氧干發(fā)酵過程中的“酸抑制”和“氨積累”難題,可為農(nóng)村生活垃圾的處理處置提供一種高效的處理技術(shù)。
[1] 胡洋,仲璐,王璐. 農(nóng)村生活垃圾分類及資源化利用現(xiàn)狀和問題淺析[J]. 環(huán)境衛(wèi)生工程,2019,27(6):64-67.
Hu Yang, Zhong Lu, Wang Lu. Analysis on the current situation and problems of rural domestic waste classification and resource utilization[J]. Environmental Sanitation Engineering, 2019, 27(6): 64-67. (in Chinese with English abctract)
[2] 王君. 我國(guó)農(nóng)村垃圾分類問題現(xiàn)狀與改進(jìn)對(duì)策[J]. 環(huán)境衛(wèi)生工程,2017,25(1):24-26.
Wang Jun. Present situation and improvement solutions of waste classification problems in the rural area of China[J]. Environmental Sanitation Engineering, 2017, 25(1): 24-26. (in Chinese with English abctract)
[3] Han Z Y, Liu Y, Zhong M, et al. Influencing factors of domestic waste characteristics in rural areas of developing countries[J]. Waste Management, 2018, 72: 45-54.
[4] 韓智勇,費(fèi)勇強(qiáng),劉丹,等. 中國(guó)農(nóng)村生活垃圾的產(chǎn)生量與物理特性分析及處理建議[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(15):1-14.
Han Zhiyong, Fei Yongqiang, Liu Dan, et al. Yield and physical characteristics analysis of domestic waste in rural areas of China and its disposal proposal[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 1-14. (in Chinese with English abctract)
[5] 邱才娣,何若,陳松妹,等. 一種新型的農(nóng)村生活垃圾資源化工藝技術(shù)研究[J]. 環(huán)境科學(xué),2009,30(3):308-314.
Qiu Caidi, He Ruo, Chen Songmei, et al. Novel resources utilization technique for rural domestic refuse[J]. Environmental Science, 2009, 30(3): 308-314. (in Chinese with English abctract)
[6] 李啟彬,劉丹. 生物反應(yīng)器填埋場(chǎng)理論與技術(shù)[M]. 北京:中國(guó)環(huán)境科學(xué)出版社,2010.
[7] 李啟彬,劉丹,歐陽峰,等. 厭氧-準(zhǔn)好氧運(yùn)行加速生物反應(yīng)器填埋場(chǎng)垃圾穩(wěn)定的研究[J]. 環(huán)境科學(xué),2006,27(2):371-375.
Li Qibin, Liu Dan, Ouyang Feng, et al. Acceleration the stabilization of waste in bioreactor landfill by sequential anaerobic and semi-aerobic operation[J]. Environmental Science, 2006, 27(2): 371-375. (in Chinese with English abctract)
[8] Han Z Y, Liu D, Li Q B, et al. Evolution of leachate quantity and quality in the anaerobic-semiaerobic bioreactor landfill[J]. Environ. Sci, 2012a, 33(11): 3873-3880.
[9] 徐文龍,屈志云,梁前芳,等. 好氧填埋技術(shù)對(duì)滲濾液水質(zhì)變化的影響[J]. 環(huán)境工程,2010,28(5):9-12.
Xu Wenlong, Qu Zhiyun, Liang Qianfang, et al. Influence of aerobic landfill technology on the change in leachate water quality[J]. Environmental Engineering, 2010, 28(5): 9-12. (in Chinese with English abctract)
[10] Rizkowski M, Stegmann R. Controlling greenhouse gas emissions through landfill in situaeration[J]. International Journal of Greenhouse Gas Control, 2007, 1(3): 281-288.
[11] Slezak R, Krzystek L, Ledakowicz S. Degradation of municipal solid waste in simulated landfill bioreactors under aerobic conditions[J]. Waste Management, 2015, 43: 293-299.
[12] Morello L, Raga R, Lavagnolo M C, et al. The S.An.A. concept: Semi-aerobic, anaerobic, aerated bioreactor landfill[J]. Waste Management, 2017, 67: 193-202.
[13] Sun X J, Zhang H X, Cheng Z W. Use of bioreactor landfill for nitrogen removal to enhance methane production through exsitu simultaneous nitrification denitrification and in situ denitrification[J]. Waste Management, 66: 97-102.
[14] 韓智勇. 厭氧-準(zhǔn)好氧聯(lián)合型生物反應(yīng)器填埋場(chǎng)穩(wěn)定化規(guī)律及運(yùn)行策略研究[D]. 成都:西南交通大學(xué),2011.
Han Zhiyong. A Study on The Stabilization and Operation Strategies Based on the Anaerobic-Semiaerobic Bioreacter Landfill[D]. Chengdu: Southwest Jiaotong University, 2011. (in Chinese with English abctract)
[15] 賀艷娟. 厭氧-準(zhǔn)好氧聯(lián)合型生物反應(yīng)器填埋場(chǎng)氮污染物遷移轉(zhuǎn)化研究[D]. 成都:西南交通大學(xué),2014.
He Yanjuan. A Study on The Migration and Transfer of Nitrogen Contaminants in The Anaerobic-Semiaerobic Bioreacter Landfill[D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese with English abctract)
[16] Han Zhiyong, Zeng Dan, Mou Zishen, et al. A novel spatiotemporally anaerobic/semi-aerobic bioreactor for domestic solid waste treatment in rural areas[J]. Waste Management, 2019, 86: 97-105.
[17] Wang Zhao, Yang Yuyin, Dai Yu, et al. Anaerobic biodegradation of nonylphenol in river sediment under nitrate- or sulfate-reducing conditions and associated bacterial community[J]. Journal of Hazardous Materials, 2015, 286: 306-314.
[18] Chen C, Xu X, Xie P, et al. Pyrosequencing reveals microbial community dynamics in integrated simultaneous desulfurization and denitrification process at different influent nitrate concentrations[J]. Chemosphere, 2017, 171: 294-301.
[19] He T, Guan W, Luan Z, et al. Spatiotemporal variation of bacterial and archaeal communities in a pilot-scale constructed wetland for surface water treatment[J]. Applied Microbiology & Biotechnology, 2016, 100(3): 1479-1488.
[20] Kampmann K, Ratering S, Kramer I, et al. Unexpected stability of bacteroidetes and firmicutes communities in laboratory biogas reactors fed with different defined substrates[J]. Applied and Environmental Microbiology, 2012, 78(7): 2106-2119.
[21] 黃斯藝,何江濤,勞天穎,等. 納米乳化油修復(fù)硝酸鹽污染地下水過程中的微生物特征模擬實(shí)驗(yàn)研究[J]. 環(huán)境科學(xué)學(xué)報(bào),2020,40(4):1242-1249.
Huang Siyi, He Jiangtao, Lao Tianying, et al. Experimental study of microbial characteristics in the process of in-situ nitrate pollution remediation by nanoemulsified oil[J]. Acta Scientiae Circumstantiae, 2020, 40(4): 1242-1249. (in Chinese with English abctract)
[22] Rui Han, Derui Zhu, Jiangwa Xing, et al. The effect of temperature fluctuation on the microbial diversity and community structure of rural household biogas digesters at Qinghai Plateau[J]. Archives of Microbiology, 2020, 202(3): 525-538.
[23] 占迪,何環(huán),廖遠(yuǎn)松,等. 褐煤強(qiáng)化產(chǎn)甲烷菌群的群落分析及條件優(yōu)化[J]. 微生物學(xué)報(bào),2018,58(4):684-698.
Zhan Di, He Huan, Liao Yuansong, et al. Community structure analysis of methanogenic flora and optimization for bioaugmentation methane generation from lignite[J]. Acta Microbiologica Sinica, 2018, 58(4): 684-698. (in Chinese with English abctract)
[24] Ding Y, Liang Z, Guo Z, et al. The performance and microbial community identification in mesophilic and atmospheric anaerobic membrane bioreactor for municipal wastewater treatment associated with different hydraulic retention times[J]. Water, 2019, 11(1): 289-291.
[25] Nazina T N, Sh S D, Babich T L, et al. Phylogenetic diversity of microorganisms from the sludge of a biogas reactor processing oil-containing and municipal waste[J]. Microbiology, 2018, 87(3): 416-424.
[26] 張瑜. 時(shí)空聯(lián)合型厭氧-準(zhǔn)好氧生物反應(yīng)器中生活垃圾的穩(wěn)定化規(guī)律及機(jī)理研究[D]. 成都:成都理工大學(xué),2019.
Zhang Yu. Study on Stabilization Rules and Mechanism of Solid Waste in Spatiotemporally Anaerobic/semi-aerobic Bioreactor[D]. Chengdu: Chengdu University of Technology, 2019. (in Chinese with English abctract)
[27] 孫井梅,劉曉朵,湯茵琪,等. 微生物-生物促生劑協(xié)同修復(fù)河道底泥:促生劑投量對(duì)修復(fù)效果的影響[J]. 中國(guó)環(huán)境科學(xué),2019,39(1):353-359.
Sun Jingmei, Liu Xiaoduo, Tang Yinqi, et al. Microorganism and biostimulant collaboratively remediate river sediment: Influence of biostimulant quantity on repair performance[J]. China Environmental Science, 2019, 39(1): 351-357. (in Chinese with English abctract)
[28] Sun L, Toyonaga M, Ohashi A, et al. Lentimicrobium saccharophilum gen. nov. sp. nov. a strictly anaerobic bacterium representing a new family in the phylum bacteroidetes, and proposal of Lentimicrobiaceae fam. nov[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(7): 55-67.
[29] Ma Haitong, Wu Ming, Liu Hui, et al. Study on enhancing sludge methanogenesis by adding acetylene black and effect on the characteristics & microbial community of anaerobic granular sludge[J]. Royal Society of Chemstry, 2019, 9(40): 23086-23095.
[30] Shuang X, Junqin Y, Meihaguli A, et al. Analysis of bacterial community structure of activated sludge from wastewater treatment plants in winter[J]. Biomed Research International, 2018, 1: 1-8.
[31] Zhou X, Zhang Z, Zhang X, et al. A novel single-stage process integrating simultaneous COD oxidation, partial nitritation-denitritation and anammox (SCONDA) for treating ammonia-rich organic wastewater[J]. Bioresource Technology, 2018, 254: 50-55.
[32] Liu Yi, Qiao Jiangtao, Yuan Xianzheng, et al. Hydrogenispora ethanolica gen. nov., sp. nov., an anaerobic carbohydrate-fermenting bacterium from anaerobic sludge[J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(5): 1756-1762.
[33] Zeng Y, Selyanin V, Luke? M, et al. Characterization of the microaerophilic, bacteriochlorophyll a-containing bacterium Gemmatimonas phototrophica sp. Nov. and emended descriptions of the genus Gemmatimonas and Gemmatimonas aurantiaca[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(8): 2410-2419.
[34] 閆苗苗,張海涵,釗珍芳,等. 生物脫氮技術(shù)中好氧反硝化細(xì)菌的代謝及應(yīng)用研究進(jìn)展[J]. 環(huán)境科學(xué)研究,2019,33(3):668-676.
Yan Miaomiao, Zhang Haihan, Zhao Zhenfang, et al. Research progress of metabolism ang application of aerobic denitrifying bacteria in biological denitrifyication technology[J]. Reseach of Environmental Sciences, 2019, 33(3): 668-676. (in Chinese with English abctract)
[35] 王培明,李長(zhǎng)玲,黃翔鵠,等. 溫度、鹽度和光照度對(duì)菌藻聯(lián)合體氨氮吸收的影響[J]. 廣東海洋大學(xué)學(xué)報(bào),2020,40(3):40-47.
Wang Peiming, Li Changling, Huang Xianghu, et al. Effects of temperature, salinity and light on NH4+-N sbsorption of bacteria-microalgae consortia[J]. Journal of Guangdong Ocean University, 2020, 40(3): 40-47. (in Chinese with English abctract)
[36] Wang Y, Xie H, Wang D, et al. Insight into the response of anammox granule rheological intensity and size evolution to decreasing temperature and influent substrate concentration[J]. Water Research, 2019, 162: 258-268.
[37] Zhiqing Zhao, Xiaoli Sheng, Tucai Zhen, et al. Evaluation of inoculum sources for aerobic treatment of 2,3,4-Trifluoroaniline during start-up and shock[J]. Water Air Soil Pollut, 2019, 230(12): 2-16.
[38] 陳廣鵬. 好氧顆粒污泥-膜生物反應(yīng)器的長(zhǎng)期運(yùn)行特征及其顆粒粒徑的快速調(diào)整[D]. 廣州:廣東工業(yè)大學(xué),2019.
Chen Guangpeng. Long-term Operation Characteristics of Aerobic Granular Sludge-Membrane Bioreactor and Adjustment of Its Granule Size[D]. Guangzhou: Guangdong University of Technology, 2019. (in Chinese with English abctract)
[39] 高峰,馬丙瑞,李?yuàn)檴櫍? 鍍鎳多壁碳納米管對(duì)序批式反應(yīng)器性能及其微生物群落的影響[J]. 中國(guó)海洋大學(xué)學(xué)報(bào),2018,49(9):121-129.
Gao Feng, Ma Bingrui, Li Shanshan, et al. Effects of MWCNTs-Ni on the performence and microbial community of sequencing batch reactor[J]. Periodical of Ocean University of China, 2018, 49(9): 121-129. (in Chinese with English abctract)
[40] 李衛(wèi)平,郝夢(mèng)影,敬雙怡,等. SMBBR處理焦化廢水性能及菌群結(jié)構(gòu)響應(yīng)關(guān)系[J]. 中國(guó)環(huán)境科學(xué),2019,39(8):3332-3339.
Li Weiping, Hao Mengying, Jing Shuangyi, et al. Performance and flora structure response relation in the SMBBR treatment of the coking wastewater[J]. China Environmental Science, 2019, 39(8): 3332-3339. (in Chinese with English abctract)
[41] Podosokorskaya O A, Bonch-Osmolovskaya E A, Beskorovaynyy A V, et al. Mobilitalea sibirica gen. nov. sp. nov. a halotolerant polysaccharide-degrading bacterium[J]. International Journal of Systematic & Evolutionary Microbiology, 2014, 64: 2657-2661.
[42] 王家楠,蔣勇軍,賀秋芳,等. 中梁山巖溶槽谷區(qū)荒草地土壤微生物群落對(duì)隧道建設(shè)的響應(yīng)[J]. 生態(tài)學(xué)報(bào),2019,39(16):255-268.
Wang Jianan, Jiang Yongjun, He Qiufang, et al. Response of soil microbial community in grassland to tunnel construction in the karst trough valley, Zhongliang Mountain, Chongqing[J]. Acta Ecologica Sinica, 2019, 39(16): 6136-6145. (in Chinese with English abctract)
[43] Saha Shouvik, Jeon Byong-Hun, Kurade Mayur B, et al. Interspecies microbial nexus facilitated methanation of polysaccharidic wastes[J]. Bioresource Technology, 2019, 289: 887-907.
[44] Huang X, Dong W, Wang H, et al. Biological nutrient removal and molecular biological characteristics in an anaerobic-multistage anaerobic/oxic(A-MAO) process to treat municipal wastewater[J]. Bioresource Technology, 2017, 241: 969-978.
[45] 唐偉. 北運(yùn)河中異養(yǎng)硝化菌的篩選及其脫氮效能研究[D]. 沈陽:遼寧大學(xué),2019.
Tang Wei. Screening of Heterotrophic Nitrifying Bacteria in the Beiyun River and Study on Its Nitrogen Removal Efficiency[D]. Shengyang: Liaoning University, 2019. (in Chinese with English abctract)
[46] 楊開亮,廖德祥,王瑩,等. 厭氧氨氧化快速啟動(dòng)及微生物群落演替研究[J]. 水處理技術(shù),2020,46(5):65-70.
Yang Kailiang, Liao Dexiang, Wang Ying, et al. Study on rapid start-up and microbial community succession of anammox[J]. Technology of Water Treatment, 2020, 46(5): 65-70. (in Chinese with English abctract)
Analysis of microbial community in the anaerobic/semi-aerobic spatiotemporal bioreactor for rural wastes
Guo Nanfei1,2,3, Han Zhiyong1,2,3※, Shi Rui1,2,3, Li Hao1,2,3, Liu Jie4
(1(),610059; 2(),610059,; 3,610059,; 4.,,610106,)
Life cycle assessment (LCA) is an important method that can fully evaluate the natural resources consumed in the production process and activities, as well as its impacts on the environment. In recent years, LCA has been widely used in the biodiesel production process. China is enriched in various biodiesel feedstocks, such as soybean oil, colza oil, jatropha, microalgae and waste cooking oil. In the current study, a life cycle assessment methodology was applied to evaluate the energy consumption and emissions of biodiesel products derived from soybean oil and waste cooking oil in the process of a whole life cycle. The results showed that in the whole life cycle, the total energy consumption of soybean-derived biodiesel was about 2.65 times higher than that of biodiesel derived from waste cooking oil. In the life cycle of soybean oil production for biodiesel, the majority energy consumption was contributed by the soybean planting stage, accounting for 62.55% of the total energy consumption. Particularly, the energy consumption of methanol production was rather high, accounting for 25.88% of the total energy consumption. In the life cycle of biodiesel made from cooking waste oil, the main energy consumption was in the production stage of methanol and catalyst, accounting for 81.12% of the total energy consumption. It was followed by the pretreatment stage of gutter oil, consuming 11.25% of the total energy input. In combustion, the CO2, SO2and CO emissions from biodiesels either from soybean oil or waste cooking oil were both lower than those from the conventional diesel. Moreover, compared with the emissions of biodiesel derived from soybean oil, the CO2, SO2, NOx, CO, and dust emissions of biodiesel from the waste cooking oil were reduced by 82.92%, 45.68%, 94.91%, 53.40% and 90.61%, respectively. It infers that the application of biodiesel can significantly reduce the emissions of greenhouse and acid gas. It also confirms that the greenhouse effect can be inevitably slowed down when using the biodiesel on a large scale. According to the environmental impact analysis of biodiesel production and utilization processes in the concept of LCA, the potential value of life cycle for the environmental impact of soybean oil as raw material was 11.70 times that of waste cooking oil, which was 8.42 and 0.72, respectively. Global warming was the predominant environmental impact of the biodiesel from soybean oil. In the case of biodiesel derived from waste cooking oil, the regional acidification was the most significant factor. Compared with soybean oil, the biodiesel made from waste cooking oil can effectively reduce the consumption of energy and the emission of pollutants. In addition, it can realize the efficient reuse of waste resources. The life cycle assessment method was of practical significance to evaluate the biodiesel industry. Nevertheless, it is still challenging to form a unified standard among different processes, because of the complex calculation involved in the LCA process. In the future, it is highly necessary to construct a standard database of Chinese biodiesel industry, further to optimize different processes in the production stage. The findings can provide a sound reference for industrial upgrading and department decision-making, and a specific data support for the sustainable development of agricultural industry.
rural area;microbial community; waste treatment; high-throughput sequencing; spatiotemporally anaerobic/semi-aerobic bioreactor
郭南飛,韓智勇,史瑞,等. 農(nóng)村垃圾厭氧-準(zhǔn)好氧時(shí)空聯(lián)合生物反應(yīng)器中微生物群落分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(19):200-208. doi:10.11975/j.issn.1002-6819.2020.19.023 http://www.tcsae.org
Guo Nanfei, Han Zhiyong, Shi Rui, et al. Analysis of microbial community in the anaerobic/semi-aerobic spatiotemporal bioreactor for rural wastes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(19): 200-208. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.19.023 http://www.tcsae.org
10.11975/j.issn.1002-6819.2020.19.023
X173
A
1002-6819(2020)-19-0200-09
2020-05-20
2020-09-14
四川省杰出青年科技人才項(xiàng)目(2020JDJQ0053);四川省重大科技專項(xiàng)課題(2019YFS0509);中國(guó)博士后特別資助基金(2018T110953);地質(zhì)災(zāi)害防治與地質(zhì)環(huán)境保護(hù)國(guó)重實(shí)驗(yàn)室自主課題(SKLGP2019Z009)
郭南飛,主要從事固體廢物處理處置與二次污染防治。Email:824756896@qq.com
韓智勇,博士,教授,主要從事固體廢物資源化與處理處置。Email:hanzhiyong13@cdut.cn