亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        水肥耦合對(duì)加氣滴灌加工番茄產(chǎn)量及品質(zhì)的影響

        2020-12-25 01:14:14王振華陳瀟潔呂德生李文昊王天宇魏馳林
        關(guān)鍵詞:氮量利用效率水肥

        王振華,陳瀟潔,呂德生,李文昊,王天宇,魏馳林

        ·農(nóng)業(yè)水土工程·

        水肥耦合對(duì)加氣滴灌加工番茄產(chǎn)量及品質(zhì)的影響

        王振華1,2,陳瀟潔1,2,呂德生1,李文昊1,2,王天宇1,2,魏馳林1,2

        (1.石河子大學(xué)水利建筑工程學(xué)院,石河子 832000; 2.現(xiàn)代節(jié)水灌溉兵團(tuán)重點(diǎn)實(shí)驗(yàn)室,石河子 832000)

        為探求北疆地區(qū)水肥耦合對(duì)加氣灌溉加工番茄產(chǎn)量、品質(zhì)及水肥利用效率的影響,該研究設(shè)置2個(gè)灌溉水平分別為4 950和4 050 m3/hm2、4個(gè)施氮梯度分別為280、250、220和190 kg/hm2以及2個(gè)加氣水平分別為摻氣比例15%和0進(jìn)行完全組合設(shè)計(jì)。結(jié)果表明,加氣灌溉使加工番茄產(chǎn)量顯著提高2.32%~10.02%,灌溉水分利用效率與氮肥偏生產(chǎn)力分別提高6.12%和6.19%。加氣提高了加工番茄可溶性糖、有機(jī)酸、維生素C、可溶性固形物含量,基于主成分分析對(duì)各品質(zhì)指標(biāo)進(jìn)行綜合評(píng)價(jià),得出最優(yōu)處理為灌水4 050 m3/hm2,施氮250 kg/hm2。研究可為提高新疆加工番茄水肥利用率提供理論依據(jù)。

        灌溉;土壤;品質(zhì)控制;產(chǎn)量;加工番茄;加氣灌溉;主成分分析

        0 引 言

        番茄(),含有豐富的抗氧化物質(zhì)和維生素,是目前世界上種植最廣的蔬菜作物之一。聯(lián)合國(guó)糧農(nóng)組織數(shù)據(jù)顯示,2017年世界番茄總產(chǎn)量為1.8億t[1]。中國(guó)番茄年產(chǎn)量高于5 000萬(wàn)t,是世界上加工番茄第三種植大國(guó)和番茄制品第一出口大國(guó)[2]。新疆維吾爾自治區(qū)(簡(jiǎn)稱新疆)光熱資源豐富、晝夜溫差大有利于糖分累積,所產(chǎn)加工番茄產(chǎn)量高品質(zhì)優(yōu),是中國(guó)重要的加工番茄生產(chǎn)基地[3]。

        水肥利用效率低嚴(yán)重限制新疆加工番茄產(chǎn)業(yè)的發(fā)展。1996年新疆生產(chǎn)建設(shè)兵團(tuán)引入膜下滴灌技術(shù)以來(lái),膜下滴灌技術(shù)在新疆已應(yīng)用24 a[4]。膜下滴灌將滴灌技術(shù)與覆膜種植技術(shù)結(jié)合,將灌溉水均勻地分配到土壤中,為作物提供適時(shí)適量的水分和養(yǎng)分,新疆種植加工番茄獨(dú)特的優(yōu)勢(shì)資源結(jié)合膜下滴灌種植模式,使得新疆加工番茄在國(guó)際市場(chǎng)極具競(jìng)爭(zhēng)力[5]。竇允清等[6]研究表明,膜下滴灌水肥一體化技術(shù)具有節(jié)水、節(jié)肥,提高作物產(chǎn)量和品質(zhì)的優(yōu)點(diǎn)。但地膜覆蓋阻礙了土壤CO2的排放,破壞了土壤O2生產(chǎn)和擴(kuò)散的動(dòng)態(tài)平衡系統(tǒng),改變了土壤的水熱條件[7],加劇了作物根區(qū)缺氧的現(xiàn)象。植物根系需要足夠的氧氣來(lái)進(jìn)行根系呼吸以及維持植物良好的新陳代謝功能[8]。番茄是對(duì)土壤氧氣供應(yīng)不足最敏感的作物之一,根區(qū)缺氧會(huì)影響根系生長(zhǎng)和土壤呼吸,從而減少根系對(duì)水分和養(yǎng)分的吸收以及對(duì)植物體的營(yíng)養(yǎng)傳輸[9]。

        加氣灌溉利用地下滴灌技術(shù),通過(guò)加氣設(shè)備將氣體或者水氣混合液隨灌溉水輸送至作物的根區(qū),以滿足作物根系有氧呼吸和土壤微生物對(duì)O2的需求[8]。Niu等[10]研究認(rèn)為在番茄根區(qū)增氧有利于其根際氣體環(huán)境的改善,使番茄根系活力和吸收能力增加。此外,加氣灌溉顯著增加了土壤微生物的豐度和酶活性[11],改善水肥吸收速率,有利于作物生長(zhǎng),提高產(chǎn)量和品質(zhì)[12]。地下滴灌系統(tǒng)通過(guò)文丘里設(shè)備曝氣有成本低、操作簡(jiǎn)單的優(yōu)點(diǎn),已被廣泛應(yīng)用于溫室番茄、芹菜、棉花和辣椒。

        新疆是中國(guó)最大的加工番茄生產(chǎn)基地,2017年加工番茄種植面積為59 000 hm2,產(chǎn)量為6 640 000 t[13],加工番茄生產(chǎn)能力占全國(guó)的90%以上[3]。然而,目前有關(guān)水肥氣一體化灌溉研究較少,相關(guān)的研究也多集中在室內(nèi)溫室探究水氣或水肥耦合對(duì)作物生長(zhǎng)的影響[14-15],水肥氣三因素耦合對(duì)新疆膜下滴灌加工番茄產(chǎn)量、品質(zhì)及水肥利用的影響規(guī)律研究鮮見(jiàn)報(bào)道。因此本研究以提高新疆膜下滴灌加工番茄水肥利用效率為目標(biāo),通過(guò)水肥氣三因素耦合試驗(yàn)探究水肥氣一體化灌溉對(duì)新疆加工番茄產(chǎn)量和品質(zhì)的影響,旨在為建立高產(chǎn)、高效節(jié)水的水肥氣一體化灌溉模式提供理論依據(jù)和技術(shù)參考。

        1 材料與方法

        1.1 試驗(yàn)地概況

        試驗(yàn)于2019年5-8月在新疆石河子大學(xué)現(xiàn)代節(jié)水灌溉兵團(tuán)重點(diǎn)實(shí)驗(yàn)室暨石河子大學(xué)節(jié)水灌溉試驗(yàn)站(86°03′47″E,44°18′28″N)進(jìn)行。試驗(yàn)站位于新疆生產(chǎn)建設(shè)兵團(tuán)農(nóng)八師石河子市西郊石河子大學(xué)農(nóng)試場(chǎng)二連,海拔450 m,年均日照時(shí)數(shù)2 950 h,年降水量在220 mm左右。2019年加工番茄種植期間氣象數(shù)據(jù)如圖1所示。試驗(yàn)前茬種植作物為玉米,試驗(yàn)田地下水埋深8 m以下,土壤質(zhì)地為中壤土,<0.01 mm粒徑的土壤物理黏粒含量>21%,0~100 cm土壤年平均容重為1.56 g/cm3,田間持水率(即含水率)為17.98%。

        圖1 加工番茄生育期間氣象數(shù)據(jù)

        1.2 試驗(yàn)設(shè)計(jì)及試驗(yàn)材料

        供試加工番茄品種為金番3166,購(gòu)自石河子市143團(tuán)十連農(nóng)業(yè)科技園,試驗(yàn)于5月5日進(jìn)行移苗定植,8月24日進(jìn)行成熟期采獲,全生育期112 d。種植模式為“1膜2管4行”,覆膜為1.45 m聚乙烯普通塑料地膜;定植前小區(qū)內(nèi)預(yù)設(shè)直徑16 mm,滴頭間距0.3 m的2條以色列耐特菲姆滴灌帶,滴灌帶埋深15 cm,2條滴灌帶間距0.85 m,滴頭設(shè)計(jì)流量1.3 L/h,加工番茄種植株距0.35 m,行距0.3 m。

        參考當(dāng)?shù)厣a(chǎn)實(shí)踐及其他學(xué)者研究[3,16],確定加工番茄種植的灌溉、施氮量以及灌溉、施肥次數(shù)(表1)。試驗(yàn)設(shè)W1(4 950 m3/hm2)和W2(4 050m3/hm2)2個(gè)灌溉水平,N1(280 kg/hm2)、N2(250 kg/hm2)、N3(220 kg/hm2)和N4(190 kg/hm2)4個(gè)施氮水平,A(加氣灌溉,摻氣比例15%)和C(不加氣灌溉,摻氣比例0)2個(gè)加氣水平。共計(jì)16個(gè)處理,每個(gè)處理設(shè)置3個(gè)重復(fù),試驗(yàn)小區(qū)面積為18.45 m2(9 m×2.05 m),磷肥和鉀肥統(tǒng)一為150 kg/hm2。試驗(yàn)設(shè)計(jì)如表2所示。其中,試驗(yàn)肥料依次為尿素CO(NH2)2(N質(zhì)量分?jǐn)?shù)為46.4%),磷酸一銨NH4H2PO4(P2O5質(zhì)量分?jǐn)?shù)為60.5%)和氯化鉀KCl(K2O質(zhì)量分?jǐn)?shù)為57%),試驗(yàn)小區(qū)的除草、打藥等田間農(nóng)藝管理措施一致。

        滴灌加氣施肥設(shè)備主要由蓄水池、水泵、文丘里管、回流管、施肥罐、旋翼式水表及輸水管道系統(tǒng)組成。采用深層地下水進(jìn)行灌溉,灌溉水礦化度約1.35 g/L。加氣灌溉試驗(yàn)處理利用文丘里空氣射流器(Mazzei air injector 1078,美國(guó)Mazzei Corp 公司)進(jìn)行加氣,Mazzei1078型文丘里空氣射流器安裝在滴灌系統(tǒng)首部,當(dāng)水流經(jīng)過(guò)文丘里射流器時(shí),因涌流作用,橫截面積變小流速上升,因而壓力減小產(chǎn)生負(fù)壓,吸入空氣。通過(guò)水泵、文丘里空氣射流器、回流管路實(shí)現(xiàn)循環(huán)曝氣,制得摻氣比例約為15%的摻氣水[17]。灌溉時(shí),通過(guò)調(diào)節(jié)回流管閥門(mén),保證供水壓力為0.1 MPa。每個(gè)小區(qū)均設(shè)置旋翼式水表及施肥罐。

        表1 加工番茄生育期灌溉制度

        表2 試驗(yàn)設(shè)計(jì)

        1.3 項(xiàng)目測(cè)定與方法

        1.3.1生長(zhǎng)指標(biāo)及灌溉水分利用效率

        1)株高、莖粗測(cè)定:分別于苗期、花期、果實(shí)膨大一期、果實(shí)膨大二期、成熟期對(duì)加工番茄的株高、莖粗進(jìn)行測(cè)量,每個(gè)小區(qū)隨機(jī)選取3株進(jìn)行標(biāo)記,從植株基部用卷尺測(cè)量株高,用游標(biāo)卡尺讀取植株距離表層土2 cm處的莖粗,并取平均值。

        2)灌溉水分利用效率(Irrigation Water-Use Efficiency,IWUE,kg/m3)的計(jì)算[18]如式(1)所示:

        IWUE=/(1)

        式中為相應(yīng)處理加工番茄產(chǎn)量,kg/hm2;為相應(yīng)處理灌水量,m3/hm2。

        氮肥偏生產(chǎn)力(Nitrogen Partial Factor Productivity,PFPN,kg/kg)的計(jì)算[19]如式(2)所示:

        PFPN=/(2)

        式中為相應(yīng)處理加工番茄產(chǎn)量,kg/hm2;為相應(yīng)處理施氮量,kg/hm2。

        1.3.2 產(chǎn)量及品質(zhì)

        1)產(chǎn)量測(cè)定:在加工番茄成熟期,每個(gè)小區(qū)選擇6株長(zhǎng)勢(shì)均勻的植株測(cè)其產(chǎn)量,以單株計(jì),包括單株產(chǎn)量、單果質(zhì)量和果實(shí)數(shù)目的記錄。

        2)品質(zhì)測(cè)定:加工番茄進(jìn)入成熟收獲期測(cè)定單果重使用BWS-SN-30電子計(jì)重桌秤(廈門(mén)佰倫斯品牌)并進(jìn)行番茄品質(zhì)的測(cè)定,用手持折射儀型號(hào)為MASTER-3M(日本愛(ài)宕品牌)測(cè)定可溶性固形物;采用蒽酮比色法測(cè)定可溶性糖含量;采用滴定法測(cè)定維生素C含量;采用堿滴定指示劑法測(cè)定有機(jī)酸含量[20]。

        糖酸比(Suagr-acid ratio,SAT)的計(jì)算如式(3)所示:

        SAT=/(3)

        式中為加工番茄可溶性糖含量,%;為加工番茄有機(jī)酸含量,%。

        1.4 數(shù)據(jù)分析

        各主成分得分和綜合得分的計(jì)算[21]如式(4)和式(5)所示

        F=1i1+2i2+,…,UX(4)

        =11+22+,…,+WF(5)

        式中F為第主成分得分;1i,2i, …,U為第主成分的得分系數(shù);X為標(biāo)準(zhǔn)化處理后的數(shù)值;表示主成分綜合得分;W為第主成分權(quán)重,即各主成分因子的貢獻(xiàn)率。

        試驗(yàn)數(shù)據(jù)采用Microsoft Excel 2016進(jìn)行計(jì)算,使用Origin 2017進(jìn)行作圖,SPSS Statistics 26進(jìn)行方差分析和主成分分析。

        2 結(jié)果與分析

        2.1 水肥耦合對(duì)加氣滴灌加工番茄生長(zhǎng)的影響

        2.1.1 株高

        不同水肥氣組合方案對(duì)滴灌加工番茄株高的影響如圖2所示。隨著時(shí)間的推移,不同水肥氣處理下加工番茄株高呈現(xiàn)不同幅度的增長(zhǎng)。移植后25~50 d,株高增幅最大,為0.819 cm/d。移植后50~75 d,加工番茄株高日增長(zhǎng)量降低,此階段加工番茄的營(yíng)養(yǎng)生長(zhǎng)主要集中在果實(shí)部位。移植后110 d,灌水量、施氮量和加氣量對(duì)加工番茄株高影響達(dá)到極顯著水平(<0.01),加工番茄株高隨著灌水量、施氮量和加氣量的增加而增加。W1水平較W2水平加工番茄株高增加10.43%,N1水平加工番茄株高較N2、N3和N4水平分別增加4.16%、6.90%和12.99%,加氣處理較不加氣處理加工番茄株高增加4.28%。2個(gè)灌水量水平下,與不加氣處理相比,加氣W1水平下加工番茄株高增加5.08%,加氣W2水平下加工番茄株高增加3.41%,加氣對(duì)高灌水量水平(W1)株高增長(zhǎng)率提高更為明顯。4個(gè)施氮量處理下,與不加氣處理相比,加氣N1、N2、N3和N4加工番茄株高分別增加了4.66%、4.99%、4.02%和3.39%,N2水平株高增長(zhǎng)率最大。以上分析表明,充足的灌水施氮量,有助于加工番茄株高的增長(zhǎng),加氣同樣對(duì)加工番茄株高有促進(jìn)作用。

        注:W1和W2分別表示灌水量為4 950和4 050 (m3·hm-2);N1、N2、N3和N4分別表示施氮量為280、250、220和190 (kg·hm-2);A表示加氣;C表示不加氣。不同字母表示α=0.05水平下差異顯著。下同。

        2.1.2 莖粗

        不同水肥氣組合方案對(duì)滴灌加工番茄莖粗的影響如圖3所示。

        圖3 不同水肥氣處理對(duì)加工番茄生育期莖粗的影響

        不同水肥氣處理下加工番茄莖粗隨著時(shí)間的推移,呈現(xiàn)不同幅度的增長(zhǎng)。移植后25~50 d,W1水平下莖粗在N3達(dá)到最大,W2水平下莖粗在N2達(dá)到最大,且W2水平較W1水平加工番茄莖粗增加3.58%。移植后50~75 d,各處理莖粗增幅最大,為0.097 3 mm/d。移植后110 d,灌水量、施氮量和加氣量對(duì)加工番茄莖粗影響達(dá)到極顯著水平(<0.01),W2水平較W1水平加工番茄莖粗增加6.43%,灌水量增大反而使加工番茄莖稈變細(xì)。W1水平下,N3水平加工番茄莖粗較N1、N2和N4分別增加9.16%、2.85%和6.97%,W2水平下,N2水平加工番茄莖粗較N1、N3和N4分別增加6.37%、2.28%和8.73%,加氣處理較不加氣處理加工番茄莖粗增加3.70%。2個(gè)灌水量水平下,與不加氣處理相比,加氣W1水平下加工番茄莖粗增加4.24%,加氣W2水平下加工番茄莖粗增加3.18%,加氣對(duì)高灌水量水平(W1)莖粗增長(zhǎng)率明顯更大。

        2.2 水肥耦合對(duì)加氣滴灌加工番茄產(chǎn)量、灌溉水分利用效率和氮肥偏生產(chǎn)力的影響

        不同水肥氣組合方案對(duì)滴灌加工番茄產(chǎn)量、灌溉水分利用效率和氮肥偏生產(chǎn)力的影響如表3和表4所示。高灌水量提高了加工番茄產(chǎn)量,W1水平較W2水平產(chǎn)量顯著增加2.18%~16.95%(<0.05)。相同灌水量下,隨施氮量增加,加工番茄產(chǎn)量先增加后減小,即施氮量達(dá)到一定程度后,作物產(chǎn)量增幅減小。加氣灌溉顯著提高加工番茄產(chǎn)量2.32%~10.02%(<0.05),產(chǎn)量最大值出現(xiàn)在W1N2A處理,其次為W2N2A處理,處理間并無(wú)顯著差異(>0.05)。與不加氣處理相比,加氣W1水平下產(chǎn)量增加了6.38%,W2水平下產(chǎn)量增加了5.89%;加氣條件下N1、N2、N3和N4產(chǎn)量較不加氣處理分別增加了3.50%、9.56%、4.92%和6.50%。結(jié)果表明在W2灌水量下,施氮量為N2時(shí),加氣處理對(duì)產(chǎn)量的提升最大。

        表3 水肥氣耦合對(duì)加工番茄產(chǎn)量、灌溉水分利用效率和氮肥偏生產(chǎn)力的影響

        注:同列數(shù)據(jù)不同小寫(xiě)字母表示=0.05水平存在顯著性差異。下同。

        Note: The different letters at same column indicated significant differences at the level of=0.05. The same blow.

        表4 水肥氣對(duì)加工番茄產(chǎn)量、灌溉水分利用效率和氮肥偏生產(chǎn)力的三因素方差分析

        注:*和**分別表示=0.05和=0.01水平存在顯著性差異,ns表示=0.05水平不存在顯著性差異。下同。

        Note: * and ** indicated significant difference at=0.05 and=0.01 levels, respectively, ns indicated no significant difference at=0.05 level. The same below.

        高灌水量使加工番茄IWUE減小,PFPN增大,W1水平較W2水平IWUE顯著減小4.31%~16.40%(<0.05),PFPN顯著增加2.18%~16.95%(<0.05)。相同灌水量下,隨施氮量增加,IWUE先增加后減小,PFPN逐漸減小。加氣處理較不加氣處理IWUE和PFPN分別增加6.12%和6.19%。與不加氣處理相比,加氣W1水平下IWUE和PFPN分別增加6.38%和6.51%,加氣W2水平下IWUE和PFPN分別增加5.89%和5.84%,4個(gè)施氮量水平中加氣N2水平對(duì)IWUE和PFPN提升最大,分別為9.61%和9.55%。

        2.3 水肥耦合對(duì)加氣滴灌加工番茄果實(shí)品質(zhì)的影響

        不同水肥氣組合方案對(duì)滴灌加工番茄品質(zhì)的影響如表5和表6所示。

        表5 水肥氣耦合對(duì)加工番茄品質(zhì)的影響

        表6 水肥氣對(duì)加工番茄品質(zhì)的三因素方差分析

        灌水量對(duì)加工番茄可溶性糖、有機(jī)酸、維生素C(Vitamin C,VC)和可溶性固形物產(chǎn)生極顯著影響(<0.01)。W1水平較W2水平可溶性糖、有機(jī)酸、維生素C和可溶性固形物分別下降了5.84%、4.85%、2.50%和3.34%。可溶性糖、維生素C和可溶性固形物含量隨著施氮量的增加呈現(xiàn)先增大后降低的趨勢(shì),W2N2A處理可溶性糖(6.10%)、維生素C(0.196 6 mg/g)和可溶性固形(6.76%)含量達(dá)到最大。有機(jī)酸含量隨施氮量增加顯著增大,N1處理較N4處理有機(jī)酸增加9.67%。加氣對(duì)加工番茄各品質(zhì)指標(biāo)有顯著影響(<0.05),與不加氣灌溉處理相比,加氣灌溉下可溶性糖、有機(jī)酸、維生素C和可溶性固形物含量分別增大了1.17%、2.37%、2.42%和4.68%。同時(shí)加氣灌溉下加工番茄糖酸比含量顯著降低(<0.05),比不加氣灌溉降低了1.17%。

        由于單獨(dú)的一項(xiàng)番茄品質(zhì)指標(biāo)并不能全面反映其優(yōu)劣,故需要對(duì)番茄各項(xiàng)指標(biāo)進(jìn)行綜合分析及評(píng)價(jià)。主成分分析與評(píng)價(jià)法是一種多元統(tǒng)計(jì)方法,通過(guò)求解主成分,可以在少損失原有指標(biāo)信息的情況下,實(shí)現(xiàn)減少變量個(gè)數(shù)與綜合評(píng)價(jià)的目的,在許多領(lǐng)域的綜合評(píng)價(jià)中被廣泛應(yīng)用[21]。選取評(píng)價(jià)變量分別為可溶性糖(1)、有機(jī)酸含量(2)、維生素C含量(3)、可溶性固形物(4)、糖酸比(5)5個(gè)品質(zhì)指標(biāo),采用主成分分析法對(duì)5個(gè)品質(zhì)指標(biāo)進(jìn)行降維數(shù)學(xué)統(tǒng)計(jì)分析,因子荷載和方差貢獻(xiàn)率如表7所示。

        經(jīng)主成分分析提取前2個(gè)主成分的特征值>1,累計(jì)貢獻(xiàn)率達(dá)到87.043%,說(shuō)明前2個(gè)主成分包含了5個(gè)指標(biāo)的大部分信息。因此用這2個(gè)主成分代替原來(lái)的5個(gè)指標(biāo)對(duì)番茄品質(zhì)進(jìn)行評(píng)價(jià)。第一主成分解釋了總變異信息的60.119%,主要反映維生素C(3)、可溶性糖(1)、可溶性固形物(4)、有機(jī)酸(2)4個(gè)指標(biāo)的影響,第二主成分包含了原始信息的26.924%,主要以糖酸比(5)的影響為主。

        結(jié)合式(4)和式(5),計(jì)算各主成分得分和綜合得分,并按綜合分值大小進(jìn)行排序,結(jié)果如表8所示。其中,加工番茄品質(zhì)最好的處理為W2N2A,品質(zhì)最差的處理是W1N4C。不同的灌溉量處理下,W2的綜合得分大于W1,過(guò)高的灌水量,不利于加工番茄綜合品質(zhì)的提高。在相同的灌水量處理下,不同施氮量作用下,加工番茄綜合品質(zhì)按大小順序依次為N2、N3、N1和N4,過(guò)高、過(guò)低的施氮量,均不利于加工番茄綜合品質(zhì)的提高。加氣處理提高了加工番茄品質(zhì),與不加氣處理相比,加工番茄綜合評(píng)價(jià)得分均有提高,在W1灌水量處理下,N2與N3施氮量處理綜合得分提升最大。

        表7 主成分因子荷載和方差貢獻(xiàn)率

        表8 不同處理加工番茄品質(zhì)參數(shù)綜合評(píng)價(jià)

        3 討 論

        3.1 水肥耦合對(duì)加氣滴灌加工番茄生長(zhǎng)的影響

        現(xiàn)代化灌溉不僅要求為作物生長(zhǎng)提供適時(shí)、適量的水分和養(yǎng)分,更要營(yíng)造水、肥、氣、熱相協(xié)調(diào)的土壤環(huán)境[22]。竇允清等[6]研究表明,膜下滴灌水肥一體化可以將作物所需的水分以及養(yǎng)分輸送至作物根部土壤,根據(jù)作物不同生長(zhǎng)階段的需水需肥特性,為作物提供適時(shí)適量的水分和養(yǎng)分。本試驗(yàn)中,隨著灌水量和施氮量的增加,加工番茄株高表現(xiàn)出逐漸增加趨勢(shì),過(guò)多的灌水量和施氮量則不利于植株莖粗的增加。適量施用氮肥能促進(jìn)番茄根系活性及吸水能力[23],養(yǎng)分溶解水中通過(guò)質(zhì)流或擴(kuò)散達(dá)到根系表面,適量的水分有利于加快K+、H2PO4-等離子的擴(kuò)散過(guò)程,促進(jìn)植物吸收養(yǎng)分,促進(jìn)植株生長(zhǎng)[24]。過(guò)低的水肥施用量使得植物生長(zhǎng)緩慢,莖稈和葉片營(yíng)養(yǎng)不足,過(guò)量的水肥資源則會(huì)導(dǎo)致植物徒長(zhǎng),而使得莖稈變細(xì)[25]。

        膜下滴灌技術(shù)特點(diǎn)是淺灌、勤灌、濕潤(rùn)范圍小[4],灌溉期內(nèi)土壤干濕交替頻繁,土壤水分變化劇烈。Ming等[26]研究發(fā)現(xiàn),灌溉使得土壤水分含量增加,但土壤呼吸呈下降趨勢(shì)。較高的灌溉水平下,土壤水分過(guò)多,降低了土壤中氧氣的擴(kuò)散速率[27]。氧是細(xì)胞線粒體電子傳遞的最終受體,是有氧呼吸中合成腺嘌呤核苷三磷酸(Adenosine Triphosphate,ATP)的必要因素之一[28]。低氧脅迫下根際無(wú)氧呼吸增強(qiáng),呼吸速率下降,產(chǎn)生的能量不足以維持正常生長(zhǎng),長(zhǎng)期低氧脅迫下根細(xì)胞質(zhì)膜過(guò)氧化程度加劇,根系活力下降,抑制植株生長(zhǎng)[29]。在灌水過(guò)程中通入適量氧氣,淺層土壤溶解氧濃度增大,改善了土壤中氧氣擴(kuò)散速率和氧化還原電位,能明顯提高土壤通氣性[30],緩解作物根際環(huán)境缺氧程度,提高根系總表面積及根系活躍吸收面積,顯著提高根系活力[31]。劉義玲等[32]研究表明,根際低氧顯著抑制作物生長(zhǎng),影響作物干物質(zhì)累積,使得作物干物質(zhì)量顯著降低。朱艷等[12]研究發(fā)現(xiàn),加氣改善了灌溉后作物根系缺氧情況,番茄植株莖粗和葉面積分別顯著增大4.55%和16.21%。本試驗(yàn)中,加氣灌溉改善了灌溉后作物根系缺氧情況,顯著提高加工番茄株高和莖粗,莖粗增大可以預(yù)防結(jié)果期植株倒伏,避免加工番茄減產(chǎn),有利于番茄最終產(chǎn)量的增加。加氣灌溉有效改善作物根際土壤通氣性,提高了根系活力以及根系有氧呼吸,促進(jìn)了根系對(duì)養(yǎng)分的吸收利用,葉片光合作用增強(qiáng),進(jìn)而促進(jìn)植物生長(zhǎng)。

        3.2 水肥耦合對(duì)加氣滴灌加工番茄產(chǎn)量和灌溉水分利用效率的影響

        合理的肥料施用量、適宜的土壤含水量是保證作物高產(chǎn)的重要因素,本試驗(yàn)研究結(jié)果表明,增加灌溉量顯著提高了番茄產(chǎn)量,增加了氮肥偏生產(chǎn)力,但降低了水分利用效率,這與邢英英等[33]研究的研究結(jié)果一致。番茄作為淺根作物,根系難以吸收深層水分和養(yǎng)分[34],姜慧敏等[35]研究表明隨著施氮量的增加,土壤硝態(tài)氮累積量增加,高頻灌溉下土壤氮素淋失加劇,造成土壤肥力下降。同時(shí)過(guò)量施氮常導(dǎo)致植株徒長(zhǎng),坐果率降低、抗逆性差,易于發(fā)生多種病害,最終影響番茄產(chǎn)量的形成,進(jìn)而降低水分利用效率及氮肥偏生產(chǎn)力[25]。本試驗(yàn)結(jié)果表明適宜的施氮量可以顯著提高番茄產(chǎn)量,過(guò)量的施氮量會(huì)降低產(chǎn)量,水分利用效率及氮肥偏生產(chǎn)力也顯著降低。

        番茄是對(duì)氧氣脅迫相對(duì)敏感的作物,在田間種植中,常因?yàn)楣喔炔划?dāng)而使根部區(qū)發(fā)生氧氣脅迫,致使其產(chǎn)量下降[9]。低氧脅迫情況下,根系以及微生物呼吸作用減弱,無(wú)氧呼吸酶活性提高,土壤微生物數(shù)量下降,作物呼吸作用以及生長(zhǎng)發(fā)育表現(xiàn)異常,導(dǎo)致水分和養(yǎng)分利用效率下降[11]。大量試驗(yàn)研究表明,根區(qū)通氣可以提高作物產(chǎn)量[8,12]。本試驗(yàn)中加氣處理較不加氣處理番茄產(chǎn)量顯著增加了6.14%,灌溉水分利用效率及氮肥偏生產(chǎn)力顯著提高了6.12%和6.19%。根區(qū)加氣可提高根區(qū)土壤pH值,加速中部土層有機(jī)質(zhì)分解,促進(jìn)土壤速效磷、鉀活化,促進(jìn)作物對(duì)土壤中堿解氮、速效磷、鉀的吸收[36],提高了作物根系活力,促進(jìn)了對(duì)水肥的吸收利用。肖元松等[37]研究表明,增氧灌溉提高了植物根系總表面積及根系活躍吸收面積,增加根系全氮含量。加氣改善土壤的通氣狀態(tài),為土壤微生物及根系活動(dòng)提供適宜氧氣環(huán)境,顯著提高了植物根系活力、根系硝酸還原酶、谷氨酰胺合成酶等氮代謝酶活性,進(jìn)而葉片光合氮素利用率增加,有效促進(jìn)植物的代謝和生長(zhǎng),促進(jìn)植物對(duì)氮素的吸收[38],加強(qiáng)土壤硝化過(guò)程,減少氮素流失和提高氮素利用率[39]。

        3.3 水肥耦合對(duì)加氣滴灌加工番茄果實(shí)品質(zhì)的影響

        作物品質(zhì)是衡量作物營(yíng)養(yǎng)的重要指標(biāo),其含量高低決定作物的營(yíng)養(yǎng)價(jià)值和口感,進(jìn)而影響作物的商品價(jià)值。本試驗(yàn)研究表明,隨著灌溉量的增加,加工番茄果實(shí)中可溶性糖、有機(jī)酸、維生素C、可溶性固形物等含量下降。這主要是增加灌水量對(duì)番茄各指標(biāo)有稀釋作用,增加灌水量,導(dǎo)致果實(shí)含水量增加,從而使品質(zhì)指標(biāo)含量稀釋降低[40]。合理的施氮量可以提高可溶性糖、有機(jī)酸、維生素C、可溶性固形物含量,過(guò)多的施氮量會(huì)降低維生素C和可溶性固形物含量,這與湯明堯[41]研究結(jié)果一致。

        根系長(zhǎng)期缺氧導(dǎo)致根系對(duì)水分的傳導(dǎo)性降低,加速葉綠素降解和降低光合酶活性,抑制植物光合作用,降低果實(shí)品質(zhì)[42]。本研究表明,加氣處理較不加氣處理提高了可溶性糖、有機(jī)酸、維生素C、可溶性固形物含量,但降低了果實(shí)糖酸比,這與溫改娟等[43]研究結(jié)果一致?;艚ㄓ碌萚44]研究認(rèn)為,番茄良好的風(fēng)味,必須在較高的含糖量基礎(chǔ)上有合適的糖酸比,即使有合適的糖酸比,糖酸均過(guò)低,也會(huì)影響番茄口感,因此糖酸比的變化受到可溶性糖和有機(jī)酸含量的影響,糖酸比的下降并不意味著番茄口感的下降。但加氣灌溉下番茄維生素C含量的增大,卻是番茄果實(shí)品質(zhì)提高的表現(xiàn)[12]。本試驗(yàn)的維生素C含量增加顯著(<0.05),說(shuō)明根區(qū)加氣改善了根際氧環(huán)境,保障了植株生理功能的正常運(yùn)轉(zhuǎn),對(duì)果實(shí)品質(zhì)有一定的提升作用。通過(guò)采用主成分分析法對(duì)5個(gè)品質(zhì)指標(biāo)進(jìn)行降維數(shù)學(xué)統(tǒng)計(jì)分析,加工番茄品質(zhì)最好的處理為W2N2A,適宜的灌水量和施氮量有利于加工番茄品質(zhì)的提升,而加氣灌溉可以在水肥耦合的基礎(chǔ)上明顯的提高加工番茄的果實(shí)品質(zhì)。

        4 結(jié) 論

        本試驗(yàn)研究了水肥耦合對(duì)加氣滴灌加工番茄產(chǎn)量、品質(zhì)及灌溉水分利用效率的影響,得到以下結(jié)論:

        1)灌水量增加提高加工番茄株高、產(chǎn)量和氮肥偏生產(chǎn)力,但減小了作物莖粗和灌溉水分利用效率;隨著施氮量增加,加工番茄莖粗、產(chǎn)量和灌溉水分利用效率先增加后減小,氮肥偏生產(chǎn)力逐漸減?。慌c不加氣處理相比,加氣處理顯著提高加工番茄株高和莖粗(<0.05),產(chǎn)量顯著增加2.32%~10.02%(<0.05),灌溉水分利用效率和氮肥偏生產(chǎn)力分別顯著提高6.12%和6.19%(<0.05)。

        2)加工番茄可溶性糖、維生素C和可溶性固形物隨著施氮量的增加先增加后降低,隨灌水量的增加而減??;加氣處理較不加氣處理增加可溶性糖、有機(jī)酸、維生素C、可溶性固形物含量,但降低了果實(shí)糖酸比。

        3)基于主成分分析,綜合考慮作物株高、莖粗、產(chǎn)量、灌溉水分利用效率(Irrigation Water-Use Efficiency,IWUE)、氮肥偏生產(chǎn)力(Nitrogen Partial Factor Productivity,PFPN)及品質(zhì),研究認(rèn)為加氣處理下灌溉定額4 050 m3/hm2,施氮量250kg/hm2為較優(yōu)的滴灌加工番茄水肥氣管理模式。

        [1] Sengar A S, Rawson A, Muthiah M, et al. Comparison of different ultrasound assisted extraction techniques for pectin from tomato processing waste[J/OL]. Ultrasonics Sonochemistry, 2020, 61. [2019-9-28]. https://doi.org/10.1016/j.ultsonch.2019.104812.

        [2] 張桂芬,劉萬(wàn)學(xué),萬(wàn)方浩,等. 世界毀滅性檢疫害蟲(chóng)番茄潛葉蛾的生物生態(tài)學(xué)及危害與控制[J]. 生物安全學(xué)報(bào),2018,27(3):155-163.

        Zhang Guifen, Liu Wanxue, Wan Fanghao, et al. Bioecology, damage and management of the tomato leafminer(Meyrick) (Lepidoptera: Gelechiidae), a worldwide quarantine pest[J]. Journal of Biosafety, 2018, 27(3): 155-163. (in Chinese with English abstract)

        [3] 楊玉珍,孟超然,張新疆,等. 氮、鉀肥用量對(duì)膜下滴灌加工番茄產(chǎn)量和品質(zhì)的影響[J]. 中國(guó)土壤與肥料,2017,54(1):61-67.

        Yang Yuzhen, Meng Chaoran, Zhang Xinjiang, et al. Effect of nitrogen and potassium fertilizer on yield and quality of processing tomato under drip irrigation with plastic film mulching[J]. Soil and Fertilizer Sciences in China, 2017, 54(1): 61-67. (in Chinese with English abstract)

        [4] 李明思,劉洪光,鄭旭榮. 長(zhǎng)期膜下滴灌農(nóng)田土壤鹽分時(shí)空變化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(22):82-87.

        Li Mingsi, Liu Hongguang, Zheng Xurong. Spatiotemporal variation for soil salinity of field land under long-term mulched drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(22): 82-87. (in Chinese with English abstract)

        [5] 李青軍,張炎,胡偉,等. 施肥方式對(duì)滴灌加工番茄干物質(zhì)積累、養(yǎng)分吸收和產(chǎn)量的影響[J]. 中國(guó)土壤與肥料,2017(4):93-98.

        Li Qingjun, Zhang Yan, Hu Wei, et al. Effects of fertilization on dry matter accumulation, nutrient uptake and yield of processing tomato under drip irrigation[J]. Soil and Fertilizer Sciences in China, 2017(4): 93-98. (in Chinese with English abstract)

        [6] 竇允清,王振華,張金珠,等. 水肥耦合對(duì)滴灌加工番茄生理生長(zhǎng)及產(chǎn)量的影響[J]. 江蘇農(nóng)業(yè)科學(xué),2019,47(7):124-129.

        Dou Yunqing, Wang Zhenhua, Zhang Jinzhu, et al. Effects of water and fertilizer coupling on physiological growth and yield of tomato under drip irrigation[J]. Jiangsu Agricultural Sciences, 2019, 47(7): 124-129. (in Chinese with English abstract)

        [7] Li Zhiguo, Zhang Runhua, Wang Xiujun, et al. Carbon dioxide fluxes and concentrations in a cotton field in northwestern china: Effects of plastic mulching and drip irrigation[J]. Pedosphere, 2011, 21(2): 178-185.

        [8] Bhattarai S P, Pendergast L, Midmore D J. Root aeration improves yield and water use efficiency of tomato in heavy clay and saline soils[J]. Scientia Horticulturae, 2006, 108(3): 278-288.

        [9] Horchani F, Aschi-Smiti S, Brouquisse R. Involvement of nitrate reduction in the tolerance of tomato (L.) plants to prolonged root hypoxia[J]. Acta Physiologiae Plantarum, 2010, 32(6): 1113-1123.

        [10] Niu Wenquan, Jia Zongxia, Zhang Xuan, et al. Effects of soil rhizosphere aeration on the root growth and water absorption of tomato[J]. Clean-Soil, Air, Water, 2012, 40(12): 1364-1371.

        [11] Li Yuan, Niu Wenquan, Wang Jingwei, et al. Effects of artificial soil aeration volume and frequency on soil enzyme activity and microbial abundance when cultivating greenhouse tomato[J]. Soil Science Society of America Journal, 2016, 80(5): 1208-1221.

        [12] 朱艷,蔡煥杰,宋利兵,等. 加氣灌溉對(duì)番茄植株生長(zhǎng)、產(chǎn)量和果實(shí)品質(zhì)的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(8):199-211.

        Zhu Yan, Cai Huanjie, Song Libing, et al. Impacts of oxygation on plant growth, yield and fruit quality of tomato[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(8): 199-211. (in Chinese with English abstract)

        [13] 新疆維吾爾自治區(qū)統(tǒng)計(jì)局. 新疆統(tǒng)計(jì)年鑒[M]. 北京:中國(guó)統(tǒng)計(jì)出版社,2019.

        [14] 李元,牛文全,許健,等. 加氣滴灌提高大棚甜瓜品質(zhì)及灌溉水分利用效率[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(1):147-154.

        Li Yuan, Niu Wenquan, Xu Jian, et al. Aerated irrigation enhancing quality and irrigation water use efficiency of muskmelon in plastic greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(1): 147-154. (in Chinese with English abstract)

        [15] 李歡歡,劉浩,孫景生,等. 水肥耦合對(duì)溫室番茄產(chǎn)量、水分利用效率和品質(zhì)的影響[J]. 排灌機(jī)械工程學(xué)報(bào),2018,36(9):886-891.

        Li Huanhuan, Liu Hao, Sun Jingsheng, et al. Effects of water and fertilizer coupling on yield, water use efficiency and quality of tomato in greenhouse[J]. Journal of Drainage and Irrigation Machinery Engineering, 2018, 36(9): 886-891. (in Chinese with English abstract)

        [16] 雷成霞,李文昊. 膜下滴灌水氮耦合對(duì)加工番茄耗水強(qiáng)度及氮素吸收分配的影響[J/OL]. 石河子大學(xué)學(xué)報(bào):自然科學(xué)版,2020:1-8. [2020-6-14]. https://kns.cnki.net/kcms/ detail/65.1174.N.20200612.1140.004.html.

        Lei Chengxia, Li Wenhao. Effects of water and nitrogen coupling under film drip irrigation on the water consumption intensity and nitrogen uptake and distribution of processing tomatoes[J]. Journal of Shihezi University: Natural Science Edition, 2020:1-8. [2020-6-14]. https://kns.cnki.net/kcms/ detail/65.1174.N.20200612.1140.004.html. (in Chinese with English abstract)

        [17] 雷宏軍,臧明,張振華,等. 循環(huán)曝氣壓力與活性劑濃度對(duì)滴灌帶水氣傳輸?shù)挠绊慬J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(22):63-69.

        Lei Hongjun, Zang Ming, Zhang Zhenhua, et al. Impact of working pressure and surfactant concentration on air-water transmission in drip irrigation tape under cycle aeration[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(22): 63-69. (in Chinese with English abstract)

        [18] 王鵬勃,李建明,丁娟娟,等. 水肥耦合對(duì)溫室袋培番茄品質(zhì)、產(chǎn)量及水分利用效率的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2015,48(2):314-323.

        Wang Pengbo, Li Jianming, Ding Juanjuan, et al. Effect of water and fertilizer coupling on quality, yield and water use efficiency of tomato cultivated by organic substrate in bag[J]. Scientia Agricultura Sinica, 2015, 48(2): 314-323. (in Chinese with English abstract)

        [19] 于飛,施衛(wèi)明. 近10年中國(guó)大陸主要糧食作物氮肥利用率分析[J]. 土壤學(xué)報(bào),2015,52(6):1311-1324.

        Yu Fei, Shi Weiming. Nitrogen use efficiencies of major grain crops in china in recent 10 years[J]. Acta Pedologica Sinica, 2015, 52(6): 1311-1324. (in Chinese with English abstract)

        [20] 魏守輝,肖雪梅,鐘源,等. 日光溫室不同時(shí)段補(bǔ)光對(duì)番茄果實(shí)品質(zhì)及揮發(fā)性物質(zhì)影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(8):188-196.

        Wei Shouhui, Xiao Xuemei, Zhong Yuan, et al. Effects of supplemental illumination in different periods on the quality and volatile compounds of tomato fruit in solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(8): 188-196. (in Chinese with English abstract)

        [21] 王峰,杜太生,邱讓建. 基于品質(zhì)主成分分析的溫室番茄虧缺灌溉制度[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(1):75-80.

        Wang Feng, Du Taisheng, Qiu Rangjian. Deficit irrigation scheduling of greenhouse tomato based on quality principle component analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(1): 75-80. (in Chinese with English abstract)

        [22] 楊開(kāi)靜. 滴灌條件下馬鈴薯田間土壤水、氣交互效應(yīng)與調(diào)控機(jī)理研究[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2017.

        Yang Kaijing. Interaction and Regulation Mechanism of Soil Water and Gases in Potato Field under Drip Irrigation[D]. Beijing: China Agricultural University, 2017. (in Chinese with English abstract)

        [23] 梁斌,王群艷,董靜,等. 水氮管理對(duì)設(shè)施番茄根系生長(zhǎng)的影響[J]. 環(huán)境科學(xué)研究,2019,32(4):677-682.

        Liang Bin, Wang Qunyan, Dong Jing, et al. Effects of irrigation and nitrogen managements on root growth of tomato under greenhouse condition[J]. Research of Environmental Sciences, 2019, 32(4): 677-682. (in Chinese with English abstract)

        [24] 梁運(yùn)江,依艷麗,許廣波,等. 水肥耦合效應(yīng)的研究進(jìn)展與展望[J]. 湖北農(nóng)業(yè)科學(xué),2006,45(3):385-388.

        Liang Yunjiang, Yi Yanli, Xu Guangbo, et al. Research progress and prospect of coupling effect of water and fertilizer[J]. Hubei Agricultural Sciences, 2006, 45(3): 385-388. (in Chinese with English abstract)

        [25] 王激清,劉社平. 施氮量對(duì)番茄生長(zhǎng)發(fā)育和氮肥利用率的影響[J]. 河南農(nóng)業(yè)科學(xué),2015,44(2):94-97.

        Wang Jiqing, Liu Sheping. Effects of nitrogen application rate on tomato growth and nitrogen use efficiency[J]. Journal of Henan Agricultural Sciences, 2015, 44(2): 94-97. (in Chinese with English abstract)

        [26] Ming Guanghuni, Hu Hongchang, Tian Fuqiang, et al. Precipitation alters plastic film mulching impacts on soil respiration in an arid area of Northwest China[J]. Hydrology and Earth System Sciences, 2018, 22(5): 3075-3086.

        [27] 趙旭,李天來(lái),孫周平. 番茄基質(zhì)通氣栽培模式的效果[J]. 應(yīng)用生態(tài)學(xué)報(bào),2010,21(1):74-78.

        Zhao Xu, Li Tianlai, Sun Zhouping. Effects of substrate aeration cultivation pattern on tomato growth[J]. Chinese Journal of Applied Ecology, 2010, 21(1): 74-78. (in Chinese with English abstract)

        [28] 王文泉,張福鎖. 高等植物厭氧適應(yīng)的生理及分子機(jī)制[J]. 植物生理學(xué)通訊,2001,37(1):63-70.

        Wang Wenquan, Zhang Fusuo. The physiological and molecular mechanism of adaptation to anaerobiosis in high plants[J]. Plant Physiology Communications, 2001, 37(1): 63-70. (in Chinese with English abstract)

        [29] 徐春梅,陳麗萍,王丹英,等. 低氧脅迫對(duì)水稻幼苗根系功能和氮代謝相關(guān)酶活性的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2016,49(8):1625-1634.

        Xu Chunmei, Chen Liping, Wang Danying, et al. Effects of low oxygen stress on the root function and enzyme activities related to nitrogen metabolism in roots of rice seedlings[J]. Chinese Journal of Agricultural Sciences, 2016, 49(8): 1625-1634. (in Chinese with English abstract)

        [30] 徐建新,臧明,雷宏軍,等. 增氧灌溉對(duì)盆栽冬小麥生長(zhǎng)及土壤通氣性的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究,2019,37(4):16-25.

        Xu Jianxin, Zang Ming, Lei Hongjun, el al. Impacts of oxygenated irrigation on potted winter wheat growth and soil aeration[J]. Agricultural Research in the Arid Areas, 2019, 37(4): 16-25. (in Chinese with English abstract)

        [31] 胡德勇,廖健程,陳哲,等. 控制灌溉增氧對(duì)超級(jí)稻生理生化特性及水分利用效率的影響[J]. 排灌機(jī)械工程學(xué)報(bào),2020,38(5):500-505.

        Hu Deyong, Liao Jiancheng, Chen Zhe, et al. Effects of controlled irrigation and oxygenation on physiological and biochemical characteristics and water use efficiency of super rice[J].Journal of Drainage and Irrigation Machinery Engineering, 2020, 38(5): 500-505. (in Chinese with English abstract)

        [32] 劉義玲,李天來(lái),孫周平,等. 根際低氧脅迫對(duì)網(wǎng)紋甜瓜生長(zhǎng)、根呼吸代謝及抗氧化酶活性的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2010,21(6):1439-1445.

        Liu Yiling, Li Tianlai, Sun Zhouping, et al. Impacts of root-zone hypoxia stress on musk-melon growth, its root respiratory metabolism, and antioxidative enzyme activities[J].Chinese Journal of Applied Ecology, 2010, 21(6): 1439-1445. (in Chinese with English abstract)

        [33] 邢英英,張富倉(cāng),吳立峰,等. 基于番茄產(chǎn)量品質(zhì)水肥利用效率確定適宜滴灌灌水施肥量[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(增刊1):110-121.

        Xing Yingying, Zhang Fucang, Wu Lifeng, et al. Determination of optimal amount of irrigation and fertilizer under drip fertigated system based on tomato yield, quality, water and fertilizer use efficiency[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Supp.1): 110-121. (in Chinese with English abstract)

        [34] 張新燕,王浩翔,牛文全. 水氮供應(yīng)對(duì)溫室滴灌番茄水氮分布及利用效率的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(9):106-115.

        Zhang Xinyan, Wang Haoxiang, Niu Wenquan. Effects of water and N-fertilizer supplies on the distribution and use efficiency of water and nitrogen of drip-irrigated tomato in greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(9): 106-115. (in Chinese with English abstract)

        [35] 姜慧敏,張建峰,楊俊誠(chéng),等. 不同氮肥用量對(duì)設(shè)施番茄產(chǎn)量、品質(zhì)和土壤硝態(tài)氮累積的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2010,29(12):2338-2345.

        Jiang Huimin, Zhang Jianfeng, Yang Juncheng, et al. Effects of different treatments of nitrogen fertilizer on yield, quality of tomato and soil NO3-N accumulation in vegetable-greenhouse[J]. Journal of Agro-Environment Science, 2010, 29(12): 2338-2345. (in Chinese with English abstract)

        [36] 趙豐云,楊湘,董明明,等. 加氣灌溉改善干旱區(qū)葡萄根際土壤化學(xué)特性及細(xì)菌群落結(jié)構(gòu)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(22):119-126.

        Zhao Fengyun, Yang Xiang, Dong Mingming, el al. Aeration irrigation improving grape rhizosphere soil chemical properties and bacterial community structure in arid area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(22): 119-126. (in Chinese with English abstract)

        [37] 肖元松,彭福田,張亞飛,等. 增氧栽培對(duì)桃幼樹(shù)根系構(gòu)型及氮素代謝的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2014,47(10):1995-2002.

        Xiao Yuansong, Peng Futian, Zhang Yafei, et al. Effects of aeration cultivation on root architecture and nitrogen metabolism of young peach trees[J]. Chinese Journal of Agricultural Sciences, 2014, 47(10): 1995-2002. (in Chinese with English abstract)

        [38] 徐春梅,王丹英,陳松,等. 增氧對(duì)水稻根系生長(zhǎng)與氮代謝的影響[J]. 中國(guó)水稻科學(xué),2012,26(3):320-324.

        Xu Chunmei, Wang Danying, Chen Song, et al. Effects of aeration on root growth and nitrogen metabolism in rice[J]. Chinese Journal of Rice Science, 2012, 26(3): 320-324. (in Chinese with English abstract)

        [39] Du Yadan, Niu Wenquan, Zhang Qian, et al. Effects of nitrogen on soil microbial abundance, enzyme activity, and nitrogen use efficiency in greenhouse celery under aerated irrigation[J]. Soil Ence Society of America Journal, 2018, 82(3): 606-613.

        [40] 張延平,溫祥珍,李亞靈,等. 水氮耦合對(duì)日光溫室番茄干物質(zhì)生產(chǎn)與分配的影響[J]. 華北農(nóng)學(xué)報(bào),2018,33(2):215-223.

        Zhang Yanping, Wen Xiangzhen, Li Yaling, et al. Effects of water and nitrogen coupling on dry matter production and allocation of tomato in a solar greenhouse[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(2): 215-223. (in Chinese with English abstract)

        [41] 湯明堯. 施氮對(duì)加工番茄養(yǎng)分吸收、分配及產(chǎn)量品質(zhì)的影響[D]. 烏魯木齊:新疆農(nóng)業(yè)大學(xué),2009.

        Tang Mingyao. Effect of Nitrogen Application on Absorption and Distribution of Nutrition and Yield-Quality on Processing Tomato[D]. Urumqi: Xinjiang Agricultural University, 2009. (in Chinese with English abstract)

        [42] 劉義玲,李天來(lái),孫周平,等. 根際低氧脅迫對(duì)網(wǎng)紋甜瓜光合作用、產(chǎn)量和品質(zhì)的影響[J]. 園藝學(xué)報(bào),2009,36(10):1465-1472.

        Liu Yiling, Li Tianlai, Sun Zhouping, et al. Effects of root-zone hypoxia stress on the photosynthesis, yield and quality of muskmelon[J]. Acta Horticulturae Sinica, 2009, 36(10): 1465-1472. (in Chinese with English abstract)

        [43] 溫改娟,蔡煥杰,陳新明,等. 加氣灌溉對(duì)溫室番茄生長(zhǎng)、產(chǎn)量及品質(zhì)的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究,2014,32(3):83-87.

        Wen Gaijuan, Cai Huanjie, Chen Xinming, et al. Impact of aerated subsurface irrigation to growth, yield and quality of greenhouse tomato[J]. Agricultural Research in the Arid Areas, 2014, 32(3): 83-87. (in Chinese with English abstract)

        [44] 霍建勇,劉靜,馮輝,等. 番茄果實(shí)風(fēng)味品質(zhì)研究進(jìn)展[J]. 中國(guó)蔬菜,2005,1(2):34-36.

        Huo Jianyong, Liu Jing, Feng Hui, et al. Reviews on flavor quality of tomato[J]. China Vegetables, 2005, 1(2): 34-36. (in Chinese with English abstract)

        Effects of water and fertilizer coupling on the yield and quality of processing tomato under aerated drip irrigation

        Wang Zhenhua1,2, Chen Xiaojie1,2, Lyu Desheng1, Li Wenhao1,2, Wang Tianyu1,2, Wei Chilin1,2

        (1. College of Water Resources and Architectural Engineering, Shihezi University, Shihezi 832000, China; 2. Key Laboratory of Modern Water- Saving Irrigation of Xinjiang Production & Construction Group, Shihezi 832000, China)

        Optimizing water andfertilization management is a critical component for maximizing cropproduction and water-fertilizer use efficiency. Aerated irrigation is widely recognized to improve soil aeration and water productivity. However, information about crop yield and quality of processing tomato responds to water-nitrogen-gas coupling remains unclear. To explore the effects of water and fertilizer coupling under aerated irrigation on yield, quality, and water-fertilizer use efficiency of processing tomato (), and to determine the optimal water-nitrogen rate for improving quality under aerated irrigation, a field experiment was conducted in 2019 at the Key Laboratory of Modern Water-Saving Irrigation of the Xinjiang Production and Construction Corps at Shihezi University in Xinjiang, China. Two irrigation levels (4 950 and 4 050 m3/hm2), four nitrogen levels (280, 250, 220, and 190 kg/hm2), and two aerated rates (15% and 0) were tested using a completely randomized design. A local processing tomato cultivar, Jinfan 3166, was selected transplanted on May 5thmanually and harvested on August 24th. Subsurface drip irrigation was adopted in this study. Air was injected into a drip line using Mazzei air injector (Mazzei air injector 1078, American), and the aerated rate was approximately 15%. Plant height, stem diameter, yield, water-use efficiency, nitrogen partial factor productivity, and fruit quality parameter of processing tomato were determined. The results showed that irrigation and nitrogen fertilization significantly affected plant height and stem diameter of processing tomato (<0.05). The plant height of processing tomato was greater as the irrigation and nitrogen level increased. However, excessive irrigation and fertilization had a major negative impact on stem diameter. Furthermore, Aerated irrigation enhanced plant height and stem diameter more under higher irrigation levels. Processing tomato yield was greater at a high irrigation level by 2.18% to 16.95% than that in the low irrigation level. Under the same irrigation amount, processing tomato yield increased firstly and then decreased relative to nitrogen levels. Compared to no aerated irrigation, aerated irrigation significantly increased processing tomato yield by 2.32% to 10.02% (<0.05). Compared to low irrigation amount, more irrigation amount significantly decreased irrigation water-use efficiency by 4.31% to 16.40% (<0.05), but increased nitrogen partial factor productivity by 2.18% to 16.95% (<0.05). Under the same irrigation amount, irrigation water-use efficiency first increased and then decreased with the increase of nitrogen levels, and nitrogen partial factor productivity showed a negative correlation with the nitrogen amount. Aerated irrigation enhanced irrigation water-use efficiency and nitrogen partial factor productivity by an average of 6.12% and 6.19%, respectively, comparing to no aerated irrigation. Water-nitrogen-gas coupling had a stronger effect on the quality index of the processing tomato. Compared to low irrigation level, the average soluble sugar, organic acid, Vitamin C, and the soluble solid content was 5.84%, 4.85%, 2.50%, and 3.34% smaller in high irrigation amount. And soluble sugar, Vitamin C, and soluble solid content increased firstly and then decreased with the increase of nitrogen application. Aerated irrigation increased soluble sugar, organic acid, Vitamin C, and soluble solid content of processing tomato significantly (<0.05). Meanwhile, compared to no-aerated irrigation, the ratio of sugar to acid was significantly lower by 1.17% in aerated irrigation (<0.05). The principal component analysis was applied to evaluate and compare the water and nitrogenfertilization management technology with the fruit quality parameter of processing tomato. Two components were extracted from the quality index matrix which the accumulative contribution rate was 87.043%. Based on the principal component analysis, the comprehensive rankings revealed the suitable irrigation amount was 4 050 m3/hm2and the suitable nitrogen amount was 250 kg/hm2under aerated irrigation conditions, which ranked first. Under this pattern, the irrigation water-use efficiency was 46.85 kg/m3,which was significantly higher than other treatments (<0.05). These results could provide theoretical support for improving water-fertilizer use efficiency of processing tomato in Xinjiang.

        irrigation; soils; quality control; yield; processing tomato; aerated irrigation; principal component analysis

        王振華,陳瀟潔,呂德生,等. 水肥耦合對(duì)加氣滴灌加工番茄產(chǎn)量及品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(19):66-75.doi:10.11975/j.issn.1002-6819.2020.19.008 http://www.tcsae.org

        Wang Zhenhua, Chen Xiaojie, Lyu Desheng, et al. Effects of water and fertilizer coupling on the yield and quality of processing tomato under aerated drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(19): 66-75. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.19.008 http://www.tcsae.org

        2020-04-08

        2020-05-18

        國(guó)家重點(diǎn)研發(fā)計(jì)劃“經(jīng)濟(jì)作物水肥一體化技術(shù)模式研究與應(yīng)用”(2017YFD0201506);兵團(tuán)科技創(chuàng)新團(tuán)隊(duì)項(xiàng)目(2019CB004);兵團(tuán)節(jié)水灌溉試驗(yàn)計(jì)劃項(xiàng)目(BTJSSY-201907);石河子大學(xué)國(guó)際科技合作推進(jìn)計(jì)劃項(xiàng)目(GJHZ201803)

        王振華,博士,教授,主要從事干旱區(qū)節(jié)水灌溉理論與技術(shù)研究。Email: wzh2002027@163.com

        10.11975/j.issn.1002-6819.2020.19.008

        S641.2; S275.6

        A

        1002-6819(2020)-19-0066-10

        猜你喜歡
        氮量利用效率水肥
        雅苒致力于推動(dòng)水肥一體化
        “水肥一體”新系統(tǒng) 助力增收有一手
        避免肥料流失 提高利用效率
        “水肥一體化”這么厲害!
        淺談水肥一體化技術(shù)在北方貧困山區(qū)的應(yīng)用與推廣
        體制改革前后塔里木河流域水資源利用效率對(duì)比分析
        高、中、低產(chǎn)田水稻適宜施氮量和氮肥利用率的研究
        不同地力水平下超級(jí)稻高產(chǎn)高效適宜施氮量及其機(jī)理的研究
        不同白菜品種對(duì)鋅的響應(yīng)及鋅利用效率研究
        嫁接與施肥對(duì)番茄產(chǎn)量及氮、磷、鉀吸收利用效率的影響
        a级毛片无码免费真人| 成人性生交大片免费5| 80s国产成年女人毛片| 国产成人无码a区在线观看视频| 国产精品23p| 日韩精品一区二区三区四区五区六 | 亚洲av色欲色欲www| 18成人片黄网站www| 国产桃色在线成免费视频| 国产精品亚洲一区二区三区久久| 精品国产午夜肉伦伦影院| 国産精品久久久久久久| 国产精品99久久久精品免费观看| 亚洲最大的av在线观看| 欧美群妇大交群| 无码人妻丰满熟妇区五十路百度| 亚洲中文欧美日韩在线| 亚洲白嫩少妇在线喷水| 久久久中日ab精品综合| 欧美婷婷六月丁香综合色| 精品人妻av一区二区三区不卡| 精品国产一区二区三区av麻| 偷偷色噜狠狠狠狠的777米奇| 人妻无码一区二区| 国产三级三级精品久久| 尤物yw午夜国产精品视频| 国产成人av性色在线影院色戒 | 亚洲国产精品av麻豆网站| 67194熟妇人妻欧美日韩| 亚洲欧洲高潮| 中文字幕亚洲乱码熟女在线| 国产一区国产二区亚洲精品| 日本不卡一区二区三区在线 | 亚洲天堂精品一区入口| 亚洲人成影院在线观看| 四虎精品国产一区二区三区| 亚洲一二三四五中文字幕| 亚洲综合成人婷婷五月网址| 日韩欧美亚洲综合久久影院d3| 日本二区视频在线观看| 99久久精品费精品国产一区二|