亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        不同鈴殼物理參數(shù)對(duì)機(jī)采棉采摘力學(xué)特性的影響

        2020-12-25 01:10:24張龍唱張宏文傅秀清陳廷官谷艷清
        關(guān)鍵詞:棉鈴機(jī)采棉花

        張龍唱,張宏文,王 磊,傅秀清,陳廷官,王 軍,谷艷清

        不同鈴殼物理參數(shù)對(duì)機(jī)采棉采摘力學(xué)特性的影響

        張龍唱1,2,張宏文1,2※,王 磊1,2,傅秀清3,陳廷官1,2,王 軍1,2,谷艷清1,2

        (1. 石河子大學(xué)機(jī)械電氣工程學(xué)院,石河子 832003; 2. 農(nóng)業(yè)農(nóng)村部西北農(nóng)業(yè)裝備重點(diǎn)實(shí)驗(yàn)室,石河子 832003;3. 南京農(nóng)業(yè)大學(xué)工學(xué)院,南京 210031)

        為了揭示鈴殼物理參數(shù)對(duì)機(jī)采棉采摘力學(xué)特性的影響規(guī)律,該研究以新疆石河子地區(qū)具有代表性的3個(gè)機(jī)采棉品種(新陸早45號(hào)、新陸早66號(hào)、新陸早83號(hào))為研究對(duì)象,通過(guò)室內(nèi)棉花拉伸分離試驗(yàn)對(duì)比分析了3種機(jī)采棉在相同生長(zhǎng)條件下,鈴殼質(zhì)量分?jǐn)?shù)、心皮角以及鎖角對(duì)棉花鈴殼分離力的影響。試驗(yàn)結(jié)果表明:3種機(jī)采棉的棉花鈴殼分離力范圍分別為:0.155~0.980 N、0.275~0.967 N、0.258~0.667 N。在室內(nèi)棉花拉伸分離試驗(yàn)中,3種機(jī)采棉棉花拉伸載荷-位移曲線相似,均表現(xiàn)為3個(gè)階段:類彈性階段、類屈服階段、分離階段,在類屈服階段,棉花拉伸載荷-位移曲線出現(xiàn)鋸齒狀波動(dòng),當(dāng)外部載荷達(dá)到一定程度時(shí)棉花內(nèi)部的棉纖維組織發(fā)生局部錯(cuò)位。進(jìn)一步研究表明,3種機(jī)采棉的鈴殼質(zhì)量分?jǐn)?shù)、鎖角、心皮角均對(duì)棉花鈴殼分離力具有顯著影響(<0.01),呈負(fù)相關(guān)關(guān)系,且心皮角、鈴殼質(zhì)量分?jǐn)?shù)與棉花鈴殼分離力滿足冪函數(shù)關(guān)系。研究結(jié)果表明,在機(jī)采棉作物育種時(shí),應(yīng)盡可能選育鈴殼質(zhì)量分?jǐn)?shù)相對(duì)較小、鎖角均勻的品種,在選擇采收時(shí)機(jī)時(shí),棉花成熟后應(yīng)及早采收,避免收獲前損失增大。該項(xiàng)研究成果對(duì)于指導(dǎo)機(jī)采棉育種以及新型棉花收獲機(jī)械的設(shè)計(jì)和優(yōu)化具有理論研究?jī)r(jià)值和現(xiàn)實(shí)意義。

        力學(xué)特性;試驗(yàn);機(jī)采棉;心皮角;鎖角;鈴殼質(zhì)量分?jǐn)?shù)

        0 引 言

        棉花是錦葵科棉屬植物的纖維,原產(chǎn)自北美洲墨西哥地區(qū),品種繁多,經(jīng)濟(jì)價(jià)值高,廣泛應(yīng)用于紡織、化工等領(lǐng)域,是重要的戰(zhàn)略儲(chǔ)備物資[1-2]。新疆地區(qū)是中國(guó)最大的棉花產(chǎn)區(qū),其棉花產(chǎn)業(yè)已成為當(dāng)?shù)剞r(nóng)業(yè)中的支柱產(chǎn)業(yè)。隨著農(nóng)業(yè)機(jī)械化進(jìn)程的不斷發(fā)展,2018年新疆機(jī)采棉種植面積達(dá)335.2萬(wàn)hm2,機(jī)械化采收率已超過(guò)80.4%,棉花機(jī)械化采收技術(shù)已日漸成熟[3]。

        在棉花的機(jī)械化采收過(guò)程中,機(jī)采棉采摘力學(xué)特性是影響棉花收獲的重要因素和棉花收獲機(jī)械設(shè)計(jì)的重要依據(jù)。宋敏研究了不同品種機(jī)采棉的機(jī)采特性以及纖維品質(zhì),為機(jī)采棉品種選育、生產(chǎn)應(yīng)用提供了理論基礎(chǔ)[4];張宏文研究了新陸早26號(hào)品種機(jī)采棉棉鈴及棉株的物理參數(shù),同時(shí)測(cè)量了棉株各部分的連接力以及棉花與膠棒間的摩擦系數(shù),為膠棒滾筒棉花采摘頭的設(shè)計(jì)提供了理論支持[5];李俊江研究了機(jī)采棉的種植模式以及新陸早33號(hào)品種的棉桃密度、棉桃含水率,同時(shí)測(cè)量了棉桃的碰撞恢復(fù)系數(shù),為彈齒滾筒式棉桃采摘機(jī)的設(shè)計(jì)提供了基礎(chǔ)[6]。李勇等研究了一天中不同時(shí)間段棉花鈴殼分離力與含水率間的關(guān)系,提出了機(jī)采棉的最佳采收時(shí)間[7];王修山等研究了棉花鈴殼質(zhì)量分?jǐn)?shù)對(duì)絨長(zhǎng)、衣分的影響,建立了棉鈴體積測(cè)算模型,為進(jìn)一步分析棉花的經(jīng)濟(jì)效益提供了基礎(chǔ)[8];Kevin等通過(guò)摘錠采棉試驗(yàn)分析了不同轉(zhuǎn)速下摘錠的采摘性能以及摘錠采摘力的范圍,為采棉機(jī)作業(yè)速度提升提供了理論基礎(chǔ)[9-11];Friesen等在研究抗風(fēng)暴棉新品種時(shí)對(duì)鈴殼開(kāi)放角度做了初步定義,并提出棉花與鈴殼間的分離力可能與鈴殼開(kāi)放角度有關(guān)[12]。

        此外,受鈴殼物理參數(shù)影響,機(jī)采棉成熟后在惡劣天氣下會(huì)提前脫落產(chǎn)生落地棉,造成收獲前損失,在機(jī)械化采收時(shí)存在棉花采摘不凈以及撞落的現(xiàn)象,造成收獲損失[13];鈴殼在棉花生長(zhǎng)初期對(duì)棉花種子和纖維具有營(yíng)養(yǎng)、保護(hù)和支撐作用,在棉花成熟后卻是阻礙棉花采收的主要影響因素,鈴殼的各項(xiàng)物理參數(shù)不僅關(guān)系到機(jī)械收獲棉花時(shí)工作部件的機(jī)械效應(yīng),同時(shí)對(duì)機(jī)采棉棉花鈴殼分離力也有一定影響[13-15]。陳紅等通過(guò)室內(nèi)柑橘剝皮試驗(yàn)分析了柑橘的剝皮力學(xué)特性,并將柑橘剝皮過(guò)程分為3個(gè)階段(類彈性階段、類屈服階段、分離階段)[16];劉亞斌等通過(guò)對(duì)3種西寧地區(qū)典型草本植物進(jìn)行單根抗拉力學(xué)特性試驗(yàn)得到了3種草本植物拉伸過(guò)程的應(yīng)力-應(yīng)變特征,并將3種草本植物的拉伸過(guò)程分為4個(gè)階段(彈性變形、彈塑性變形、應(yīng)變硬化、斷裂破壞)[17]。田佳等通過(guò)室內(nèi)拉伸試驗(yàn)分析了防風(fēng)固沙灌木根系的拉伸力學(xué)特性得到了花棒和沙柳根系垂直拉拔力與位移變化的曲線,并將曲線分為3個(gè)階段(彈性階段、塑性階段、拉出階段)[18]。而針對(duì)鈴殼物理參數(shù)與機(jī)采棉采摘拉伸力學(xué)特性與位移的關(guān)系階段劃分尚不明確。

        綜上所述,針對(duì)機(jī)采棉的研究多是從棉纖維品質(zhì)方面展開(kāi),對(duì)機(jī)采棉采摘力學(xué)特性的研究較為基礎(chǔ),對(duì)機(jī)采棉采摘力學(xué)特性的影響因素研究不夠深入,忽略了棉花鈴殼自身物理參數(shù)對(duì)機(jī)采棉采摘力學(xué)特性的影響。本研究從鈴殼物理參數(shù)角度出發(fā)對(duì)機(jī)采棉采摘力學(xué)特性進(jìn)行研究,以收獲期機(jī)采棉為研究對(duì)象,通過(guò)室內(nèi)棉花拉伸分離試驗(yàn)探究不同鈴殼物理參數(shù)對(duì)機(jī)采棉采摘力學(xué)特性的影響規(guī)律,擬為機(jī)采棉作物育種、確定采收時(shí)機(jī)以及新型棉花收獲機(jī)械的設(shè)計(jì)和優(yōu)化提供理論依據(jù)和數(shù)據(jù)支撐。

        1 機(jī)采棉采摘受力分析

        水平摘錠式采棉機(jī)是中國(guó)應(yīng)用最為廣泛的棉花采收機(jī)械,其工作過(guò)程是通過(guò)數(shù)百根摘錠接觸、鉤掛、纏繞棉花來(lái)實(shí)現(xiàn)棉花與鈴殼的有效分離[19-21],完成采摘過(guò)程。在摘錠工作過(guò)程中,由于摘錠表面附著有3排鉤齒,高速旋轉(zhuǎn)的摘錠接觸到棉花時(shí),鉤齒會(huì)勾住棉纖維,同時(shí)摘錠以速度向棉花移動(dòng),使棉花纏繞在摘錠表面,完成單瓣棉花的采摘。在實(shí)際采摘過(guò)程中,摘錠與棉花接觸位置、接觸角度各不相同,但對(duì)單瓣棉花而言,其采摘受力模型是一致的,如圖1所示。

        注:T為摘錠對(duì)棉花的采摘力,N;P為棉花鈴殼分離力,N;v為摘錠向棉花移動(dòng)的進(jìn)給速度,m·s-1;n為摘錠轉(zhuǎn)速,r·min-1。

        在摘錠采摘棉花過(guò)程中,摘錠高速旋轉(zhuǎn)纏繞棉花,在棉花表面產(chǎn)生一個(gè)向上的采摘力,同時(shí),由于棉花生長(zhǎng)在鈴殼上,棉花與鈴殼間存在生物連結(jié)力,在采棉時(shí)鈴殼會(huì)對(duì)棉花產(chǎn)生一個(gè)向下的作用力,即棉花鈴殼分離力,由于棉花自身重力及所受空氣阻力遠(yuǎn)小于棉花鈴殼分離力[22-23],忽略其對(duì)采摘過(guò)程的影響,得到棉花與鈴殼有效分離條件為

        2 材料與方法

        2.1 試驗(yàn)材料

        試驗(yàn)樣品為新疆石河子地區(qū)具有代表性的3種機(jī)采棉(新陸早45號(hào)、新陸早66號(hào)、新陸早83號(hào)),樣本取自石河子大學(xué)試驗(yàn)田,試驗(yàn)棉田采用66 cm+10 cm的寬窄行種植模式,上述3個(gè)品種棉花均于2019年4月23日播種,9月10日噴灑脫葉劑。為避免未知因素干擾,保證試驗(yàn)結(jié)果的有效性,在噴施脫葉劑當(dāng)天,選取長(zhǎng)勢(shì)良好、無(wú)病蟲(chóng)害的棉株,考慮到棉桃成熟時(shí)間、采光效果等外界因素的影響,將棉株自下而上第4果枝靠近主莖處具有4個(gè)棉瓣的棉花作為試驗(yàn)樣本進(jìn)行標(biāo)記[24-25],然后在噴施脫葉劑15 d后12:00采樣,采樣時(shí)為避免棉花樣本運(yùn)輸過(guò)程損傷以及拉伸試驗(yàn)失敗導(dǎo)致棉花樣本不足,因而對(duì)每個(gè)品種機(jī)采棉取樣80朵(30朵備用),取樣后放入自封袋保存。

        2.2 試驗(yàn)設(shè)備

        試驗(yàn)過(guò)程中所用儀器如下:HY-0580電子萬(wàn)能材料試驗(yàn)機(jī)、美國(guó)TRANSCELL S型拉式傳感器BAB-5MT(量程0~50 N,精度0.001 N)、Canon 500D單反數(shù)碼相機(jī)(佳能中國(guó),有效像素1 510萬(wàn))、SPS402F精密電子天平(美國(guó)Ohaus Scout Pro,量程0~400 g,精度0.01 g)。

        2.3 試驗(yàn)方法

        鈴殼的各項(xiàng)物理參數(shù)不僅關(guān)系到機(jī)械收獲棉花時(shí)工作部件的機(jī)械效應(yīng),同時(shí)也直接影響機(jī)采棉的采摘力學(xué)特性[5]。鈴殼在棉花生長(zhǎng)過(guò)程中既產(chǎn)生營(yíng)養(yǎng)物質(zhì)又消耗養(yǎng)分,每朵棉花的鈴殼質(zhì)量分?jǐn)?shù)直接關(guān)系到棉纖維品質(zhì),進(jìn)而影響棉花與鈴殼間的結(jié)合力[13-15];在棉花成熟后棉鈴逐漸開(kāi)裂形成鈴殼鎖角、心皮角,這在保護(hù)棉纖維的同時(shí)也阻礙了棉花與鈴殼的分離,進(jìn)而影響棉花的機(jī)械化采收[8]。因而本研究選取鈴殼質(zhì)量分?jǐn)?shù)、鎖角、心皮角作為試驗(yàn)因素。此外,如圖1所示,棉花與鈴殼的有效分離需克服棉花與鈴殼間的結(jié)合力(棉花鈴殼分離力),因而本研究選取棉花鈴殼分離力作為試驗(yàn)指標(biāo)。試驗(yàn)過(guò)程中若棉花拉斷則判定樣本數(shù)據(jù)無(wú)效,本次試驗(yàn)對(duì)每個(gè)品種機(jī)采棉均隨機(jī)選取50組有效樣本數(shù)據(jù)。

        2.3.1 棉花鈴殼分離力的測(cè)定

        機(jī)采棉采摘力學(xué)特性測(cè)試試驗(yàn)臺(tái)如圖2a所示,測(cè)試時(shí),在每個(gè)棉鈴上依次對(duì)每瓣棉花進(jìn)行拉伸測(cè)試,通過(guò)機(jī)臺(tái)的臺(tái)鉗將棉柄垂直夾持在機(jī)臺(tái)的下夾具處,棉花頂部夾持在推拉力計(jì)下端的上夾具處,然后調(diào)整棉柄所在的夾持位置,使棉柄、棉花夾持點(diǎn)以及推拉力計(jì)的測(cè)試桿處于同一直線上,如圖2b所示。試驗(yàn)中電動(dòng)機(jī)臺(tái)以30 mm/min的速度勻速拉伸,保證測(cè)試棉花受力平衡,使棉花所受拉力與鈴殼棉花間的連結(jié)力相等,當(dāng)棉花與鈴殼完全分離時(shí)棉花所受拉力即為棉花鈴殼分離力,最后通過(guò)計(jì)算機(jī)終端數(shù)據(jù)采集系統(tǒng)采集試驗(yàn)數(shù)據(jù)[26-31]。同時(shí),為了便于將每瓣棉花的鎖角和棉花鈴殼分離力相對(duì)應(yīng),在每個(gè)棉鈴測(cè)試結(jié)束后按照拉伸試驗(yàn)順序?qū)γ堪赈彋ひ来芜M(jìn)行標(biāo)號(hào)記錄,并將剩余的籽棉和鈴殼裝入自封袋中密封保存。

        1.拉力傳感器 2.上夾具 3.棉花 4.鈴殼 5.下夾具 6.定位座

        2.3.2 鈴殼質(zhì)量分?jǐn)?shù)的測(cè)定

        測(cè)試鈴殼質(zhì)量分?jǐn)?shù)時(shí),將上述棉花鈴殼分離力測(cè)試試驗(yàn)中每朵棉花剩余的籽棉和鈴殼分別放入電子天平中稱重,記錄每朵棉花的單鈴質(zhì)量和鈴殼質(zhì)量[11-12],根據(jù)式(2)計(jì)算每朵棉花的鈴殼質(zhì)量分?jǐn)?shù)。

        式中為所測(cè)棉花的鈴殼質(zhì)量分?jǐn)?shù),%;m為單個(gè)棉鈴的鈴殼質(zhì)量,g;m為單個(gè)棉鈴的籽棉質(zhì)量,g。

        2.3.3 鈴殼心皮角以及鎖角的測(cè)定

        為了便于分析鈴殼開(kāi)放角度對(duì)機(jī)采棉采摘力學(xué)特性的影響,對(duì)鈴殼不同開(kāi)放角度名稱做出如下定義:為鎖角,是俯視鈴殼時(shí)相鄰兩瓣鈴殼間的夾角;為心皮角,是正視鈴殼時(shí)鈴殼根部結(jié)點(diǎn)與鈴殼最外端所構(gòu)成線段與鈴殼中心線形成的夾角,如圖3所示。

        由棉花生物學(xué)特性可知,每個(gè)棉鈴相鄰兩瓣鈴殼間鎖角差異較大,因而需對(duì)每個(gè)鎖角進(jìn)行測(cè)量。棉花開(kāi)放時(shí)各瓣鈴殼心皮角近似相等,因而將棉鈴上兩瓣對(duì)置鈴殼的心皮角平均值作為該棉鈴的心皮角值,測(cè)量時(shí)只保留兩瓣對(duì)置鈴殼。測(cè)量鎖角和心皮角時(shí)分別將鈴殼置于白紙上用相機(jī)俯視正拍攝,拍攝時(shí)保證相機(jī)視線垂直于鈴殼投影面,拍攝完圖片后導(dǎo)入CAD軟件進(jìn)行角度提取得到相鄰兩瓣鈴殼的鎖角值以及每瓣鈴殼的心皮角值。

        圖3 鈴殼開(kāi)放角度示意圖

        3 結(jié)果與分析

        3.1 鈴殼物理參數(shù)統(tǒng)計(jì)分析

        本次試驗(yàn)實(shí)際測(cè)試新陸早45號(hào)樣本55朵,無(wú)效樣本5朵,成功率90.9%;實(shí)際測(cè)試新陸早66號(hào)樣本53朵,無(wú)效樣本3朵,成功率94.3%;實(shí)際測(cè)試新陸早83號(hào)樣本52朵,無(wú)效樣本2朵,成功率96.2%。對(duì)3種機(jī)采棉鈴殼物理參數(shù)和棉花鈴殼分離力進(jìn)行統(tǒng)計(jì)分析,3種機(jī)采棉的棉花鈴殼分離力范圍分別為0.155~0.980 N、0.275~0.967 N、0.258~0.667 N,結(jié)果如表1所示。由表1可知不同品種機(jī)采棉的鈴殼物理參數(shù)不同,鈴殼質(zhì)量分?jǐn)?shù)依次為新陸早66號(hào)27.29%±4.69%、新陸早45號(hào)25.71%±4.15%、新陸早83號(hào)25.02%±3.98%;棉花鈴殼分離力依次為新陸早45號(hào)(0.466±0.125)N、新陸早66號(hào)(0.452±0.166)N、新陸早83號(hào)(0.341±0.133)N。由棉花生物學(xué)特性可知,鈴殼對(duì)棉鈴內(nèi)部種子和纖維生長(zhǎng)發(fā)育起營(yíng)養(yǎng)、支撐和保護(hù)等作用,鈴殼既制造、儲(chǔ)藏營(yíng)養(yǎng)物質(zhì),又消耗部分養(yǎng)分[13-14],因而鈴殼質(zhì)量分?jǐn)?shù)過(guò)高會(huì)導(dǎo)致棉纖維及種子獲得營(yíng)養(yǎng)減少,降低機(jī)采棉品質(zhì),此外棉花鈴殼分離力過(guò)小會(huì)產(chǎn)生落地棉。因而對(duì)比3種機(jī)采棉,新陸早45號(hào)機(jī)采特性相對(duì)最佳,其鈴殼質(zhì)量分?jǐn)?shù)較小,纖維品質(zhì)相對(duì)較高,棉花鈴殼分離力較大,不易產(chǎn)生落地棉。

        表1 不同品種棉花鈴殼物理參數(shù)

        注:表中數(shù)值為“平均值±標(biāo)準(zhǔn)差”。

        Note: The values in the table are “average ± standard deviation”.

        3.2 棉花鈴殼分離力

        圖4為3個(gè)品種機(jī)采棉棉花拉伸過(guò)程載荷-位移關(guān)系曲線,反映了棉花鈴殼分離力與拉伸位移的變化規(guī)律。在試驗(yàn)過(guò)程中,3種機(jī)采棉載荷-位移關(guān)系曲線均表現(xiàn)為3個(gè)階段:類彈性階段、類屈服階段、分離階段。在曲線類彈性階段(圖中A區(qū)),載荷與位移的關(guān)系近似為線性曲線,在彈性變化范圍內(nèi),隨著拉伸位移的增大,棉花所受外部載荷呈線性增加。當(dāng)載荷增大到一定程度時(shí),曲線進(jìn)入類屈服階段(圖中B區(qū)),這一階段曲線呈鋸齒形波動(dòng),且出現(xiàn)多峰現(xiàn)象,棉纖維彈性變形與塑性變形同時(shí)存在,且以塑性變形為主,當(dāng)棉花所受外部載荷達(dá)到一定程度時(shí),內(nèi)部交錯(cuò)排布且相互勾連纏繞的棉纖維組織產(chǎn)生局部錯(cuò)位,棉纖維組織錯(cuò)位程度隨著載荷增大而增大。此外,在類屈服階段,受棉花個(gè)體差異影響個(gè)別棉花棉纖維品質(zhì)較差,棉纖維間結(jié)合力小于棉花鈴殼分離力,導(dǎo)致在拉伸過(guò)程中棉花斷裂在鈴殼中,形成“羊胡子”[4-5]。隨著棉花的不斷拉伸,曲線進(jìn)入分離階段(圖中C區(qū)),該階段棉花與鈴殼開(kāi)始分離,分離后載荷迅速下降為0,棉花與鈴殼開(kāi)始分離時(shí)對(duì)應(yīng)的載荷即為棉花鈴殼分離力。本研究所得結(jié)果與已有的有關(guān)植物拉伸力學(xué)特性與拉伸位移關(guān)系階段劃分的研究結(jié)果類似[16-18]。

        注:A區(qū)為類彈性階段,B區(qū)為類屈服階段,C區(qū)為分離階段。

        3.3 鈴殼物理參數(shù)對(duì)棉花鈴殼分離力的影響

        為探究機(jī)采棉鈴殼物理參數(shù)對(duì)棉花鈴殼分離力的影響規(guī)律,對(duì)棉花鈴殼物理參數(shù)與棉花鈴殼分離力進(jìn)行相關(guān)性分析,得到棉花鈴殼分離力與鈴殼質(zhì)量分?jǐn)?shù)、鎖角、心皮角的相關(guān)系數(shù)如表2所示。由相關(guān)性檢驗(yàn)可知在0.01水平下3種機(jī)采棉鈴殼質(zhì)量分?jǐn)?shù)、鎖角、心皮角均對(duì)棉花鈴殼分離力具有顯著影響(<0.01),且呈負(fù)相關(guān)關(guān)系。

        表2 棉花鈴殼物理參數(shù)相關(guān)性檢驗(yàn)結(jié)果

        注:**.表示在0.01水平(雙側(cè))有顯著相關(guān)。

        Note:**.Indicate significant difference at 0.01 levels.

        3.3.1 鈴殼質(zhì)量分?jǐn)?shù)的影響

        對(duì)3種機(jī)采棉鈴殼質(zhì)量分?jǐn)?shù)與棉花鈴殼分離力進(jìn)行回歸分析,分析結(jié)果如圖5所示。試驗(yàn)中3種機(jī)采棉鈴殼質(zhì)量分?jǐn)?shù)范圍分別為19.47%~35.54%、21.03%~37.29%、18.49%~32.92%,平均值分別為25.71%±4.15%、27.29%±4.69%、25.02%±3.98%。由圖5可知,3種機(jī)采棉鈴殼質(zhì)量分?jǐn)?shù)與棉花鈴殼分離力回歸方程分別為:45=77.761-0.872(2=0.879,<0.001);66=82.420-1.591(2=0.876,<0.001);83=66.931-1.643(2=0.926,<0.001)。上述3個(gè)方程用于擬合優(yōu)度檢驗(yàn)的決定系數(shù)2均為0.9左右,擬合度較高,3種機(jī)采棉鈴殼質(zhì)量分?jǐn)?shù)與棉花鈴殼分離力均符合冪函數(shù)關(guān)系,棉花鈴殼分離力隨著鈴殼質(zhì)量分?jǐn)?shù)的增大而減小。鈴殼質(zhì)量分?jǐn)?shù)直接影響棉纖維品質(zhì),鈴殼質(zhì)量分?jǐn)?shù)越高,棉纖維及棉籽所獲營(yíng)養(yǎng)物質(zhì)相對(duì)越少[13-15],相應(yīng)的棉纖維品質(zhì)降低,進(jìn)而導(dǎo)致棉花鈴殼分離力減小,在惡劣天氣下使得落地棉增多,同時(shí)在棉花機(jī)械化采收時(shí)易產(chǎn)生撞落棉,降低機(jī)采棉經(jīng)濟(jì)效益,因而在機(jī)采棉品種選育時(shí),應(yīng)盡可能選育鈴殼質(zhì)量分?jǐn)?shù)較小的品種。

        3.3.2 心皮角的影響

        圖6為試驗(yàn)中3種機(jī)采棉心皮角對(duì)棉花鈴殼分離力的影響關(guān)系曲線。試驗(yàn)中3種機(jī)采棉心皮角范圍分別為41°~104°、31°~104.5°、34°~103°,平均值分別為65.38°±14.41°、60.84°±19.46°、67.32°±20.19°。由圖6可知,3種機(jī)采棉棉花鈴殼分離力與心皮角符合冪函數(shù)關(guān)系,且表現(xiàn)出隨著心皮角的增大棉花鈴殼分離力逐漸減小的變化規(guī)律,其函數(shù)關(guān)系分別為:45=4.298-0.535(2=0.625,<0.001);66=6.425-6.659(2=0.641,<0.001);83=7.001-0.732(2=0.719,<0.001),上述3個(gè)方程用于擬合優(yōu)度檢驗(yàn)的決定系數(shù)2均為0.7左右,擬合度較高。鈴殼心皮角的大小取決于棉花成熟時(shí)間,隨著棉花的不斷成熟,鈴殼心皮角增大,同時(shí)鈴殼由于干枯會(huì)導(dǎo)致邊緣收縮卷繞,這使得鈴殼對(duì)棉花的束縛減小,棉花鈴殼分離力也隨之減小,導(dǎo)致收獲前落地棉增多,為避免造成過(guò)大的收獲前損失,應(yīng)在棉花成熟后及早采收。

        圖5 3種機(jī)采棉鈴殼質(zhì)量分?jǐn)?shù)對(duì)棉花鈴殼分離力的影響

        圖6 3種機(jī)采棉心皮角對(duì)棉花鈴殼分離力的影響

        3.3.3 鎖角的影響

        圖7為試驗(yàn)中3種機(jī)采棉鎖角對(duì)棉花鈴殼分離力的影響關(guān)系曲線。試驗(yàn)中3種機(jī)采棉鎖角范圍分別為28°~147°、37°~159°、39°~156°,平均值分別為90°±24.52°、90°±26.34°、90°±23.53°。受棉花個(gè)體差異影響,3種機(jī)采棉鎖角與棉花鈴殼分離力之間關(guān)系的回歸分析結(jié)果反映出兩者間擬合度較低(3種機(jī)采棉決定系數(shù)2小于0.5)。但由圖7可知,3種機(jī)采棉仍表現(xiàn)出隨著鎖角的增大棉花鈴殼分離力逐漸減小的變化規(guī)律,這與表2所得結(jié)果(在0.01水平上,鎖角與棉花鈴殼分離力間呈顯著負(fù)相關(guān)關(guān)系)相互驗(yàn)證。隨著鈴殼鎖角的增大,鈴殼對(duì)棉花的包裹擠壓程度減小,棉花采摘過(guò)程中鈴殼對(duì)棉花的阻礙也隨之減小,當(dāng)鎖角大小不均勻時(shí),常因鎖角過(guò)小導(dǎo)致棉花采摘困難,或因鎖角過(guò)大導(dǎo)致棉花易于脫落產(chǎn)生落地棉,由棉花生物學(xué)特性可知棉花多為4瓣,因而為保證每瓣棉花都能被有效采摘,在機(jī)采棉育種時(shí)應(yīng)盡可能選育鎖角均勻且近似為90°的機(jī)采棉品種。

        圖7 3種機(jī)采棉鎖角對(duì)棉花鈴殼分離力的影響

        4 結(jié) 論

        1)在相同生長(zhǎng)條件下,3種機(jī)采棉(新陸早45號(hào)、新陸早66號(hào)、新陸早83號(hào))棉花鈴殼分離力范圍分別為:0.155~0.980N、0.275~0.967N、0.258~0.667N;平均值分別為:(0.466±0.125)N、(0.452±0.166)N、(0.341±0.133)N。3種機(jī)采棉棉花拉伸分離曲線相似,均表現(xiàn)為3個(gè)階段:類彈性階段、類屈服階段、分離階段。在類屈服階段,棉花拉伸分離曲線出現(xiàn)鋸齒狀波動(dòng),棉纖維彈性變形與塑性變形同時(shí)存在,棉花內(nèi)部交錯(cuò)排布相互勾連纏繞的棉纖維組織在外部載荷的作用下發(fā)生分離。

        2)由相關(guān)性檢驗(yàn)可知,在0.01水平下3種機(jī)采棉鈴殼質(zhì)量分?jǐn)?shù)、鎖角、心皮角均對(duì)棉花鈴殼分離力有顯著影響。在相同生長(zhǎng)條件下,3種機(jī)采棉鈴殼物理參數(shù)與棉花鈴殼分離力間均呈顯著負(fù)相關(guān)關(guān)系,且鈴殼質(zhì)量分?jǐn)?shù)、心皮角與棉花鈴殼分離力均符合冪函數(shù)關(guān)系。

        3)為提高機(jī)采棉經(jīng)濟(jì)效益,避免機(jī)采棉收獲前損失過(guò)大,落地棉太多,同時(shí)也為了提高機(jī)采棉采凈率,在機(jī)采棉作物育種時(shí)應(yīng)盡可能選育鈴殼質(zhì)量分?jǐn)?shù)相對(duì)較小、鎖角相對(duì)均勻的品種,此外,心皮角增大會(huì)導(dǎo)致棉花鈴殼分離力減小,落地棉增多,在選擇采收時(shí)機(jī)時(shí),機(jī)采棉成熟后應(yīng)及早采收,避免收獲前損失增大。

        該研究成果對(duì)于機(jī)采棉作物育種以及新型棉花收獲機(jī)械設(shè)計(jì)和優(yōu)化具有理論研究?jī)r(jià)值和實(shí)際指導(dǎo)意義。

        [1] 盧秀茹,賈肖月,牛佳慧. 中國(guó)棉花產(chǎn)業(yè)發(fā)展現(xiàn)狀及展望[J]. 中國(guó)農(nóng)業(yè)科學(xué),2018,51(1):26-36.

        Lu Xiuru, Jia Xiaoyue, Niu Jiahui. The present situation and prospects of cotton industry development in China[J]. Scientia Agricultura Sinica, 2018, 51(1): 26-36. (in Chinese with English abstract)

        [2] 喻樹(shù)迅. 中國(guó)棉花產(chǎn)業(yè)百年發(fā)展歷程[J]. 農(nóng)學(xué)學(xué)報(bào),2018,8(1):85-91.

        Yu Shuxun. The development of cotton production in the recent hundred years of China[J]. Journal of Agriculture, 2018, 8(1): 85-91. (in Chinese with English abstract)

        [3] 鄒政輝. 淺議新疆兵團(tuán)機(jī)采棉發(fā)展[J]. 中國(guó)纖檢,2020,5(1):33.

        Zou Zhenghui. A brief discussion on the development of machine picking cotton in Xinjiang corps[J]. China Fiber Inspection, 2020, 5(1): 33. (in Chinese with English abstract)

        [4] 宋敏. 新疆棉花主栽品種機(jī)采特性的分析[D]. 烏魯木齊:新疆農(nóng)業(yè)大學(xué),2015.

        Song Min. Analysis to the Characteristics of Mining Machine of Main Cotton Varieties in Xinjiang[D]. Urumqi: Xinjiang Agricultural University, 2015. (in Chinese with English abstract)

        [5] 張宏文. 膠棒滾筒棉花采摘頭關(guān)鍵部件的工作機(jī)理與試驗(yàn)研究[D]. 南京:南京農(nóng)業(yè)大學(xué),2013.

        Zhang Hongwen. The Working Mechanism and Experimental Study of the Key Components of the Cotton Picking Head of The Glue Stick Roller[D]. Nanjing: Nanjing Agricultural University, 2013. (in Chinese with English abstract)

        [6] 李俊江. 彈齒滾筒式棉桃采摘裝置的設(shè)計(jì)研究[D]. 石河子:石河子大學(xué),2015.

        Li Junjiang. Design and Research on the Cotton Boll Picking Device of Spring Tooth Roller-Type[D]. Shihezi: Shihezi University, 2015. (in Chinese with English abstract)

        [7] 李勇,張宏文,楊濤. 棉花收獲期棉絮分離力的試驗(yàn)研究[J]. 石河子大學(xué)學(xué)報(bào):自然科學(xué)版,2011,29(5):633-636.

        Li Yong, Zhang Hongwen, Yang Tao. Batt and fibber’s detaching force during cotton harvest-time[J]. Journal of Shihezi University: Natural Science Edition, 2011, 29(5): 633-636. (in Chinese with English abstract)

        [8] 王修山,陳方海,張仁林,等. 鈴殼厚薄對(duì)棉鈴主要性狀的影響[J]. 中國(guó)棉花,2002,29(1):18-20.

        Wang Xiushan, Chen Fanghai, Zhang Renlin, et al. Influence of boll shell thickness on main characters of cotton boll[J]. China Cotton, 2002, 29(1): 18-20. (in Chinese with English abstract)

        [9] Baker K D, Hughs E, Foulk J. Spindle speed optimization for cotton pickers[J]. Applied Engineering in Agriculture, 2015, 31(2): 217-225.

        [10] Kevin D Baker, Ed Hughs, Jonn Foulk. Cotton quality as affected by changes in spindle speed[J]. Applied Engineeringin Agriculture, 2010, 26(3): 363-369.

        [11] Kevin D Baker, Ed Hughs, Jonn Foulk. Spindle diameter effects for cotton pickers[J]. Applied Engineering in Agriculture, 2017, 33(3): 321-327.

        [12] Friesen J A. Factors affecting removal from the boll[J]. Transactions of the ASABE, 1968, 11(2): 529-531.

        [13] 中國(guó)科學(xué)院農(nóng)業(yè)機(jī)械化研究所編譯. 棉花收獲機(jī)械譯文集[M]. 北京:機(jī)械工業(yè)出版社,1960.

        [14] 王修山,劉安郁. 棉鈴體積測(cè)算模型探討[J]. 中國(guó)棉花,1991,21(4):22-34.

        Wang Xiushan, Liu An’yu. Discussion on the calculation model of cotton boll volume[J]. China Cotton, 1991, 21(4): 22-34. (in Chinese with English abstract)

        [15] 狄佳春,陳旭升,趙亮. 陸地棉鈴殼率與產(chǎn)量、早熟性及纖維品質(zhì)的關(guān)系[J]. 中國(guó)棉花,2014,41(9):25-28.

        Di Jiachun, Chen Xusheng, Zhao Liang. Relations of boll shell weight with yield, maturity and fiber quality in gossypium hirsutum[J]. China Cotton, 2014, 41(9): 25-28. (in Chinese with English abstract)

        [16] 陳紅,徐翔宙,尹伊君,等. 寬皮柑橘移動(dòng)夾持剝皮力學(xué)特性與果皮分離特性試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(14):25-31.

        Chen Hong, Xu Xiangzhou, Yin Yijun, et al. Experimental study on mechanical properties and peel separation characteristics of citrus reticulate blanco with peel clamped moving[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(14): 25-31. (in Chinese with English abstract)

        [17] 劉亞斌,李淑霞,余冬梅,等. 西寧盆地黃土區(qū)典型草本植物單根抗拉力學(xué)特性試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(15):157-166.

        Liu Yabin, Li Shuxia, Yu Dongmei, et al. Experiment on single root tensile mechanical properties of typical herb species in loess region of Xining Basin[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(15): 157-166. (in Chinese with English abstract)

        [18] 田佳,曹兵,及金楠,等. 防風(fēng)固沙灌木花棒沙柳根系生物力學(xué)特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(23):192-198.

        Tian Jia, Cao Bing, Ji Jinnan, et al. Biomechanical characteristics of root systems of Hedysarum scoparium and Salix psammophila[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(23): 192-198. (in Chinese with English abstract)

        [19] 王由之,張宏文,王磊,等. 基于模糊PID控制的棉花采摘性能試驗(yàn)臺(tái)測(cè)控系統(tǒng)研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(23):23-32.

        Wang Youzhi, Zhang Hongwen, Wang Lei, et al. Development of measurement and control system for cotton picking performance test bench based on fuzzy PID control[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(23): 23-32. (in Chinese with English abstract)

        [20] 陳廷官,張宏文,王磊,等. 水平摘錠式采棉機(jī)采摘機(jī)構(gòu)運(yùn)動(dòng)特性研究與試驗(yàn)[J]. 中國(guó)農(nóng)機(jī)化學(xué)報(bào),2020,41(2):19-25.

        Chen Tingguan, Zhang Hongwen, Wang Lei, et al. Research and experiment on the movement characteristics of the picking mechanism of the horizontal spindle picking cotton picker[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(2): 19-25. (in Chinese with English abstract)

        [21] 李騰,郝付平,韓增德,等. 水平摘錠式高效采棉頭設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(12):63-72.

        Li Teng, Hao Fuping, Han Zengde, et al. Design and test of high-efficiency cotton picker with horizontal spindle picking[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(12): 63-72. (in Chinese with English abstract)

        [22] 徐守志. 滾筒摘錠式采摘頭結(jié)構(gòu)優(yōu)化設(shè)計(jì)[D]. 石河子:石河子大學(xué),2013.

        Xu Shouzhi. The Structure Optimum Design for the Picking Head of the Roller-Spindles Cot ton Picker[D]. Shihezi: Shihezi University, 2013. (in Chinese with English abstract)

        [23] 畢新勝. 采棉機(jī)采摘頭水平摘錠工作機(jī)理的研究[D]. 石河子:石河子大學(xué),2007.

        Bi Xinsheng. Study on Working Mechanism of Horizontal Spindle Picking of Cotton Picker[D]. Shihezi: Shihezi University, 2007. (in Chinese with English abstract)

        [24] 王榮棟,尹經(jīng)章.作物栽培學(xué)[M]. 北京:高等教育出版社,2005.

        [25] 中國(guó)農(nóng)業(yè)科學(xué)院棉花研究所編.中國(guó)棉花栽培學(xué)[M]. 上海:上??茖W(xué)技術(shù)出版社,1969.

        [26] 馬秋成,郭耿君,馬婕,等. 蓮仁力學(xué)特性參數(shù)測(cè)定及擠壓破碎特性試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(6):263-271.

        Ma Qiucheng, Guo Gengjun, Ma Jie, et al. Determination of mechanical characteristic parameters and extrusion crushing characteristics test for lotus seed kernel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(6): 263-271. (in Chinese with English abstract)

        [27] 邱述金,原向陽(yáng),郭玉明,等. 品種及含水率對(duì)谷子籽粒力學(xué)性質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(24): 322-326.

        Qiu Shujin, Yuan Xiangyang, Guo Yuming, et al. Effects of variety and moisture content on mechanical properties of millet[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(24): 322-326. (in Chinese with English abstract)

        [28] 孫靜鑫,郭玉明,楊作梅,等. 蕎麥籽粒生物力學(xué)性質(zhì)及內(nèi)芯黏彈性試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(23):287-298.

        Sun Jingxin, Guo Yuming, Yang Zuomei, et al. Experimental study on biomechanical properties of buckwheat grain and viscoelastic properties of buckwheat powder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(23): 287-298. (in Chinese with English abstract)

        [29] 侯華銘,崔清亮,郭玉明. 全喂入谷子聯(lián)合收獲機(jī)脫出物含水率對(duì)其懸浮特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(24):29-35.

        Hou Huaming, Cui Qingliang, Guo Yuming. Effects of moisture contents of threshed materials from whole-feeding combine for foxtail millet on their suspension characteristics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(24): 29-35. (in Chinese with English abstract)

        [30] 吳中華,王珊珊,董曉林,等. 不同溫度及含水率稻米籽粒加工過(guò)程破裂載荷分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(2):278-283.

        Wu Zhonghua, Wang Shanshan, Dong Xiaolin, et al. Analysis of rice compression fracture load in processes with various temperatures and moisture content[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(2): 278-283. (in Chinese with English abstract)

        [31] 付乾坤,付君,陳志,等. 不同玉米果穗位姿與含水率對(duì)穗柄斷裂特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(16):60-69.

        Fu Qiankun, Fu Jun, Chen Zhi, et al. Influence of different corn ear position and orientation and water content on fracture mechanics of corn peduncle[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(16): 60-69. (in Chinese with English abstract)

        Influence of different boll shell physical parameters on mechanical properties of machine-harvested cottons

        Zhang Longchang1,2, Zhang Hongwen1,2※, Wang Lei1,2, Fu Xiuqing3, Chen Tingguan1,2, Wang Jun1,2, Gu Yanqing1,2

        (1.832003; 2.832003; 3.210031,)

        Mechanical harvesting technology of cotton has been increasing in modern agriculture in China, particularly for cotton serving as an important strategic reserve material. In mechanized harvesting of cotton, mechanical properties of machine-harvested cottons have become the key factors to cotton harvesting, even to the design of harvesting machinery. The machine-harvested cotton can fall off early in a bad weather after maturity, due mainly to the physical parameters of boll shell, resulting in the loss of pre-harvest cotton. Sometimes the cotton cannot be completely harvested, but the cotton can be knocked off when mechanized harvesting, resulting in the losses during harvest. The physical parameters of boll shell can be closely related to the mechanical effect of working parts, when the cotton is mechanically harvested, with emphasis on the separation force between the boll shell and cotton. Therefore, it is necessary to reveal the effect of physical parameters of boll shell on mechanical properties of machine-harvested cotton, particularly when designing cotton harvesting machinery. In this study, 3 kinds of representative machine-harvested cottons were selected as the research objects, including Xinluzao 45, Xinluzao 66, and Xinluzao 83, collected from the Shihezi area of Xinjiang, China. A laboratory tensile separation test was used to assess the mass fraction of boll shell, carpel angle, and lock angle for the 3 kinds of machine-harvested cottons under the same growth conditions. The experimental results showed that the separation force between cotton and boll shell were 0.155-0.980 N, 0.275-0.967 N, 0.258-0.667 N, for the Xinluzao 45, 66, and 83 machine-harvested cottons, respectively. Three stage can be divided for the machine-harvested cottons, including the elastic-like stage, yield-like stage, and separation stage, in the laboratory tensile separation tests. In the yield-like stage, the tensile separation curve of cotton showed the zigzag fluctuation with the multiple peaks. It inferred that there were concurrently elastic and plastic deformation of cotton fiber with the dominance of plastic deformation. The internal interlaced and intertwined fiber of cotton tissue can produce local dislocation, when the external load of cotton flower reached a critical value. The mass fraction of boll shell, carpel angle, and lock angle in the machine-harvested cottons have a significant effect on the separation force of cotton from boll shell (<0.01). A power function relationship can be found between the separation force of cotton boll shells and the carpel angle, as well as the mass fraction of boll shell (<0.001). The separation force of cotton and boll shell gradually decreased, with the increase in carpel angle and mass fraction of boll shell. There was a significantly negative correlation between the lock angle and the separation force, indicating that the separation force of cotton and boll shell gradually decreased with the increase of lock angle. A recommendation was made that a relatively small weight ratio of shell and a uniform locking angle can be selected, when breeding cotton crops for machine harvesting. The cotton can be timely harvested after maturity, in order to avoid the losses before harvest, when choosing the harvesting time. The finding can provide a sound theoretical and practical guidance for the cultivation of new harvesting cotton, as well as for the design and optimization for the harvesting machinery of cotton.

        mechanical properties; experiment; machine-harvested cottons; carpel angle; lock angle; mass fraction of boll shell

        張龍唱,張宏文,王 磊,等. 不同鈴殼物理參數(shù)對(duì)機(jī)采棉采摘力學(xué)特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(19):30-37.doi:10.11975/j.issn.1002-6819.2020.19.004 http://www.tcsae.org

        Zhang Longchang, Zhang Hongwen, Wang Lei, et al. Influence of different boll shell physical parameters on mechanical properties of machine-harvested cottons[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(19): 30-37. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.19.004 http://www.tcsae.org

        2020-06-09

        2020-09-15

        國(guó)家自然基金項(xiàng)目(51605314);兵團(tuán)重大科技項(xiàng)目(2018AA008);兵團(tuán)重點(diǎn)領(lǐng)域創(chuàng)新團(tuán)隊(duì)建設(shè)計(jì)劃(2019CB006);自治區(qū)研究生科研創(chuàng)新項(xiàng)目(XJ2020G117)

        張龍唱,主要從事農(nóng)業(yè)機(jī)械設(shè)計(jì)及理論研究。Email:zlc20182009101@163.com

        張宏文,博士,教授,主要從事農(nóng)業(yè)機(jī)械設(shè)計(jì)及機(jī)械系統(tǒng)仿真方面的研究。Email:zhw_mac@shzu.edu.cn

        10.11975/j.issn.1002-6819.2020.19.004

        S225

        A

        1002-6819(2020)-19-0030-08

        猜你喜歡
        棉鈴機(jī)采棉花
        棉花是花嗎?
        不同棉花品種棉鈴殼含F(xiàn)e、Zn 量及其空間分布分析
        棉鈴疫病人工接種方法優(yōu)化及應(yīng)用
        棉花
        小讀者(2020年4期)2020-06-16 03:33:54
        棉鈴成熟度對(duì)抗蟲(chóng)棉纖維品質(zhì)與鈴重及衣分的影響
        新型組合式機(jī)采棉清理機(jī)簡(jiǎn)介
        心中的“棉花糖”
        第三講 棉花肥害診斷及其防治
        早熟機(jī)采棉育種現(xiàn)狀分析
        機(jī)采棉優(yōu)質(zhì)豐產(chǎn)栽培技術(shù)
        荡女精品导航| 青青草精品在线视频观看| 美女不带套日出白浆免费视频| 色狠狠av老熟女| 亚洲日韩区在线电影| 男的和女的打扑克的视频| 99久久国产精品网站| 99久久婷婷国产综合精品电影| 伊人久久中文大香线蕉综合 | 91大神蜜桃视频在线观看| 亚洲国产精品成人av网| 久久国产亚洲高清观看| 中文字幕在线免费 | 91九色免费视频网站| 国产精品无码专区av在线播放| 无码日韩人妻AV一区免费| 东京热东京道日韩av| 日韩精品无码一区二区三区| 无遮挡又爽又刺激的视频| 免费观看一区二区| 亚洲人妻御姐中文字幕| 亚洲日韩小电影在线观看| 欧美孕妇xxxx做受欧美88| 99热在线播放精品6| 视频女同久久久一区二区| 久久精品国产亚洲7777| 日韩中文字幕欧美亚洲第一区| 日本高清不卡一区二区三区| 精品一区二区av天堂色偷偷| 男人j进女人j啪啪无遮挡| 中文字幕永久免费观看| 精品久久中文字幕一区| 中文无码成人免费视频在线观看| 中字幕久久久人妻熟女| 国产麻豆放荡av激情演绎| 国产一区二区三区av天堂| 国产97在线 | 免费| 亚洲国产综合专区在线电影| 午夜精品久久99蜜桃| 亚洲综合激情五月丁香六月| 国产91色在线|亚洲|