張梅梅 謝英花 劉朝霞 張冬梅
摘 要: 蜂膠具有豐富而突出的生物活性,目前多被應用于食品和保健品中預防疾病。咖啡酸苯乙酯是蜂膠中主要的有效成分,因其具有抗氧化、抗炎、抗腫瘤、抗菌、免疫調(diào)節(jié)等多種藥理作用而備受關(guān)注??Х人岜揭阴ピ谧匀唤绾科停瑐鹘y(tǒng)提取方法費時費力、成本高,高效、大量制備咖啡酸苯乙酯成為研究熱點。超聲提取技術(shù)可得到純度較高的咖啡酸苯乙酯;Knoevenagel縮合法適用于其工業(yè)化生產(chǎn),收率較高。通過對咖啡酸苯乙酯的提取分離、合成方法以及藥理活性等方面的最新研究進展進行分析,綜述了咖啡酸苯乙酯的研究現(xiàn)狀,并對咖啡酸苯乙酯的技術(shù)發(fā)展前景和研究動向進行了展望,提出今后應尋求實用性和通用性高、操作相對簡便的制備方法并對其作用機制進行更加深入細致的探究。
關(guān)鍵詞: 藥物化學;蜂膠;咖啡酸苯乙酯;合成方法;藥理活性
中圖分類號:R284.2;S896文獻標識碼: A
doi:10.7535/hbkd.2020yx06007
Research progress on synthesis and application of
caffeic acid phenethyl ester in propolis
ZHANG Meimei, XIE Yinghua, LIU Zhaoxia, ZHANG Dongmei
(School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China)
Abstract:
Propolis has been widely used in foods and health care products to prevent diseases due to its various and prominent biological activities. Caffeic acid phenethyl ester(CAPE) is the main active component of propolis, which has been widely studied for its various pharmacological effects such as antioxidation, anti-inflammation,
antitumor, antibacterial activities, immunovegularion, and so on. The content of CAPE is very low in nature, and the traditional extraction method of CAPE is time-consuming and costly, so efficient and mass preparation for CAPE has become a research hotspot. The CAPE with high purity can be obtained by ultrasonic extraction. Knoevenagel condensation reaction can be applied to its industrial production with high yield. Based on the analysis of the latest progress in extraction and separation, synthetic methods, pharmacological activity, and other aspects of CAPE, the research status of CAPE was reviewed, and the development prospect and the research trend of CAPE were provided, which are to explore the preparation method with high practicability and generality and relatively simple operation, and to conduct in-depth and detailed research on the mechanism of CAPE.
Keywords:
medicinal chemistry; propolis; caffeic acid phenethyl ester; synthetic methods; pharmacological activity
天然產(chǎn)物作為藥物發(fā)現(xiàn)的重要來源,大多具有療效好、副作用少等特點,是新藥研究的巨大資源庫。蜂膠是一種芳香樹脂類物質(zhì),是由工蜂采集的植物樹脂與其上顎腺、蠟腺等分泌物混合形成的具有黏性的固體膠狀物,顏色為黃綠色、紅色或深棕色,取決于來源和季節(jié);在寒冷環(huán)境中硬而脆,在溫暖環(huán)境中柔韌且黏稠[1-2]。蜂膠具有悠久的應用歷史,早在公元前300年,古埃及人就將其作為防腐物質(zhì)及防治疾病的藥物來使用。蜂膠具有抗氧化、抗菌、抗病毒、抗炎、抗腫瘤、保肝、免疫調(diào)節(jié)等多種生物活性[3],現(xiàn)階段被廣泛用于醫(yī)藥、保健品、美容等領(lǐng)域[4],具有較高的研究價值。
目前已從蜂膠中發(fā)現(xiàn)了200多種化合物,如類黃酮、芳香酸、萜類、醛類、醇類、脂肪酸和酯類、氨基酸、類固醇和糖等[5-6],咖啡酸苯乙酯(CAPE)是蜂膠中的一種主要活性成分。受蜂膠產(chǎn)地的影響,CAPE的含量存在較大差異,如北溫帶蜂膠樣品中大部分含有CAPE,而南美、巴西以及其他南部和熱帶地區(qū)的蜂膠則基本不含該成分[7]。中國處于北溫帶區(qū)域,以河北省的蜂膠為例,CAPE的含量最為豐富(29.2 mg/g)[8-9]。GRUNBERGER等[10]從蜂膠中分離出CAPE,并證實其對腫瘤細胞有明顯的抑制作用。NATARAJAN等[11]提出蜂膠中的CAPE具有選擇性殺傷腫瘤細胞和抑制其生長的作用,標志著CAPE治療癌癥的實驗室研究取得重大突破。隨著現(xiàn)代醫(yī)學技術(shù)的進步,CAPE的抗氧化、抗炎、抗腫瘤和免疫調(diào)節(jié)等作用被一一揭示[12-16]。
本文就CAPE的提取分離、合成方法及藥理活性的研究情況進行綜述,為CAPE的后續(xù)研究提供思路和參考 。
1 CAPE的發(fā)現(xiàn)
1982年,KALMAN在以色列卡梅爾山的蜂巢里收集得到蜂膠,膠體呈堅硬的棕色塊狀(直徑約為2 cm),將其切碎,用80%(體積分數(shù))乙醇水溶液(1.5 L, 2 d)萃取,抽濾并真空蒸發(fā),得到金棕色固體。該提取物在50 mg/mL的質(zhì)量濃度下對小鼠結(jié)締組織(LTK)細胞顯示出抑制活性。將乙醇萃取物依次用己烷、甲苯和乙酸乙酯萃取,將有機層進行干燥后進行LTK細胞抑制測試,發(fā)現(xiàn)乙酸乙酯萃取物相較于其他萃取部位在相同濃度下顯示出至少高出2倍的細胞抑制活性[10]。1988年,GRUNBERGER等[10]報道通過制備型高效液相色譜從蜂膠中得到純凈的CAPE,并經(jīng)核磁共振和質(zhì)譜加以鑒定,化學結(jié)構(gòu)見圖1。該化合物在30 mg/mL質(zhì)量濃度下對MCF-7細胞的抑制率為95%[18]。
隨著科技的進步,相比傳統(tǒng)的單純?nèi)軇┙萏崛》?、加熱回流提取法提取CAPE,索氏提取法、超聲提取技術(shù)、超臨界提取法及微波提取技術(shù)等更加省時省力[19-20],其中超聲提取技術(shù)由于其設(shè)備要求簡單、操作方便得到廣泛使用[21-22]。在用超聲提取法提取CAPE時,利用超聲助溶的原理,改變油脂分配系數(shù),可以得到高純度的CAPE[1]。
雖然在20世紀80年代早期未能純化出CAPE并證實其對LTK細胞的抑制活性,但當時已證實對LTK細胞起作用的是脂溶性的蜂膠成分。隨著分離技術(shù)的提升,20世紀80年代末終于純化出CAPE并證實其對癌細胞的抑制活性。
2 CAPE主要合成方法
隨著CAPE諸多藥理活性的發(fā)現(xiàn),人們對其關(guān)注度越來越高。但是由于CAPE在自然界含量偏低,造成提取成本高的問題,因此高效、大量制備CAPE一度成為研究熱點。關(guān)于CAPE的合成,主要有酯化法、一鍋法、Wittig及Wittig-Horner反應法、Heck反應法和Knoevenagel 縮合法,如圖2所示。
2.1 酯化法
2.1.1 催化酯化法
如圖3所示,通過化學催化法、酶催化法和偶合試劑縮合法直接合成CAPE。此類方法是最原始的CAPE合成方法,雖然方法簡單但存在原料成本高、分離困難等問題[23-27]。
2.1.2 直接酯化法
如圖4所示,以咖啡酸和2-溴乙基苯為底物進行直接酯化,相比于以咖啡酸和苯乙醇為底物催化成酯,該法收率明顯提高,但是反應中引入溴乙基苯和HMPA,同樣存在原料成本高且具有潛在的致癌風險[28-30]。
2.2 一鍋法
如圖5所示,以2-苯乙醇、米氏酸和3,4-二羥基苯甲醛為原料的一鍋合成法[31],該方法原料價廉易得,操作簡單,但是催化劑哌啶和吡啶毒性較大,反應時間長(22 h),且后處理需要用鹽酸中和吡啶和哌啶,收率也較低。
2.3Wittig及Wittig-Horner反應法
如圖6所示,在Wittig反應中,以3, 4-二羥基苯甲醛和三苯基膦乙酸苯乙醇酯基氯化物反應,收率可以達到71%[32-33]。在Wittig-Horner反應中,3, 4-二羥基苯甲醛和亞膦酸酯反應,由于PO羰負離子較磷葉立德具有更強的親核性,可以增強羰基的進攻能力,收率可以達到86%[34]。但是以上實驗存在操作較繁瑣、實驗條件苛刻等缺點,使其工業(yè)化大生產(chǎn)受到限制。
2.4 Heck反應
圖7為4-溴兒茶酚和丙烯酸酯通過Heck反應制備CAPE的新方法。經(jīng)過選擇保護基、優(yōu)化Heck反應條件,最終以20%~40%的總收率獲得CAPE[35]。
2.5 Knoevenagel 縮合法
1991年NAKANISHI 等[36]首次采用咖啡酸和2-苯乙醇直接酯化法成功合成了CAPE,但此方法及其后的合成方法普遍存在致命的缺點:1)原料成本高、分離困難;2)催化劑毒性大、收率低;3)實驗操作繁瑣、實驗技能要求苛刻。2016年,黎??萚37]對“一鍋法”進行了改進(見圖8),用價廉無毒的甘氨酸/DMF代替毒性較大的哌啶/吡啶,改進后,不再需要鹽酸中和吡啶和哌啶,只需簡單水洗即可,此方法更適合工業(yè)化生產(chǎn),更符合綠色化學的理念。米氏酸的用量大大降低,節(jié)約了原料成本,反應時間減少至5 h,收率提高至85.0%。
綜上可知,咖啡酸和苯乙醇催化酯化合成CAPE,反應條件簡單,但成本高,耗時長;堿催化鹵代烴與酸反應,條件溫和,但成本高,操作繁瑣;以2-苯乙醇、米氏酸和3,4-二羥基苯甲醛為原料的一鍋合成法中,3, 4-二羥基苯甲醛的市場價格僅為咖啡酸的 1/3 左右,合成成本低,收率較高,但需要用到毒性較大的哌啶吡啶;Witting反應條件溫和,反應時間短,收率較高,但使用的三苯基膦價格昂貴,同時易對環(huán)境造成污染;Wittig-Horner反應中烷基磷酸酯簡單易得,成本低廉,收率較高,但含磷試劑容易造成環(huán)境污染;Heck反應以4-溴兒茶酚和丙烯酸酯制備CAPE,同樣存在原料昂貴、收率低的問題;Knoevenagel 縮合法對“一鍋法”進行了改進,引入甘氨酸/DMF催化體系,時間縮短,收率提高,是目前較有潛力的工業(yè)化生產(chǎn)方法。
天然產(chǎn)物一直以來都是中醫(yī)藥的核心所在,但是受限于單組分自然界中含量低、分離難度大、提取成本高等問題。在過去的一個世紀中,天然產(chǎn)物全合成得到了長足的進步,采用了許多合成新方法、新理論和新分析儀器,極大地推動了有機化學學科的發(fā)展?;诖耍沟肅APE合成成本不斷下降,效率不斷提升,為CAPE的后續(xù)研究提供了充足的保障。
3CAPE的藥理活性研究
CAPE具有抗氧化、抗菌、抗病毒、抗炎、抗腫瘤、保肝、免疫調(diào)節(jié)等多種生物活性,近年來對CAPE的研究主要集中在抗氧化、抗炎、抗腫瘤、解毒等方面。
3.1 抗氧化、抗炎作用
CAPE結(jié)構(gòu)中含有兒茶酚結(jié)構(gòu)單元,富電子的苯環(huán)區(qū)域可以清除自由基,達到抗氧化的目的。SUDINA等[38]通過研究CAPE對燒傷大鼠血清中脂質(zhì)過氧化物的影響發(fā)現(xiàn),CAPE可以清除活性氧化物質(zhì),抑制黃嘌呤氧化酶、一氧化氮合成酶的活性,從而減少超氧化物歧化酶(SOD)的消耗,起到抗氧化作用。CAPE可以將氧化應激反應產(chǎn)生的過量自由基清除,并呈劑量依賴性上調(diào)肝組織谷胱甘肽、過氧化氫酶(CAT)、SOD和谷胱甘肽過氧化物酶,達到抗氧化保護肝臟的目的[39-41]。國內(nèi)有研究學者通過鏈脲佐菌素建立了糖尿病模型,發(fā)現(xiàn)CAPE對小鼠的心臟及大鼠的肝臟、腎臟的過氧化作用和抗氧化酶的活性有較大影響,明顯提高了SOD和CAT的含量,抗氧化作用顯著[42-44]。
MICHALUART等[45]報道了CAPE可以抑制前列腺素(PG)和白三烯的合成,PG是花生四烯酸在環(huán)氧化酶(COX)的催化作用下產(chǎn)生的,在炎癥的形成過程中至關(guān)重要,CAPE通過抑制細胞膜上花生四烯酸的釋放及抑制COX活性,阻止PG的合成,從而起到抗炎作用。
3.2 抗腫瘤作用
癌癥是人類死亡的主要原因之一,研究各類抗癌藥物已成為藥物研究領(lǐng)域的熱點[46]。1988年,GRUNBERGER等[10]對CAPE進行細胞抑制活性研究,首次發(fā)現(xiàn)其對乳腺癌(MCF-7)、黑素瘤(SK-MEL-28和SK-MEL-170)、結(jié)腸癌(HT-29)等有抑制作用,而對正常細胞無影響。
3.2.1 乳腺癌
2004年WATABE等[47]研究發(fā)現(xiàn),在乳腺癌細胞MCF-7中,CAPE可通過Fas配體非依賴性機制激活Fas,誘導促凋亡因子B淋巴細胞瘤-2基因(Bcl-2)相關(guān)蛋白X及胱天蛋白酶活化。CAPE還可同時激活促分裂原活化蛋白激酶(MAPK)家族中的P38和C-Jun氨基端激酶(JNK)。2011年,WU等[48]在研究CAPE對乳腺癌細胞MCF-7和MDA-MB231的抑制作用時發(fā)現(xiàn),CAPE可抑制腫瘤細胞的生長,但對正常的乳腺細胞幾乎無作用,對轉(zhuǎn)錄因子NF-κB具有抑制作用,可以誘導MCF-7和MDA- MB231乳腺癌細胞周期阻滯,使細胞凋亡。
3.2.2 大腸癌及結(jié)腸癌
有研究表明,大腸癌的發(fā)生與Wnt/β聯(lián)蛋白(β-catenin)信號通路的異常激活有關(guān),致癌的關(guān)鍵是細胞質(zhì)內(nèi)游離的β-catenin的積累。β-catenin的功能主要介導細胞間黏附,在細胞增殖、分化和凋亡等方面發(fā)揮重要的調(diào)節(jié)作用[49]。研究發(fā)現(xiàn),CAPE可影響大腸癌細胞HCT116和SW480中Wnt/β-catenin信號通路,呈劑量和時間依賴性抑制作用,降低β-catenin蛋白的表達水平,表明CAPE是Wnt通路的抑制劑,可阻滯大腸癌細胞的生長周期和誘導細胞凋亡[49-50]。
此外,CAPE也可通過多種信號途徑治療結(jié)腸癌,見圖9。薛文等[51]發(fā)現(xiàn)CAPE治療結(jié)腸癌的作用機制可能與降低JNK-paxillin信號通路的活性有關(guān),從而導致細胞凋亡。JNK是唯一可通過磷酸化激活paxillin78位點絲氨酸的激酶,因此,CAPE可通過抑制癌細胞中JNK信號通路阻止其核轉(zhuǎn)位并阻斷下游paxillin的激活,抑制癌細胞的增殖和遷移,且治療結(jié)腸癌的效果呈劑量與時間依賴性。caspase-3是一種有效介導腫瘤細胞凋亡的因子。FAK-Ras-ERK是促進細胞增殖的重要通路,過度活化的酪氨酸激酶可激活下游信號途徑,對抗細胞凋亡,促進細胞增生,最終促進腫瘤的發(fā)生發(fā)展。2015年,梁路昌等[52]發(fā)現(xiàn)CAPE發(fā)揮治療作用的機制可能是阻斷FAK-Ras-MAPK的異常增殖,加強caspase的表達,發(fā)揮抑制結(jié)腸癌細胞增殖和誘導其凋亡的作用,且CAPE的作用呈劑量依賴型。2013年,楊琨[53]發(fā)現(xiàn)CAPE呈濃度和時間依賴型抑制人結(jié)腸癌lovo細胞的增殖,作用機制可能是CAPE通過下調(diào)PI3K/AKT信號通路的蛋白繼而上調(diào)凋亡相關(guān)蛋白caspase-3和caspase-9,從而達到抑制結(jié)腸癌細胞生長的作用。
3.2.3 肝癌
腫瘤壞死因子相關(guān)的凋亡誘導配體(TRAIL)是一種重要的細胞因子,它可以優(yōu)先誘導癌細胞凋亡,而對正常細胞的毒性可以忽略不計。研究表明,CAPE可在Hep3B肝癌細胞中引起TRAIL介導的細胞死亡,同時可刺激死亡受體5(DR5)的表達。但當DR5經(jīng)嵌合蛋白的處理后,可明顯阻斷CAPE/TRAIL誘導的細胞凋亡,這表明CAPE/TRAIL通過TRAIL與DR5的結(jié)合刺激了細胞凋亡。此結(jié)果表明CAPE可能在預防肝癌中發(fā)揮作用[54]。吞噬遷移蛋白-1(ELMO1)是一種高度保守的跨膜蛋白,參與調(diào)控細胞吞噬運動和細胞骨架重排作用等。ELMO1可抑制肝癌細胞纖維連接蛋白表達,導致細胞黏附能力降低,癌細胞之間易于脫離,轉(zhuǎn)移結(jié)節(jié)形成,從而致使肝癌細胞發(fā)生轉(zhuǎn)移。王紫燕等[55]發(fā)現(xiàn)CAPE可下調(diào)ELMO1的表達,抑制肝細胞生長因子(HGF),使人肝癌細胞系(HepG2)的侵襲和遷移能力下降。
3.2.4 前列腺癌
有研究發(fā)現(xiàn),CAPE可通過抑制磷脂酰肌醇-3-激酶/蛋白激酶B (PI3K/Akt)信號轉(zhuǎn)導路徑來抑制前列腺癌細胞的生長,并減輕由化療或放療導致的器官損傷和毒性[56]。在人前列腺癌細胞PC-3,DU145中,CAPE在非經(jīng)典Wnt通路中可誘導受體酪氨酸激酶樣孤兒受體2(ROR2)信號通路表達,抑制β-catenin表達及NF-κB的活性,而ROR2的過表達或敲除分別抑制或增強了PC-3細胞的遷移[57-58]。
3.3 CAPE對鎘誘導毒性保護作用
鎘污染和中毒是嚴重的環(huán)境問題和健康問題。鎘是一種蓄積性強且毒性大的非必需重金屬,在人體腎臟的生物半衰期可長達38年。多項證據(jù)表明,即便是低水平的鎘,若長期接觸,也會對肝、腎、睪丸、眼睛等器官造成損害[59]。因此,闡明鎘的毒性機制,提供有效的藥物或補充劑來減輕或抵消鎘污染引起的毒性是非常迫切的。作為一種疏水性多酚酯,CAPE具有減輕鎘損傷和調(diào)節(jié)自噬的功能。
2018年,DALEL等[60]發(fā)現(xiàn)氯化鎘(CdCl2)可誘導HepG2細胞毒性并顯著降低細胞活力。HAO等[61]研究發(fā)現(xiàn)CAPE可通過抑制HepG2細胞的自噬,顯示出對CdCl2誘導的毒理學的保護作用。
3.4 CAPE的其他藥理活性
CAPE還表現(xiàn)出其他方面的藥理活性。例如:CAPE可通過調(diào)節(jié)小鼠和HepG2細胞中的JNK和NF-κB信號通路來改善胰島素抵抗,顯著改善葡萄糖消耗、葡萄糖攝取、糖原含量和氧化應激,并降低細胞中葡萄糖-6-磷酸酶(G6Pase)mRNA的表達[62];CAPE對6-羥多巴胺(6-OHDA)誘導的SH-SY5Y細胞具有保護作用,具有成為預防帕金森病候選藥物的潛能[63];CAPE可通過激活磷酸腺苷活化蛋白激酶/沉默調(diào)節(jié)蛋白(AMPK/SIRT1),MAPK/ERK及PI3K/Akt信號通路,保護PC12細胞免受順鉑誘導的神經(jīng)毒性[64]。唐先高[65]研究發(fā)現(xiàn),CAPE能抑制小鼠T細胞的過度活化和增殖,對LPS誘導的RAW 264.7巨噬細胞有一定的抑制作用,雙向調(diào)節(jié)巨噬細胞吞噬功能,表明CAPE有一定的免疫調(diào)節(jié)作用。
綜上所述,CAPE表現(xiàn)出廣泛的藥理活性,尤其在抗腫瘤方面具有較高的研究價值和意義。后期可加強CAPE抗腫瘤機制的研究,拓寬其抗腫瘤治療范圍。還可以在現(xiàn)有研究基礎(chǔ)上進行制劑的開發(fā),與其他抗腫瘤藥物聯(lián)合應用,以期達到較強的抗腫瘤作用,同時降低抗腫瘤藥物所產(chǎn)生的毒性。
4 結(jié) 語
天然產(chǎn)物是現(xiàn)代藥物發(fā)展的重要來源,其具有生物相關(guān)性和結(jié)構(gòu)多樣性的優(yōu)勢,CAPE是蜂膠提取物的主要成分之一,因其具有眾多確切的藥理作用而應用前景廣闊。CAPE可以從天然來源中提取得到,方法簡單、污染低,但耗時長、效率低?;瘜W合成法可以緩解CAPE規(guī)?;苽涞碾y題,但其能耗高、污染環(huán)境。CAPE有多種不同的合成路徑,研究人員一直致力于尋求實用性和通用性高、操作相對簡便的制備方法,合成策略仍待改進,如反應原料、溶劑和催化劑等方面可進一步優(yōu)化,綠色、高效的方法還需不斷被發(fā)掘。
CAPE可以作用于多種信號通路和分子靶標,已被證實具有較強的自由基清除能力及抗氧化、抗炎、抗癌等多種藥理作用,預示了其在炎癥反應、心血管疾病、腦組織損傷、腫瘤防治、免疫調(diào)節(jié)等方面的應用潛力。雖然CAPE生理活性廣泛,但目前關(guān)于CAPE機制研究主要集中在體外,且對于信號通路研究中的很多機理還不是很清楚,關(guān)于凋亡信號通路中的上游信號分子影響的研究也不多,需要進行更加深入細致的探究。此外,CAPE溶解度很低,對其生物利用度有影響,限制了在治療和預防上的應用,今后可加強在制劑方面的研究。
參考文獻/References:
[1]MARCUCCI M C. Propolis: Chemical composition,biological properties and therapeutic activity[J]. Apidologie, 1995, 26(2):83-99.
[2]李櫻紅, 羅鐳, 顏琳琦, 等. 不同產(chǎn)地蜂膠中元素分布特征及相關(guān)性分析[J]. 中國現(xiàn)代應用藥學, 2014, 31(3): 297-302.
LI Yinghong, LUO Lei, YAN Linqi, et al. Character study of content and correlativity of elements in propolis obtained from different regions[J]. Chinese Journal of Modern Applied Pharmacy, 2014, 31(3): 297-302.
[3]BO S, LI M, JIE S, et al. Mechanism of synergistic DNA damage induced by caffeic acid phenethyl ester(CAPE) and Cu(Ⅱ): Competitive binding between CAPE and DNA with Cu(Ⅱ)/Cu(Ⅰ)[J].Free Radical Biology and Medicine, 2020, 159:107-118.
[4]SANDRA M O, PATRICIA M, PATRICIA A, et al. Phenolic profile, antioxidant capacities and enzymatic inhibitory activities of propolis from different geographical areas: Needs for analytical harmonization[J]. Antioxidants, 2020, 9(1):1-17.
[5]HUANG M T, MA W, YEN P, et al. Inhibitory effects of caffeic acid phenethyl ester(CAPE) on 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion in mouse skin and the synthesis of DNA,RNA and protein in HeLa cells[J]. Carcinogenesis, 1996, 17(4):761-765.
[6]夏正燕, 姜建民, 馮瑛, 等. 總黃酮、高良姜素和白楊素含量指標綜合優(yōu)選蜂膠前處理方法[J]. 中國現(xiàn)代應用藥學, 2013, 30(3): 268-271.
XIA Zhengyan, JIANG Jianmin, FENG Ying, et al. Comprehensive evaluation on pretreatment methods of propolis by determination of total flavonoids, galangin and chrysin content[J]. Chinese Journal of Modern Applied Pharmacy, 2013, 30(3): 268-271.
[7]申小閣, 張翠平, 胡福良. 巴西蜂膠化學成分的研究進展[J]. 天然產(chǎn)物研究與開發(fā), 2015, 27(5): 915-930.
SHEN Xiaoge, ZHANG Cuiping, HU Fuliang. Chemical constituents of Brazilian propolis: A review[J]. Natural Product Research and Development, 2015, 27(5): 915-930.
[8]SHIGENON K, TOMOKO H,TSUTOMU N. Antioxidant activity of propolis of various geographic origins[J]. Food Chemistry, 2004, 84(3):329-339.
[9]玄紅專, 胡福良. 不同地區(qū)蜂膠抗氧化活性與化學組分的研究進展[J]. 蜜蜂雜志, 2009, 29(2): 7-10.
XUAN Hongzhuan, HU Fuliang. Advance in antioxidant activity and chemical constituents of propolis collected in various geographic origins[J]. Journal of Bee, 2009, 29(2): 7-10.
[10]GRUNBERGER D, BANERJEE R, EISINGER K, et al. Preferential cytotoxicity on tumor cells by caffeic acid phenethyl ester isolated from propolis[J]. Cellular and Molecular Life Sciences, 1988, 44(3): 230-232.
[11]NATARAJAN K, SINGH S, BURKE T R, et al. Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B[J]. Proceedings of the National Academy of Sciences of the United States of America,1996, 93(17):9090-9095.
[12]YANG N, SHI J J,WU F P, et al. Caffeic acid phenethyl ester up-regulates antioxidant levels in hepatic stellate cell line T6 via an Nrf2-mediated mitogen activated protein kinases pathway[J]. World Journal of Gastroenterology, 2017, 23(7): 1203-1214.
[13]ULE A, GULDEN T, BULENT E.B,et al.Antioxidant activity of CAPE(caffeic acid phenethyl ester)in vitro can protect human sperm deoxyribonucleic acid from oxidative damage[J]. Acta Histochemica, 2018, 120(2): 117-121.
[14]CHO M S, PARK W S, JUNG W K, et al. Caffeic acid phenethyl ester promotes anti-inflammatory effects by inhibiting MAPK and NF-κB signaling in activated HMC-1 human mast cells[J]. Pharmaceutical Biology, 2014, 52(7):926-932.
[15]楊九凌, 祝曉玲, 李成文, 等. 咖啡酸及其衍生物咖啡酸苯乙酯藥理作用研究進展[J]. 中國藥學雜志, 2013, 48(8): 577-582.
[16]KLECZKA A, KUBINA R, DZIK R, et al. Caffeic acid phenethyl ester(CAPE) Induced apoptosis in serous ovarian cancer OV7 cells by deregulation of BCL2/BAX genes[J]. Molecules, 2020, 25(15): 1-21.
[17]李煥平, 劉可微, 郝玉琴, 等. 咖啡酸苯乙酯抗腫瘤活性的研究進展[J]. 醫(yī)學綜述, 2020, 26(3): 480-485.
LI Huanping, LIU Kewei, HAO Yuqin, et al. Research advances in anti-tumor activity of caffeic acid phenethyl ester[J]. Medical Recapitulate, 2020, 26(3): 480-485.
[18]BANKOVA V S, POPOV S S, MAREKOV N L. Isopentenyl cinnamates from poplar buds and propolis[J]. Phytochemistry, 1989, 28(3): 871-873.
[19]BRUNO R M, PENNO G, DANIELE G, et al. Type 2 diabetes mellitus worsens arterial stiffness in hypertensive patients through endothelial dysfunction[J]. Diabetologia, 2012, 55(6): 1847-1855.
[20]馬偉. 蜂膠中咖啡酸苯乙酯的提取及抗Ⅱ型糖尿病作用研究[D]. 西安: 陜西科技大學, 2016.
MA Wei. Extraction of CAPE of Propolis and the Study on the Effect of Anti TypeⅡ Diabetes[D]. Xi′an: Shanxi University of Science and Technology, 2016.
[21]李發(fā)潔. 基于紅外輔助提取和現(xiàn)代色譜技術(shù)的中藥活性成分分析技術(shù)應用研究[D]. 上海: 復旦大學, 2013.
LI Fajie. Application of Infrared Assisted Extraction-Modern Chromatography Technology in the Analysis of Active Ingredients in Traditional Chinese Medicines[D]. Shanghai: Fudan University, 2013.
[22]王賽君, 伍振峰, 楊明, 等. 中藥提取新技術(shù)及其在國內(nèi)的轉(zhuǎn)化應用研究[J]. 中國中藥雜志, 2014, 39(8): 1360-1367.
WANG Saijun, WU Zhenfeng, YANG Ming, et al. Research status and translational application of new extraction techniques of traditional Chinese medicine[J]. China Journal of Chinese Materia Medica, 2014, 39(8): 1360-1367.
[23]WANG J, LI J, ZHANG L X, et al. Lipase-catalyzed synthesis of caffeic acid phenethyl ester in ionic liquids: Effect of specific ions and reaction parameters[J]. Chinese Journal of Chemical Engineering, 2013, 21(12): 1376-1385.
[24]LEE Y J. A One Pot Esterification Process for the Preparation of Caffeic Acid Ester Derivatives from Caffeic Acid And Alcohols in the Presence of a Halogenating Agent[P]. EP: 1211237A1, 2002-06-05.
[25]CHEN H C, KUO C H, TWU Y K, et al. A continuous ultrasound-assisted packed-bed bioreactor for the lipase-catalyzed synthesis of caffeic acid phenethyl ester[J]. Journal of Chemical Technology and Biotechnology, 2011, 86(10): 1289-1294.
[26]DU Y S. Neuroprotective Caffeic Acid Derivatives[P]. WO: 2012054446A2, 2012-04-26.
[27]KUO Y H, SU M J. Preparation of Catechol Derivatives for Treatment of Diabetes and Ischemic Diseases[P]. WO: 2008028314A1, 2008-03-13.
[28]夏春年, 胡惟孝. 天然抗癌藥: 咖啡酸苯乙醇酯的合成進展[J]. 合成化學, 2004, 12(6): 545-550.
XIA Chunnian, HU Weixiao. Progress in the synthesis of natural anticancer drug: Caffeic acid phenyethyl ester[J]. Chinese Journal of Synthetic Chemistry, 2004, 12(6): 545-550.
[29]PRASAD R, CONRAD J P, ILG T J.Preparation of Caffeic Acid Phenethyl Ester Via Selective Esterification[P]. US: 7368593B1, 2008-05-06.
[30]LIU J Y, DU Y S. Method for Producing Caffeic Acid Phenyl Ester and Its Analogues[P]. US: 8487125, 2013-07-16.
[31]胡惟孝, 夏春年, 楊忠愚. 一種一鍋法制備咖啡酸酯衍生物的方法[P]. 中國專利:CN1730460, 2006-02-08.
[32]BANKOVA V S. Synthesis of natural esters of substituted cinnamic acids[J]. Journal of Natural Products, 1990, 53(4): 821-824.
[33]JOHN B, RICHARD T. Olefin synthesis with organic phosphonate carbanions[J]. Chemical Reviews, 1974, 74(1): 87-99.
[34]PIECHUKI C. ChemInform abstract: Phase-transfer catalyzed wittig-horner reactions of diethyl phenyl- and styrylmethanephosphonates, a simple preparation of 1-aryl-4-phenylbuta-1,3-dienes[J]. Chemischer Informationsdienst, 1976, 7(24): 187-188.
[35]楊鳳志, 張曼, 謝謹, 等. 利用Heck反應合成咖啡酸苯乙酯[J]. 高等學?;瘜W學報, 2015, 36(5): 914-918.
YANG Fengzhi, ZHANG Man, XIE Jin, et al. Synthetic method of caffeic acid phenethyl ester by Heck reaction[J]. Chemical Journal of Chinese Universities, 2015, 36(5): 914-918.
[36]NAKANISHI K, OLTZ E M, GRUNBERGER D. Caffeic Acid Esters and Methods of Producing and using Same[P]. US: 5008441, 1991-04-16.
[37]黎???, 曾慶友. 咖啡酸苯乙酯合成的改進[J]. 化學試劑, 2016, 38(5): 485-487.
LI Changkui, ZENG Qingyou. Improvement on synthesis of caffeic acid phenethyl ester[J]. Chemical Reagents, 2016, 38(5): 485-487.
[38]SUDINA G F, MIRZOEVA O K, PUSHKAREVA M A, et al. Caffeic acid phenethyl ester as a lipoxygenase inhibitor with antioxidant properties[J]. FEBS Letters, 1993, 329: 21-24.
[39]WU W M, LU L, LONG Y, et al. Free radical scavenging and antioxidative activities of caffeic acid phenethyl ester(CAPE) and its related compounds in solution and membranes: A structure-activity insight[J]. Food Chemistry, 2007, 105(1): 107-115.
[40]KART A, CIGREMIS Y, KARAMAN M, et al. Caffeic acid phenethyl ester(CAPE) ameliorates cisplatin-induced hepatotoxicity in rabbit[J]. Experimental and Toxicologic Pathology, 2010, 62(1): 45-52.
[41]KUS I, COLAKOGLU N, PEKMEZ H, et al. Protective effects of caffeic acid phenethyl ester(CAPE) on carbon tetrachloride-induced hepatotoxicity in rats[J]. Acta Histochemica, 2004, 106(4): 289-297.
[42]龔頻, 崔丹丹, 常相娜, 等. 咖啡酸苯乙酯對糖尿病小鼠心臟的保護作用[J]. 現(xiàn)代食品科技, 2019, 35(10): 1-5.
GONG Pin, CUI Dandan, CHANG Xiangna, et al. Protective effect of caffeic acid phenylethyl ester on heart of diabetic mice[J]. Modern Food Science & Technology, 2019, 35(10): 1-5.
[43]熊應權(quán), 陸錚. 咖啡酸苯乙酯對糖尿病大鼠腎保護作用[J]. 重慶醫(yī)學, 2016, 45(4): 454-456.
XIONG Yingquan, LU Zheng. Protective effect of caffeic acid phenethyl ester on kidney of STZ-induced diabetic rats[J]. Chongqing Medicine, 2016, 45(4): 454-456.
[44]龔頻, 文和, 王蘭, 等. 咖啡酸苯乙酯對2型糖尿病大鼠肝臟保護作用的研究[J]. 時珍國醫(yī)國藥, 2016, 27(9): 2070-2072.
GONG Pin, WEN He, WANG Lan, et al. Study on caffeic acid phenethyl ester(CAPE) on liver protective in type 2 diabetic rats[J]. Lishizhen Medicine and Materia Medica Research, 2016, 27(9): 2070-2072.
[45]MICHALUART P, MASFERRER J L, CAROTHERS A M, et al. Inhibitory effects of caffeic acid phenethyl ester on the activity and expression of cyclooxygenase-2 in human oral epithelial cells and in a rat model of inflammation[J]. Cancer Research, 1999, 59(10): 2347-2352.
[46]玄紅專, 李振, 付崇羅, 等. 咖啡酸苯乙酯抗腫瘤活性的分子機制研究進展[J]. 食品研究與開發(fā), 2013, 34(11): 97-100.
XUAN Hongzhuan, LI Zhen, FU Chongluo, et al. The anticancer properties of caffeic acid phenethyl ester and its molecular mechanisms[J]. Food Research and Development, 2013, 34(11): 97-100.
[47]WATABE M, HISHIKAWA K, TAKAYANAGI A, et al. Caffeic acid phenethyl ester induces apoptosis by inhibition of NFkappaB and activation of Fas in human breast cancer MCF-7 cells[J]. The Journal of Biological Chemistry, 2004, 279(7): 6017-6026.
[48]WU J, OMENE C, KARKOSZKA J, et al. Caffeic acid phenethyl ester(CAPE), derived from a honeybee product propolis, exhibits a diversity of anti-tumor effects in pre-clinical models of human breast cancer[J]. Cancer Letters, 2011, 308(1): 43-53.
[49]向德兵, 何渝軍, 牟江洪, 等. 咖啡酸苯乙酯對大腸癌細胞β-catenin蛋白表達的影響[J]. 第三軍醫(yī)大學學報, 2006, 28(2): 101-103.
XIANG Debing, HE Yujun, MOU Jianghong, et al. Effect of caffeic acid phenethyl ester on the expression of β-catenin in the cultured human colorectal cancer cell lines[J]. Acta Academiae Medicinae Militaris Tertiae, 2006, 28(2): 101-103.
[50]XIANG D B, WANG D, HE Y J, et al. Caffeic acid phenethyl ester induces growth arrest and apoptosis of colon cancer cells via the beta-catenin/T-cell factor signaling[J]. Anti-Cancer Drugs, 2006, 17(7): 753-762.
[51]薛文, 梁路昌, 王軍, 等. 咖啡酸苯乙酯對結(jié)腸癌細胞JNK-paxillin信號通路的影響[J]. 中國普通外科雜志, 2012, 21(4): 432-435.
XUE Wen, LIANG Luchang, WANG Jun, et al. Influence of caffeic acid phenethyl ester on JNK-Paxillin signaling pathway in colon cancer cell[J]. Chinese Journal of General Surgery, 2012, 21(4): 432-435.
[52]梁路昌, 王軍, 張艷敏, 等. 咖啡酸苯乙酯對 HT-29細胞 FAK、ERK 及Caspase-3表達的影響[J]. 腫瘤藥學, 2015, 5(4): 262-266.
LIANG Luchang, WANG Jun, ZHANG Yanmin, et al. The effects of caffeic acid phenethyl ester on the expressions of FAK, ERK and Caspase-3 in colon cancer HT-29 cells[J]. Anti-tumor Pharmacy, 2015, 5(4): 262-266.
[53]楊琨. 咖啡酸苯乙酯對結(jié)腸癌Lovo細胞PI3K/AKT信號通路的調(diào)控[D]. 衡陽: 南華大學, 2013.
YANG Kun. Caffeic Acid Phenethyl Ester on Human Colon Cancer Lovo Cell PI3K/AKT Signal Pathway Regulation[D]. Hengyang: University of South China, 2013.
[54]DILSHARA M G, JAYASOORIYA R G P T, PARK S R, et al. Caffeic acid phenethyl ester enhances TRAIL-mediated apoptosis via CHOP-induced death receptor 5 upregulation in hepatocarcinoma Hep3B cells[J]. Molecular and Cellular Biochemistry, 2016, 418(1): 13-20.
[55]王紫燕, 王瑩瑩, 曾曉雄, 等. 蜂膠中CAPE對HGF誘導的HepG2細胞侵襲和遷移能力的抑制作用[J]. 食品科學, 2017, 38(1): 203-209.
WANG Ziyan, WANG Yingying, ZENG Xiaoxiong, et al. Inhibition of caffeic acid phenethyl ester(CAPE) derived from propolis on HGF-induced migration and invasion of HepG2 cells[J]. Food Science, 2017, 38(1): 203-209.
[56]LIN H P, LIN C Y, LIU C C, et al. Caffeic acid phenethyl ester as a potential treatment for advanced prostate cancer targeting Akt signaling[J]. International Journal of Molecular Sciences, 2013, 14(3): 5264-5283.
[57]KUO Y Y, HUO C, LIN C Y, et al. Caffeic acid phenethyl ester suppresses androgen receptor signaling and stability via inhibition of phosphorylation on Ser81 and Ser213[J]. Cell Communication and Signaling, 2019, 17(1): 100.
[58]TSENG J C, LIN C Y,SU L C, et al. CAPE suppresses migration and invasion of prostate cancer cells via activation of non-canonical Wnt signaling[J]. Oncotarget, 2016, 7(25): 38010-38024.
[59]ZHANG H, DONG X Q, ZHAO R, et al. Cadmium results in accumulation of autophagosomes-dependent apoptosis through activating Akt-impaired autophagic flux in neuronal cells[J]. Cellular Signalling, 2019, 55: 26-39.
[60]DALEL B, KHALED A, MOHAMMAD B A, et al. Polysaccharides from phormidium versicolor(NCC466) protecting HepG2 human hepatocellular carcinoma cells and rat liver tissues from cadmium toxicity: Evidence from in vitro and in vivo tests[J]. International Journal of Biological Macromolecules, 2018, 113: 813-820.
[61]HAO R, LI F, SONG X Y, et al. Caffeic acid phenethyl ester against cadmium induced toxicity mediated by CircRNA modulates autophagy in HepG2 cells[J]. Ecotoxicology and Environmental Safety, 2020, 197: 110610.
[62]NIE J R, CHANG Y N, LI Y J, et al. Caffeic acid phenethyl ester(propolis extract) ameliorates insulin resistance by inhibiting JNK and NF-κB inflammatory pathways in diabetic mice and HepG2 cell models[J]. Journal of Agricultural and Food Chemistry, 2017, 65(41): 9041-9053.
[63]DUYGU T, H SEYIN A, FIKRETTIN S, et al. Evaluation of the neuroprotective potential of caffeic acid phenethyl ester in a cellular model of Parkinson's disease[J]. European Joumal of Pharmacology, 2020, 883: 173342.
[64]FERREIRA R S, DOS SANTOS N A G, BERNARDES C P, et al. Caffeic acid phenethyl ester(CAPE) protects PC12 cells against cisplatin-induced neurotoxicity by activating the AMPK/SIRT1, MAPK/erk, and PI3k/Akt signaling pathways[J]. Neurotoxicity Research, 2019, 36(1): 175-192.
[65]唐先高. 咖啡酸苯乙酯對小鼠免疫功能及腦缺血再灌注損傷的影響[D].廣州: 暨南大學, 2008.
TANG Xiangao.Influence of Caffeic Acid Phenethyl Ester on Immunological Function of Mouse and Cerebral Ischemia Reperfusion Injury[D].Guangzhou: Jinan University, 2008.