亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        學(xué)術(shù)評論.

        2020-12-20 12:43:12
        密碼學(xué)報 2020年5期
        關(guān)鍵詞:加解密二項式密碼學(xué)

        特邀評論人: 戚文峰, 《密碼學(xué)報》副主編, 中國人民解放軍戰(zhàn)略支援部隊信息工程大學(xué)教授

        Invited Reviewer: QI Wen-Feng, Associate Editor-in-Chief of Journal of Cryptologic Research, Professor of PLA Strategic Support Force Information Engineering University

        評《有限域上幾類置換和完全置換》

        置換在密碼學(xué)中有著非常廣泛的應(yīng)用, 許多密碼算法的加解密變換就是密鑰控制下的置換, 而具有良好密碼性質(zhì)的置換常常被用于構(gòu)造重要密碼組件—非線性S 盒. 置換多項式是代數(shù)和密碼領(lǐng)域的重要研究問題, 在組合、編碼、密碼等領(lǐng)域都有著廣泛的應(yīng)用, 目前對Dickson 多項式、二項式等特殊形式置換多項式的研究已有很多好的研究成果. 如果f(x) 和f(x)+x 均為置換, 則稱f(x) 為完全置換. 完全置換的提出源于正交拉丁方的構(gòu)造, 因其好的密碼性質(zhì)被應(yīng)用于增強(qiáng)IDEA、SM4 等算法的安全性. 具有良好密碼性質(zhì)的置換多項式和完全置換多項式的有效構(gòu)造是密碼領(lǐng)域廣泛關(guān)注的熱點(diǎn)問題, 其研究具有重要的理論意義和實(shí)用價值. 《密碼學(xué)報》2019 年刊登的這篇論文研究了有限域上特殊類型的置換和完全置換多項式的構(gòu)造問題, 運(yùn)用跡函數(shù)、線性置換和Dickson 置換構(gòu)造了有限域Fqn上六類形如γx+(h(x)) 的置換多項式, 證明了其中三類為完全置換; 考慮了xh(xs) 型置換, 基于已有的置換多項式的判定法則, 給出了Fqn上二項式γx+xs+1是置換的幾個充分條件, 得到了有限域上幾類新的完全置換, 也為完全置換多項式的構(gòu)造提供新思路.

        Review on “A Few Classes of Permutations and Complete Permutations over Finite Fields”

        Permutation is widely used in Cryptography. The encryption and decryption transformation of many cryptographic algorithms is the permutation under key control. And permutation with good cryptographic properties is often used to construct nonlinear S-box, the important cryptographic component. Permutation polynomial is an important research problem in both Algebra and Cryptography, which is widely used in combination, coding,cryptography and other fields. At present, there are many good research results on Dickson polynomial, binomial and other special forms of permutation polynomial. If f(x) and f(x)+x are both permutations, then f(x) is called complete permutation. The concept of complete permutation, derived from the construction of orthogonal Latin squares, is used to enhance the security of IDEA, SM4 and other algorithms for its wonderful cryptographic properties. Because of this,the eきcient construction of permutation polynomials and complete permutation polynomials with good cryptographic properties is the focus of attention in the field of cryptography, with important theoretical significance and practical value. This paper, published in the Journal of Cryptologic Research in 2019,studies the construction of special types of permutation and complete permutation polynomials over finite fields,constructs six types of form γx+(h(x)) under finite fields Fqn by using trace functions, linear permutations and Dickson permutations, and proofs three of these are complete permutations. Also, this paper, studies the permutation of form xh(xs), proposes some necessary and suきcient conditions of that the binomial γx+xs+1under finite fields Fqnbased on the existing criteria of permutation polynomials, obtains some new types of complete permutations over finite fields, and also provides a new idea for the construction of complete permutation polynomials.

        猜你喜歡
        加解密二項式密碼學(xué)
        聚焦二項式定理創(chuàng)新題
        二項式定理備考指南
        二項式定理??碱}型及解法
        圖靈獎獲得者、美國國家工程院院士馬丁·愛德華·海爾曼:我們正處于密鑰學(xué)革命前夕
        密碼學(xué)課程教學(xué)中的“破”與“立”
        PDF中隱私數(shù)據(jù)的保護(hù)方法
        電子取證中常見數(shù)據(jù)加解密理論與方法研究
        基于FPGA的LFSR異步加解密系統(tǒng)
        矩陣在密碼學(xué)中的應(yīng)用
        網(wǎng)絡(luò)數(shù)據(jù)傳輸?shù)募咏饷芟到y(tǒng)研究
        軟件工程(2014年11期)2014-11-15 20:02:46
        国产在视频线精品视频| 美女福利视频在线观看网址| 日本一区二区免费在线看| 日本少妇高潮喷水xxxxxxx| 亚洲另类精品无码专区| 久久久久成人精品免费播放| 亚洲一本二区偷拍精品| 亚洲一区二区三区小说| 日韩亚洲av无码一区二区不卡| ZZIJZZIJ亚洲日本少妇| 日本av第一区第二区| 成年丰满熟妇午夜免费视频| 国产精品久久久久影院嫩草| 国产精品美女AV免费观看| 亚洲一区二区三区自拍麻豆| 亚洲国产精品无码久久一区二区 | 国产色婷亚洲99精品av网站| 欧美最猛性xxxx| 久久精品国产www456c0m| 国产91一区二这在线播放| 亚洲av成人永久网站一区| 国产果冻豆传媒麻婆精东| 国内揄拍国内精品少妇国语| 日本人妻少妇精品视频专区| 狼人伊人影院在线观看国产| 国产日产综合| 国产精品三级一区二区按摩| 牛仔裤人妻痴汉电车中文字幕| 老太婆性杂交视频| 欧美亚洲日韩国产人成在线播放| 久久久久久AV无码成人| 黄色一区二区三区大全观看| 免费网站看v片在线18禁无码| 一本久道久久综合久久| 日本一区二三区在线中文| 国产亚洲精品久久久久久国模美 | 亚洲成在人网站天堂日本| 午夜爽爽爽男女免费观看影院| 婷婷综合缴情亚洲| 久久迷青品着产亚洲av网站| 亚洲av不卡免费在线|