(河北省滄州市任丘市長(zhǎng)豐鎮(zhèn)長(zhǎng)豐中學(xué),河北 滄州 062562)
所謂數(shù)學(xué)思想,就是對(duì)數(shù)學(xué)知識(shí)和方法的本質(zhì)認(rèn)識(shí),是對(duì)數(shù)學(xué)規(guī)律的理性認(rèn)識(shí)。所謂數(shù)學(xué)方法,就是解決數(shù)學(xué)問(wèn)題的根本程序,是數(shù)學(xué)思想的具體反映。數(shù)學(xué)思想是數(shù)學(xué)的靈魂,數(shù)學(xué)方法是數(shù)學(xué)的行為。運(yùn)用數(shù)學(xué)方法解決問(wèn)題的過(guò)程就是感性認(rèn)識(shí)不斷積累的過(guò)程,當(dāng)這種量的積累達(dá)到一定程序時(shí)就產(chǎn)生了質(zhì)的飛躍,從而上升為數(shù)學(xué)思想。若把數(shù)學(xué)知識(shí)看作一幅構(gòu)思巧妙的藍(lán)圖而建筑起來(lái)的一座宏偉大廈,那么數(shù)學(xué)方法相當(dāng)于建筑施工的手段,而這張藍(lán)圖就相當(dāng)于數(shù)學(xué)思想。
《數(shù)學(xué)新課標(biāo)》對(duì)初中數(shù)學(xué)中滲透的數(shù)學(xué)思想、方法劃分為三個(gè)層次,即“了解”、“理解”和“會(huì)應(yīng)用”。在教學(xué)中,要求學(xué)生“了解”數(shù)學(xué)思想有:數(shù)形結(jié)合的思想、分類的思想、化歸的思想、類比的思想和函數(shù)的思想等。這里需要說(shuō)明的是,有些數(shù)學(xué)思想在《數(shù)學(xué)新課標(biāo)》中并沒(méi)有明確提出來(lái)。
關(guān)于初中數(shù)學(xué)中的數(shù)學(xué)思想和方法內(nèi)涵與外延,目前尚無(wú)公認(rèn)的定義。其實(shí),在初中數(shù)學(xué)中,許多數(shù)學(xué)思想和方法是一致的,兩者之間很難分割。它們既相輔相成,又相互蘊(yùn)含。只是方法較具體,是實(shí)施有關(guān)思想的技術(shù)手段,而思想是屬于數(shù)學(xué)觀念一類的東西,比較抽象。
實(shí)施創(chuàng)新教育要達(dá)到《數(shù)學(xué)新課標(biāo)》的基本要求,教學(xué)中應(yīng)遵循以下幾項(xiàng)原則:
由于初中學(xué)生數(shù)學(xué)知識(shí)比較貧乏,抽象思維能力也較為薄弱,把數(shù)學(xué)思想、方法作為一門獨(dú)立的課程還缺乏應(yīng)有的基礎(chǔ)。因而只能將數(shù)學(xué)知識(shí)作為載體,把數(shù)學(xué)思想和方法的教學(xué)滲透到數(shù)學(xué)知識(shí)的教學(xué)中。教師要把握好滲透的契機(jī),重視數(shù)學(xué)概念、公式、定理、法則的提出過(guò)程,知識(shí)的形成、發(fā)展過(guò)程,解決問(wèn)題和規(guī)律的概括過(guò)程,使學(xué)生在這些過(guò)程中展開思維,從而發(fā)展他們的科學(xué)精神和創(chuàng)新意識(shí),形成獲取、發(fā)展新知識(shí),運(yùn)用新知識(shí)解決問(wèn)題。忽視或壓縮這些過(guò)程,一味灌輸知識(shí)的結(jié)論,就必然失去滲透數(shù)學(xué)思想、方法的一次次良機(jī)。
數(shù)學(xué)知識(shí)的學(xué)習(xí)要經(jīng)過(guò)聽講、復(fù)習(xí)、做習(xí)題等才能掌握和鞏固。數(shù)學(xué)思想、方法的形成同樣有一個(gè)循序漸進(jìn)的過(guò)程。只有經(jīng)過(guò)反復(fù)訓(xùn)練才能使學(xué)生真正領(lǐng)會(huì)。另外,使學(xué)生形成自覺(jué)運(yùn)用數(shù)學(xué)思想方法的意識(shí),必須建立起學(xué)生自我的“數(shù)學(xué)思想方法系統(tǒng)”,這更需要一個(gè)反復(fù)訓(xùn)練、不斷完善的過(guò)程。比如,運(yùn)用類比的數(shù)學(xué)方法,在新概念提出、新知識(shí)點(diǎn)的講授過(guò)程中,可以使學(xué)生易于理解和掌握。學(xué)習(xí)一次函數(shù)的時(shí)候,我們可以用乘法公式類比;在學(xué)習(xí)二次函數(shù)有關(guān)性質(zhì)時(shí),我們可以和一元二次方程的根與系數(shù)性質(zhì)類比。通過(guò)多次重復(fù)性的演示,使學(xué)生真正理解、掌握類比的數(shù)學(xué)方法。
教學(xué)中要適時(shí)恰當(dāng)?shù)貙?duì)數(shù)學(xué)方法給予提煉和概括,讓學(xué)生有明確的印象。由于數(shù)學(xué)思想、方法分散在各個(gè)不同部分,而同一問(wèn)題又可以用不同的數(shù)學(xué)思想、方法來(lái)解決。因此,教師的概括、分析是十分重要的。教師還要有意識(shí)地培養(yǎng)學(xué)生自我提煉、揣摩概括數(shù)學(xué)思想方法的能力,這樣才能把數(shù)學(xué)思想、方法的教學(xué)落在實(shí)處。
數(shù)和式是問(wèn)題的抽象和概括、圖形和圖像是問(wèn)題的具體和直觀的反映。初中代數(shù)教材列方程解應(yīng)用題所選很多是采用了圖示法的例題,所以,教學(xué)過(guò)程中要充分利用圖形的直觀性和具體性,引導(dǎo)學(xué)生從圖形上發(fā)現(xiàn)數(shù)量關(guān)系找出解決問(wèn)題的突破口。學(xué)生掌握了這一思想要比掌握一個(gè)公式或一種具體方法更有價(jià)值,對(duì)解決問(wèn)題更具有指導(dǎo)意義。
眾所周知,方程思想是初等代數(shù)思想方法的主體,應(yīng)用十分廣泛,可謂數(shù)學(xué)大廈基石之一,在眾多的數(shù)學(xué)思想中顯得十分重要。
主要是指建立方程(組)解決實(shí)際問(wèn)題的思想方法。教材中大量出現(xiàn)這種思想方法,如列方程解應(yīng)用題,求函數(shù)解析式,利用根的判別式、根與系數(shù)關(guān)系求字母系數(shù)的值等。
教學(xué)時(shí),可有意識(shí)的引導(dǎo)學(xué)生發(fā)現(xiàn)等量關(guān)系從而建立方程。如講“利用待定系數(shù)法確定二次函數(shù)解析式”時(shí),可啟發(fā)學(xué)生去發(fā)現(xiàn)確定解析式的關(guān)鍵是求出各項(xiàng)系數(shù),可把他們看成三個(gè)“未知量”告訴學(xué)生利用方程思想來(lái)解決,那學(xué)生就會(huì)自覺(jué)的去找三個(gè)等量關(guān)系建立方程組。在這里如果單講解題步驟,就會(huì)顯得呆板、僵硬,學(xué)生只知其然,不知其所以然。與此同時(shí),還要注意滲透其他與方程思想有密切關(guān)系的數(shù)學(xué)思想,諸如換元,消元,降次,函數(shù),化歸,整體,分類等思想,這樣可起到撥亮一盞燈,照亮一大片的作用。
辯證思想是科學(xué)世界觀在數(shù)學(xué)中的體現(xiàn),是最重要的數(shù)學(xué)思想之一。自然界中的一切現(xiàn)象和過(guò)程都存在著對(duì)立統(tǒng)一規(guī)律,數(shù)學(xué)中的有理數(shù)和無(wú)理數(shù)、整式和分式、已知和未知、特殊和一般、常量和變量、整體和局部等同樣蘊(yùn)涵著這一辯證思想。因此,教學(xué)時(shí),應(yīng)有意識(shí)地滲透。
總之,只有學(xué)習(xí)新的教學(xué)方法和領(lǐng)悟新的教學(xué)思維,教學(xué)質(zhì)量才能提高。注重滲透數(shù)學(xué)思想、方法的教學(xué),數(shù)學(xué)思想的教學(xué)應(yīng)與整個(gè)表層知識(shí)的講授融為一體,課前精心設(shè)計(jì),課上精心組織,充分發(fā)揮學(xué)生的主體作用,多創(chuàng)設(shè)情景,多提供機(jī)會(huì),堅(jiān)持不懈,才利于學(xué)生對(duì)所學(xué)知識(shí)的真正理解和掌握,就能當(dāng)達(dá)到預(yù)想的教學(xué)目的。