吳子娟,梁武科,董 瑋,高晨輝,陳帝伊
轉(zhuǎn)輪下環(huán)間隙對(duì)混流式水輪機(jī)內(nèi)部流動(dòng)特性的影響
吳子娟1,梁武科1※,董 瑋2,高晨輝1,陳帝伊2
(1. 西安理工大學(xué)水利水電學(xué)院,西安 710048;2. 西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院,楊凌 712100)
水輪機(jī)轉(zhuǎn)輪間隙內(nèi)的泄漏渦、泄漏流等復(fù)雜的湍流易影響水輪機(jī)的性能與穩(wěn)定性。為了分析下環(huán)間隙對(duì)混流式水輪機(jī)能量特性和內(nèi)部流態(tài)的影響,該文基于N-S方程和SST湍流模型,考慮了0.6d(d為設(shè)計(jì)流量工況)、0.8d、d、1.2d共4種流量工況,對(duì)5種下環(huán)間隙下的混流式水輪機(jī)模型機(jī)進(jìn)行三維全流道數(shù)值計(jì)算。通過(guò)對(duì)比不同下環(huán)間隙方案對(duì)混流式水輪機(jī)效率與容積損失的影響,結(jié)合不同水輪機(jī)內(nèi)部流場(chǎng)特征,分析下環(huán)間隙與水輪機(jī)性能的關(guān)系。計(jì)算結(jié)果表明:下環(huán)間隙由0.4 mm增大到1.3 mm,機(jī)組泄漏量增大,水輪機(jī)效率整體呈下降趨勢(shì)。其中,當(dāng)機(jī)組在小流量0.6d工況運(yùn)行時(shí),間隙對(duì)水輪機(jī)能量特性影響最為明顯,效率下降了4.1個(gè)百分點(diǎn)。當(dāng)機(jī)組在小流量0.6d與0.8d工況運(yùn)行時(shí),下環(huán)間隙增大,間隙內(nèi)部流場(chǎng)與尾水管內(nèi)部流場(chǎng)呈現(xiàn)小幅度惡化;當(dāng)機(jī)組在大流量1.2d工況運(yùn)行時(shí),下環(huán)間隙增大,轉(zhuǎn)輪葉片吸力面壓力分布以及尾水管內(nèi)部流場(chǎng)均得到改善。該研究可為混流式水輪機(jī)結(jié)構(gòu)設(shè)計(jì)提供有效參考。
混流式水輪機(jī);模型;下環(huán)間隙;性能;容積損失
混流式水輪機(jī)轉(zhuǎn)輪間隙的大小決定了機(jī)組的容積損失,這種泄漏直接影響著水輪機(jī)的效率及出力[1-2]。間隙結(jié)構(gòu)的變化會(huì)引起間隙內(nèi)部水流流場(chǎng)的變化[3-5],間隙出流對(duì)水輪機(jī)轉(zhuǎn)輪與尾水管內(nèi)部流態(tài)具有明顯的干擾作用[6]。
近年來(lái),針對(duì)水力機(jī)械內(nèi)部間隙流動(dòng),國(guó)內(nèi)外學(xué)者做了大量研究[7-9]。水泵間隙流的研究主要集中在葉頂間隙與密封間隙。高杰等[10-11]通過(guò)分析混流泵內(nèi)部主流的壓力脈動(dòng)與渦流特性,發(fā)現(xiàn)葉頂間隙越大,泄漏量越大,泵的揚(yáng)程和效率均降低。Kim等[12]用CFD方法對(duì)直型和階梯型2種密封結(jié)構(gòu)下的泄漏量進(jìn)行了預(yù)測(cè)分析,發(fā)現(xiàn)隨著間隙的增大,階梯式密封相對(duì)于直型密封更具優(yōu)勢(shì)。Kim等[13]通過(guò)對(duì)4種尺寸葉頂間隙下的渦輪泵進(jìn)行試驗(yàn)研究,證實(shí)非空化條件下,葉頂間隙越大,泵揚(yáng)程越低。混流式水輪機(jī)轉(zhuǎn)輪域的間隙主要包括上冠間隙與下環(huán)間隙。目前,對(duì)混流式水輪機(jī)間隙流的研究主要集中在上冠間隙對(duì)機(jī)組性能的影響。馮建軍等[14-16]通過(guò)對(duì)轉(zhuǎn)輪圓盤(pán)效率損失的定量計(jì)算發(fā)現(xiàn),考慮了轉(zhuǎn)輪圓盤(pán)損失后,在最優(yōu)單位轉(zhuǎn)速附近,CFD計(jì)算得到的水輪機(jī)效率和模型試驗(yàn)結(jié)果吻合良好。王文全等[17]為了研究水輪機(jī)間隙流道內(nèi)渦結(jié)構(gòu)特征,通過(guò)分步投影法求解N-S方程,在不同雷諾數(shù)下闡述了上冠間隙內(nèi)壓力場(chǎng)、速度場(chǎng)以及渦量的分布規(guī)律。間隙的結(jié)構(gòu)直接影響機(jī)組泄漏量的大小,周大慶等[18-19]通過(guò)分析混流式水輪機(jī)主流道內(nèi)速度和壓力分布以及空腔、泄水孔和上冠間隙內(nèi)的流動(dòng)特征,揭示了泄漏量隨上冠間隙增大而增大的規(guī)律。關(guān)于混流式水輪機(jī)下環(huán)間隙對(duì)機(jī)組性能影響的研究尚未開(kāi)展,因此,分析下環(huán)間隙流對(duì)轉(zhuǎn)輪進(jìn)出口流態(tài)的影響,進(jìn)而總結(jié)下環(huán)間隙結(jié)構(gòu)與機(jī)組性能之間的關(guān)系十分必要。
本文以混流式水輪機(jī)為研究對(duì)象,提出5種下環(huán)間隙方案,得到該水輪機(jī)的能量特性及內(nèi)部流場(chǎng)。通過(guò)分析設(shè)計(jì)流量d,小流量0.6d、0.8d,大流量1.2d共4個(gè)工況下,5種下環(huán)間隙對(duì)水輪機(jī)效率、容積損失以及內(nèi)部流態(tài)的變化規(guī)律,來(lái)探究下環(huán)間隙對(duì)混流式水輪機(jī)能量特性與內(nèi)部流動(dòng)特性的影響,為混流式水輪機(jī)下環(huán)間隙的設(shè)計(jì)提供重要的參考依據(jù)。
本文研究對(duì)象為國(guó)內(nèi)某電站混流式水輪機(jī)模型,該電站原型水輪機(jī)真機(jī)運(yùn)行水頭范圍為91~112 m,額定水頭為96 m。模型水輪機(jī)的幾何參數(shù)見(jiàn)表1。圖1為該模型機(jī)全流道三維模型計(jì)算域。圖2是下環(huán)間隙的剖面示意圖,水輪機(jī)下環(huán)間隙記為。為了探究下環(huán)間隙對(duì)水輪機(jī)性能的影響,在該水輪機(jī)模型機(jī)原始下環(huán)間隙1 mm的基礎(chǔ)上,增大下環(huán)間隙取得1.3 mm的下環(huán)間隙方案,減小下環(huán)間隙取得0.4、0.6、0.8 mm的下環(huán)間隙方案,其中0.4 mm為該模型機(jī)可達(dá)到的最小下環(huán)間隙。
表1 主要部件幾何參數(shù)
圖1 水輪機(jī)全流道三維模型
1.轉(zhuǎn)輪葉片 2.活動(dòng)導(dǎo)葉 3.底環(huán) 4.基礎(chǔ)環(huán) 5.下固定密封環(huán) 6.尾水管
1.Runner blade 2.Guide vane 3.Bottom ring 4.Foundation ring 5.Lower stationary sealing ring 6.Draft tube
注:為轉(zhuǎn)輪的下環(huán)間隙。
Note:is the seal clearance of runner, mm.
圖2 下環(huán)間隙軸向剖面圖
Fig.2 Axial profile of seal clearance
水輪機(jī)原型機(jī)與模型機(jī)具有相似性,水輪機(jī)單位轉(zhuǎn)速11與單位流量11的定義為[20]:
式中為水輪機(jī)轉(zhuǎn)速,r/min;為通過(guò)水輪機(jī)的流量,m3/s;1為轉(zhuǎn)輪直徑,m;為水輪機(jī)工作水頭,m。
該模型機(jī)設(shè)計(jì)工況單位轉(zhuǎn)速11=69 r/min,單位流量11=0.765 m3/s,該單位流量記為d??紤]到本文研究的水輪機(jī)在設(shè)計(jì)工況運(yùn)行的時(shí)段通常只占總運(yùn)行時(shí)間的30%左右,為綜合分析水輪機(jī)在不同工況下運(yùn)行的性能,本文計(jì)算工況為設(shè)計(jì)單位轉(zhuǎn)速下,單位流量包括小流量0.6d、0.8d工況,設(shè)計(jì)流量d工況和大流量1.2d工況,工作水頭=30 m。
水輪機(jī)的三維瞬態(tài)不可壓縮控制方程可由如下方程來(lái)描述[21-23]:
式中為流體密度,kg/m3;u和u為速度在直角坐標(biāo)系中的分量,m/s;為時(shí)間,s;x與x為空間坐標(biāo)分量,m;為壓強(qiáng),Pa;為流體的動(dòng)力黏性系數(shù),Pa?s;F為坐標(biāo)系中的單位質(zhì)量力,N/kg。
本文采用剪切應(yīng)力輸運(yùn)(shear stress transport,SST)模型對(duì)方程進(jìn)行封閉[24-26],其控制方程為:
式中Г和Г為和的有效擴(kuò)散系數(shù);G為湍動(dòng)能的生成項(xiàng);G為耗散率的生成項(xiàng);Y和Y為湍流引起的湍動(dòng)能與耗散率的耗散項(xiàng);D為交叉擴(kuò)散項(xiàng);S和S為用戶定義的源項(xiàng)。
式(6)中正交擴(kuò)散項(xiàng)D的表達(dá)式為:
蝸殼進(jìn)口采用質(zhì)量流量,進(jìn)口水流方向處垂直于進(jìn)口斷面;尾水管出口設(shè)置為壓力為0的平均靜壓;在臨近壁面采用的是標(biāo)準(zhǔn)的壁面函數(shù),壁面采用無(wú)滑移邊界;固定部件和轉(zhuǎn)動(dòng)部件交界面采用凍結(jié)轉(zhuǎn)子來(lái)進(jìn)行數(shù)據(jù)傳遞;計(jì)算收斂精度為最大殘差小于10-4。
本文采用分塊網(wǎng)格技術(shù),使用網(wǎng)格生成軟件ICEM-CFD對(duì)各個(gè)計(jì)算域進(jìn)行網(wǎng)格劃分,計(jì)算域網(wǎng)格均采用六面體結(jié)構(gòu)化網(wǎng)格,并對(duì)固定導(dǎo)葉、活動(dòng)導(dǎo)葉葉片表面、轉(zhuǎn)輪葉片表面,下環(huán)間隙壁面等重要的流場(chǎng)壁面處進(jìn)行網(wǎng)格加密,以便于捕捉更加精細(xì)的流場(chǎng)信息,如圖3所示。
為了驗(yàn)證網(wǎng)格數(shù)的合理性,保證計(jì)算精度,本文選取水輪機(jī)效率隨網(wǎng)格數(shù)變化的曲線作為無(wú)關(guān)性驗(yàn)證的判斷依據(jù)。網(wǎng)格無(wú)關(guān)性驗(yàn)證[27]選擇在d流量工況,下環(huán)間隙為1 mm的原始間隙下進(jìn)行,通過(guò)對(duì)比不同網(wǎng)格數(shù)下的水輪機(jī)效率變化情況,d流量工況下的水輪機(jī)效率隨網(wǎng)格數(shù)變化曲線如圖4所示。由圖4可見(jiàn),當(dāng)網(wǎng)格數(shù)由653萬(wàn)增加到740萬(wàn),效率增量為0.009%,得到網(wǎng)格無(wú)關(guān)解,最終確定全流道數(shù)值計(jì)算的網(wǎng)格總數(shù)為653萬(wàn)。
圖3 部分流體域網(wǎng)格
圖4 網(wǎng)格無(wú)關(guān)性驗(yàn)證
對(duì)本文所研究的水電站水輪機(jī)進(jìn)行真機(jī)效率試驗(yàn),試驗(yàn)工況選取設(shè)計(jì)工況單位轉(zhuǎn)速11=69 r/min,單位流量取0.512 m3/s至0.915 m3/s共8個(gè)工況。數(shù)值計(jì)算取下環(huán)間隙為1 mm的方案。效率試驗(yàn)結(jié)果與數(shù)值計(jì)算結(jié)果的對(duì)比如圖5所示。從圖中可看出,數(shù)值計(jì)算結(jié)果與試驗(yàn)結(jié)果相接近,由于真機(jī)水流中存在泥沙等固體顆粒,造成機(jī)組能量轉(zhuǎn)換的損失,數(shù)值計(jì)算中未考慮泥沙含量這一因素,計(jì)算結(jié)果整體略高于試驗(yàn)值。單位流量為0.795 m3/s的工況出現(xiàn)最大誤差,為2.06%,在可接受范圍內(nèi)。
圖5 效率試驗(yàn)與數(shù)值計(jì)算結(jié)果對(duì)比
如圖6所示,通過(guò)分析不同下環(huán)間隙對(duì)混流式水輪機(jī)效率的影響可以發(fā)現(xiàn):當(dāng)機(jī)組在非設(shè)計(jì)工況運(yùn)行時(shí),當(dāng)間隙在0.4~1.3 mm范圍內(nèi),下環(huán)間隙增大,水輪機(jī)效率呈下降趨勢(shì)。下環(huán)間隙從0.4增大到1.3 mm,0.6d流量工況下的水輪機(jī)效率下降了4.08個(gè)百分點(diǎn),下降幅度最大;0.8d與1.2d流量工況下,效率分別下降了2.15與1.38個(gè)百分點(diǎn)。
注:Q為通過(guò)水輪機(jī)的流量,Qd為該水輪機(jī)的設(shè)計(jì)流量。
設(shè)計(jì)工況下,當(dāng)下環(huán)間隙從0.4增大到1.3 mm,水輪機(jī)效率呈先下降,再上升,后下降的變化趨勢(shì)。其中,間隙由0.4增大到0.6 mm時(shí),效率下降了0.97個(gè)百分點(diǎn);間隙由0.6增大到0.8 mm時(shí),效率上升了0.15個(gè)百分點(diǎn);間隙由0.8增大到1.3 mm時(shí),效率下降了0.97個(gè)百分點(diǎn)。
水輪機(jī)轉(zhuǎn)輪下環(huán)間隙的泄漏量可以根據(jù)公式(8)計(jì)算得出[28]
式中C為流量系數(shù);F為密封環(huán)間隙的過(guò)流斷面面積,m2;H為間隙進(jìn)出口的水頭損失,m;D為密封環(huán)內(nèi)徑,m;為重力加速度,m/s2。
將間隙泄漏量與總流量的比值,即泄漏比作為無(wú)量綱容積損失進(jìn)行分析,圖7為機(jī)組在0.6d、0.8d、d、1.2d4種工況運(yùn)行時(shí),水輪機(jī)下環(huán)間隙容積損失隨下環(huán)間隙變化的規(guī)律。從圖中可以看出,下環(huán)間隙增大,4種流量工況下的機(jī)組容積損失均呈上升趨勢(shì)。隨著活動(dòng)導(dǎo)葉開(kāi)度的增大,當(dāng)下環(huán)間隙增大,下環(huán)間隙泄漏量增大的幅度逐漸減小。機(jī)組在小流量0.6d工況運(yùn)行時(shí),下環(huán)間隙的變化對(duì)下環(huán)間隙泄漏量影響最為明顯,當(dāng)間隙值由0.4增大到1.3 mm,泄漏比由0.18 %增大至0.54 %。
2.2.1 下環(huán)間隙內(nèi)部流態(tài)分析
4種流量工況下,下環(huán)間隙變化,間隙內(nèi)部流場(chǎng)呈相同的變化趨勢(shì)。圖8為設(shè)計(jì)工況下不同間隙的內(nèi)部流場(chǎng)。隨著下環(huán)間隙的增大,間隙內(nèi)平均流速逐漸增大,受下環(huán)轉(zhuǎn)動(dòng)壁面的影響,間隙出口水流具有與轉(zhuǎn)輪旋轉(zhuǎn)方向相同的速度環(huán)量。由下環(huán)間隙子午面的流線分布可知,隨著間隙增大,下環(huán)間隙進(jìn)、出口壓力腔中的渦流強(qiáng)度逐漸增大。間隙內(nèi)部的湍流漩渦可以將水流部分能量以熱能的形式耗散不使其恢復(fù)為壓能,過(guò)于強(qiáng)大的漩渦可以引起機(jī)組自激振動(dòng),導(dǎo)致機(jī)組運(yùn)行不穩(wěn)定。
圖7 不同下環(huán)間隙下的容積損失
2.2.2 下環(huán)間隙對(duì)轉(zhuǎn)輪內(nèi)部流態(tài)的影響
通過(guò)數(shù)值計(jì)算發(fā)現(xiàn),下環(huán)間隙的變化對(duì)轉(zhuǎn)輪葉片壓力面的影響不明顯,因此,本文僅對(duì)轉(zhuǎn)輪葉片吸力面的流場(chǎng)進(jìn)行分析。0.6d、0.8d流量工況下,隨著下環(huán)間隙的增大,轉(zhuǎn)輪葉片吸力面壓力分布并未出現(xiàn)明顯改變。這是由于小流量工況下,間隙進(jìn)口尺寸的改變對(duì)水流的阻尼作用較小,導(dǎo)致泄漏量對(duì)轉(zhuǎn)輪的擾動(dòng)作用并不明顯。圖9為設(shè)計(jì)工況與大流量工況下轉(zhuǎn)輪葉片吸力面壓力分布。從圖中可以看出:d、1.2d流量工況下,隨著下環(huán)間隙增大,轉(zhuǎn)輪葉片吸力面靠近下環(huán)出水邊負(fù)壓區(qū)面積在逐漸減小。產(chǎn)生這種現(xiàn)象的原因是:下環(huán)間隙的增大引起機(jī)組泄漏量增加,導(dǎo)致流經(jīng)轉(zhuǎn)輪內(nèi)水流流量減少,水流流速隨之減小,轉(zhuǎn)輪區(qū)域的壓力逐漸上升,其中壓力上升較為明顯的區(qū)域主要在葉片吸力面靠近下環(huán)出水邊附近。
圖8 設(shè)計(jì)工況下的下環(huán)間隙子午面速度場(chǎng)與流線形態(tài)
圖9 轉(zhuǎn)輪葉片吸力面壓力分布
2.2.3 下環(huán)間隙對(duì)尾水管內(nèi)部流態(tài)的影響
下環(huán)間隙出流具有一定的正向速度環(huán)量,不同間隙方案下流經(jīng)間隙的水流流量不同,間隙出流對(duì)尾水管主流干擾的程度不同。圖10為尾水管直錐段與彎肘段中心剖面壓力云圖與流線形態(tài)。從圖中可以看出,不同間隙方案下,尾水管直錐段與彎肘段流場(chǎng)差異較為明顯。0.8d流量工況下,隨著下環(huán)間隙的增大,尾水管進(jìn)口中心處的負(fù)壓區(qū)范圍逐漸擴(kuò)大,水流流態(tài)呈小幅度惡化的趨勢(shì)。小流量工況下,由于尾水管進(jìn)口的水流周向湍流強(qiáng)度較強(qiáng),表現(xiàn)為明顯的旋轉(zhuǎn)湍流形式,尾水管近壁區(qū)域具有較強(qiáng)的湍流特性[29-30],且尾水管直錐段中心軸處存在不穩(wěn)定空腔渦帶。此時(shí)具有正向環(huán)量的間隙出流與尾水管主流匯合時(shí)加劇了水流的流動(dòng)分離,增加了尾水管主流的不穩(wěn)定性,間隙增大,間隙出流對(duì)尾水管主流的干擾作用更強(qiáng)。大流量1.2d工況下,隨著下環(huán)間隙的增大,尾水管直錐段與彎肘段的回流減少,流線更為順暢,尾水管中心區(qū)域的空腔渦帶強(qiáng)度減弱。這是由于大流量工況下,轉(zhuǎn)輪出口水流具有與轉(zhuǎn)輪旋轉(zhuǎn)方向相反的分量,具有正向環(huán)量的間隙出流與具有反向圓周速度的尾水管主流匯合后,減弱了尾水管內(nèi)水流的旋轉(zhuǎn)湍流強(qiáng)度,減少流動(dòng)分離損失,從而改善了尾水管的壓力恢復(fù),渦帶強(qiáng)度降低。d流量工況下,下環(huán)間隙為0.6 mm時(shí),尾水管直錐段與彎肘段處存在明顯回流,其他4組間隙方案下,尾水管內(nèi)部水流基本順暢,處于理想狀態(tài)。
圖10 尾水管壓力場(chǎng)及流線形態(tài)
本文以混流式水輪機(jī)為研究對(duì)象,探究了機(jī)組在0.6d、0.8d、d、1.2d共4種流量工況運(yùn)行時(shí),下環(huán)間隙在0.4~1.3 mm范圍內(nèi),下環(huán)間隙對(duì)混流式水輪機(jī)能量特性與內(nèi)部流態(tài)的影響,具體結(jié)論如下:
1)當(dāng)機(jī)組在非設(shè)計(jì)流量工況運(yùn)行時(shí),下環(huán)間隙由0.4增大到1.3 mm,水輪機(jī)效率呈現(xiàn)逐漸下降的趨勢(shì)。設(shè)計(jì)流量工況下,下環(huán)間隙增大,水輪機(jī)效率呈先下降,后上升,再下降的趨勢(shì)。
2)當(dāng)下環(huán)間隙在0.4~1.3 mm范圍內(nèi),4種流量工況下的間隙泄漏量隨下環(huán)間隙增大而增大,間隙內(nèi)水流平均流速、漩渦強(qiáng)度均隨著下環(huán)間隙的增大而增大,間隙內(nèi)水流流態(tài)變差。
3)0.6d與0.8d流量工況下,間隙對(duì)轉(zhuǎn)輪葉片吸力面流場(chǎng)影響較?。辉O(shè)計(jì)工況與1.2d流量工況下,下環(huán)間隙增大,轉(zhuǎn)輪葉片吸力面靠近下環(huán)出口處的負(fù)壓區(qū)會(huì)減小,轉(zhuǎn)輪域流場(chǎng)有所改善。
4)0.8d流量工況下,下環(huán)間隙增大,尾水管進(jìn)口中心處空腔渦帶體積增大,內(nèi)部水流流態(tài)呈惡化趨勢(shì)。設(shè)計(jì)流量工況下,下環(huán)間隙對(duì)尾水管內(nèi)流場(chǎng)影響不明顯。1.2d流量工況下,隨著下環(huán)間隙的增大,尾水管直錐段與彎肘段的流場(chǎng)有明顯改善,尾水管進(jìn)口中心的空腔渦帶強(qiáng)度減弱。
在混流式水輪機(jī)優(yōu)化設(shè)計(jì)中,下環(huán)間隙的設(shè)計(jì)應(yīng)當(dāng)結(jié)合水輪機(jī)實(shí)際運(yùn)行工況。對(duì)于偏工況主要集中在小流量工況運(yùn)行的機(jī)組,在保證制造與安裝工藝滿足要求,且轉(zhuǎn)輪與固定部分不會(huì)發(fā)生撞擊的條件下,下環(huán)間隙可取最小值。
[1]Nishimura H, Sugiyama K, Tsujimoto Y, et al. Theoretical estimates of rotordynamic fluid forces on a front shroud of Francis turbine caused by leakage flow[J] International Journal of Fluid Machinery and Systems, 2018, 11(3): 344-356.
[2]Liu Yabin, Tan Lei, Wang Binbin. A review of tip clearance in propeller pump and turbine[J/OL]. Energies, 2018, 11(9):2202.
[3]馬薇,梁武科,趙道利,等. 混流式水輪機(jī)轉(zhuǎn)輪密封間隙值對(duì)機(jī)組穩(wěn)定性的影響[J]. 水力發(fā)電學(xué)報(bào),2010,29(4):219-223. Ma Wei, Liang Wuke, Zhao Daoli, et al. The influence of sealing clearance value of Francis runner on the unit stability[J]. Journal of Hydroelectric Engineering, 2010, 29(4): 219-223. (in Chinese with English abstract)
[4]戴勇峰,王海,張克危,等. 混流可逆式轉(zhuǎn)輪密封裝置的泄漏量及其對(duì)機(jī)組運(yùn)行的影響[J]. 水力發(fā)電學(xué)報(bào),2005,24(2):103-107. Dai Yongfeng, Wang Hai, Zhang Kewei, et al. Analysis of the leakage rate francis of the francis pump-turbine runner's sealing device and its effect on operation of the set[J]. Journal of Hydroelectric Engineering, 2005, 24(2): 103-107. (in Chinese with English abstract)
[5]李進(jìn)博. 含下環(huán)密封間隙的混流式水輪機(jī)穩(wěn)定性研究[D]. 西安:西安理工大學(xué),2009. Li Jinbo, Stability Research of Francis Turbine with Sealing Clearance of the Ring[D]. Xi'an: Xi'an University of Technology, 2009. (in Chinese with English abstract)
[6]Celic D, Ondracka H. The influence of disc friction losses and labyrinth losses on efficiency of high head Francis turbine[C]// Journal of Physics Conference Series, Trondheim, Norway, 2014.
[7]Koirala Ravi, Zhu Baoshan, Neopane Hari Prasad. Effect of guide vane clearance gap on Francis turbine performance[J/OL]. Energies, 2016, 9(4):275.
[8]董云山,楊愛(ài)玲,陳二云,等. 口環(huán)間隙泄漏射流對(duì)離心通風(fēng)機(jī)流場(chǎng)品質(zhì)的影響[J]. 動(dòng)力工程學(xué)報(bào),2016,36(4): 286-263. Dong Yunshan, Yang Ailing, Chen Eryun, et al. Influence of clearance leakage jet flow in wear-rings on flow characteristics of a centrifugal fan[J]. Journal of Chinese Society of Power Engineering, 2016. 36(4): 286-263.
[9]韓偉,陳雨,劉宜,等. 水輪機(jī)活動(dòng)導(dǎo)葉端面間隙磨蝕形態(tài)演變預(yù)測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(4):100-107. Han Wei, Chen Yu, Liu Yi, et al. Prediction of erosional shape evolution in end-surface clearance of turbine guide vane[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(4): 100-107. (in Chinese with English abstract)
[10]高杰,鄭群,劉云寧,等. 渦輪葉片葉頂間隙變化減敏研究[J].航空動(dòng)力學(xué)報(bào),2015, 30(11): 2638-2646. Gao Jie, Zheng Qun, Liu Yunning. et al. Investigations on desensitization of blade tip clearance variation in turbine blades[J]. Journal of Aerospace Power, 2015, 30(11): 2638-2646.
[11]Liu Yabin, Tan Lei. Tip clearance on pressure fluctuation intensity and vortex characteristic of a mixed flow pump as turbine at pump mode[J]. Renewable Energy, 2018, 129: 606-615.
[12]Kim T S, Cha K S. Comparative analysis of the influence of labyrinth seal configuration on leakage behavior[J]. Journal of Mechanical Science and Technology, 2009, 23(10): 2830-2838.
[13]Kim C, Kim S, Choi C H, et al. Effects of inducer tip clearance on the performance and flow characteristics of a pump in a turbopump[J]. Journal of Power and Energy, 2017: 398-414.
[14]馮建軍,羅興锜,吳廣寬,等. 間隙流動(dòng)對(duì)混流式水輪機(jī)效率預(yù)測(cè)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(5):53-58. Feng Jianjun, Luo Xingqi, Wu Guangkuan, et al. Influence of clearance flow on efficiency prediction of Francis turbines[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(5): 53-58. (in Chinese with English abstract)
[15]Feng Jianjun, Luo Xingqi, Zhu Guojun, et al Investigation on disk friction loss and leakage effect on performance in a Francis model turbine[J]. Advances in Mechanical Engineering, 2017, 9(8): 526-528
[16]Zhou Daqing, Chen Huixiang, Zhang Jie, et al. Numerical study on flow characteristics in a Francis turbine during load rejection[J/OL] Energies, 2019, 12(4): 716.
[17]王文全,尹銳,閆妍. 不同雷諾數(shù)下混流式水輪機(jī)密封間隙通道內(nèi)流動(dòng)特征分析[J]. 排灌機(jī)械工程學(xué)報(bào),2014,32(7):611-616. Wang Wenquan, Yin Rui, Yan Yan. Analysis of flow in side chamber and path of comb-labyrinth seal in Francis turbine at different Reynolds numbers[J]. Journal of Drainage and Irrigation Machinery Engineering (JDIME), 2014, 32(7): 611-616. (in Chinese with English abstract)
[18]周大慶,陳洋. 含泄水孔混流式水輪機(jī)間隙流動(dòng)數(shù)值模擬[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(4):53-58. Zhou Daqing, Chen Yang. Numerical simulation of clearance flow in Francis turbine with weep holes[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(4): 53-58. (in Chinese with English abstract)
[19]李琪飛,張毅鵬,敏政,等. 混流式水泵水輪機(jī)密封間隙流動(dòng)分析[J]. 蘭州理工大學(xué)學(xué)報(bào),2016,42(1):57-61. Li Qifei, Zhang Yipeng, Min Zheng, et al. Analysis of sealing clearance flow of mixed-flow pump-turbine[J]. Journal of Lanzhou University of Technology, 2016, 42(1): 57-61. (in Chinese with English abstract)
[20]劉大愷. 水輪機(jī)(第三版)[M]. 北京:中國(guó)水利水電出版社,2008.
[21]Kang Can, Mao Ning, Zhang Wenbin, et al. The influence of blade configuration on cavitation performance of a condensate pump[J]. Annals of Nuclear Energy, 2017, 110: 789-797.
[22]陶文銓. 數(shù)值傳熱學(xué)(第二版)[M]. 西安:西安交通大學(xué)出版社,2001.
[23]Marsh P, Ranmuthugala D, Penesis I, et al. The influence of turbulence model and two and three-dimensional domain selection on the simulated performance characteristics of vertical axis tidal turbines[J]. Renewable Energy, 2017, 105: 106-116.
[24]Campobasso M S, Yan M, Bonfiglioli A, et al. Low-speed preconditioning for strongly coupled integration of Reynolds- averaged Navier–Stokes equations and two-equation turbulence models[J]. Aerospace Science and Technology, 2018, 77(6): 286-298.
[25]Silva P A S F, De Oliveira T F, Brasil A C P, et al. Numerical study of wake characteristics in a horizontal-axis hydrokinetic turbine[J]. Anais da Academia Brasileira de Ciencias, 2016, 88(4): 2441-2456.
[26]Chitrakar S, Dahlhaug O G, Neopane H P. Numerical investigation of the effect of leakage flow through erosion-induced clearance gaps of guide vanes on the performance of Francis turbines[J], Engineering Applications of Computational Fluid Mechanics, 2018, 12(1): 662-678
[27]張金鳳,黃茜,袁壽其,等. 基于PIV的低比轉(zhuǎn)速離心泵網(wǎng)格無(wú)關(guān)性[J]. 排灌機(jī)械工程學(xué)報(bào),2016,34(7):567-572,583. Zhang Jinfeng, Huang Xi, Yuan Shouqi, et al. Grid-independence in low specific speed centrifugal pump based on PIV[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(7): 567-572, 583. (in Chinese with English abstract)
[28]敏政,梁昌平,董志強(qiáng),等. 混流式水泵水輪機(jī)泄漏量的計(jì)算及分析[J]. 排灌機(jī)械工程學(xué)報(bào),2014,32(8):41-46. Min Zheng, Liang Changping, Dong Zhiqiang, et al. Calculation and analysis of leakage of Francis pump-turbine[J]. Journal of Drainage and Irrigation Machinery Engineering, 2014, 32(8): 41-46. (in Chinese with English abstract)
[29]郭濤,張立翔. 混流式水輪機(jī)尾水管近壁湍流特性和流場(chǎng)結(jié)構(gòu)研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(9):117-123 Guo Tao, Zhang Lixiang. Numerical study of swirling flow fields in Francis turbin eunder small opening condition[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(9): 117-123. (in Chinese with English abstract)
[30]鐘林濤,賴喜德,廖功磊,等. 混流式水輪機(jī)出口旋流與尾水管渦帶關(guān)系分析濤[J]. 水力發(fā)電學(xué)報(bào),2018,37(9):42-48. Zhong Lintao, Lai Xide, Liao Gonglei, et al. Analysis on the relationship between swirling flow at outlet of a Francis turbine runner and vortex rope inside draft tube[J]. Journal of Hydroelectric Engineering, 2018, 37(9): 42-48. (in Chinese with English abstract)
Influence of seal clearance of runner on internal fluid field in Francis turbine
Wu Zijuan1, Liang Wuke1※, Dong Wei2, Gao Chenhui1, Chen Diyi2
(1.-,,710048,; 2.,,712100,)
The performance and stability of turbine are easily affected by the complex turbulence such as clearance vortex and leakage flow. For the purpose of analyzing the influence of seal clearance on the energy features and interior flow characteristics of Francis turbine, with referencing N-S equation and SST turbulence model, the three-dimensional steady flow in the full flow passage of the Francis turbine model under five schemes of clearance were calculated. Four flow rates were chosen as: 0.6d, 0.8d,dand 1.2d. Five schemes of clearance size were selected of 0.4, 0.6, 0.8, 1.0 and 1.3 mm. By comparing the effects of different clearance schemes on the efficiency and volume loss of Francis turbine, the relationship between clearance and turbine performance was analyzed based on the characteristics of internal fluid field, and the calculation results showed that by increasing the size of clearance, the turbine efficiency could be reduced, and the leakage of the turbine indicated an upward trend. When the turbine operated at a small flow rate of 0.6d, the clearance appeared the most obvious influence on the energy features of the turbine. With the increase of clearance, the leakage ratio increased from 0.18% to 0.54%, and the efficiency decreased by 4.1 percentage points. At the flow rate of 1.2d, the clearance presented the least influence on the energy features of the turbine. The leakage ratio increased from 0.07% to 0.27%, and the efficiency decreased by 1.38 percentage points when the clearance was increased. If the turbine was operated at small flow rates of 0.6dand 0.8d, the clearance increased, and the internal fluid fields inside both the clearance and the draft tube deteriorated slightly. The average velocity in the clearance increased gradually, and the eddy current intensity in the inlet and outlet pressure chambers of the clearance increased little by little, the volume of vortex rope in the center of draft tube inlet was increased simultaneously. If the unit was operated at a large flow rate of 1.2d, with the clearance increased from 0.4 mm to 1.3 mm, the characteristics of fluid field inside clearance and the pressure distribution on the suction surface of the runner blades, also the fluid field inside the draft tube were all improved. The area of negative pressure zone on suction surface of runner blades decreased, and the volume of the cavity vortex rope at the inlet center of the draft tube decreased, the streamline inside the draft tube also tended to be smooth. This study could provide an effective reference for the design of seal clearance of Francis turbine.
Francis turbine; models; seal clearance; performance; volume loss
吳子娟,梁武科,董 瑋,高晨輝,陳帝伊. 轉(zhuǎn)輪下環(huán)間隙對(duì)混流式水輪機(jī)內(nèi)部流動(dòng)特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(2):23-29. doi:10.11975/j.issn.1002-6819.2020.02.004 http://www.tcsae.org
Wu Zijuan, Liang Wuke, Dong Wei, Gao Chenhui, Chen Diyi. Influence of seal clearance of runner on internal fluid field in Francis turbine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(2): 23-29. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.02.004 http://www.tcsae.org
2019-08-16
2019-12-30
國(guó)家優(yōu)秀青年科學(xué)基金項(xiàng)目(51622906);陜西省水利科技項(xiàng)目(2019slkj-10);中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助(Z1090219041)
吳子娟,博士生,主要從事水力機(jī)械內(nèi)部流場(chǎng)分析與優(yōu)化設(shè)計(jì)研究。Email:wuzijuan.xa@qq.com
梁武科,博士,教授,主要從事水輪機(jī)設(shè)計(jì)、運(yùn)行、改造及故障診斷研究。Email:liangwuke@vip.163.com
10.11975/j.issn.1002-6819.2020.02.004
TK733+.1
A
1002-6819(2020)-02-0023-07