王 磊胡文平王秋莎
(1.國(guó)網(wǎng)河北省電力有限公司電力科學(xué)研究院,河北 石家莊 050021;2.中國(guó)電建集團(tuán)河北省電力勘測(cè)設(shè)計(jì)研究院有限公司,河北 石家莊 050031)
經(jīng)濟(jì)快速發(fā)展促使電力系統(tǒng)負(fù)荷結(jié)構(gòu)日趨復(fù)雜化、多樣化,眾多新型電力負(fù)荷的投入(如光伏、風(fēng)電)導(dǎo)致電網(wǎng)電能質(zhì)量日益惡化,而新設(shè)備對(duì)電能質(zhì)量又較為敏感,因此對(duì)電能質(zhì)量的要求進(jìn)一步加強(qiáng)。電能質(zhì)量是用來(lái)描述客戶從公用電網(wǎng)獲取電能品質(zhì)的高低、好壞。合理、準(zhǔn)確、客觀的電能質(zhì)量綜合評(píng)估,不僅為構(gòu)建良好的電能質(zhì)量市場(chǎng)[1]奠定基礎(chǔ),又為電力企業(yè)提高效率、降低成本提供技術(shù)保障。
目前,電能質(zhì)量綜合評(píng)估方法有很多[2-8]。文獻(xiàn)[2]提出了基于模糊原理的綜合指標(biāo)和電能質(zhì)量評(píng)估的模糊模型,在指定隸屬度樣本集合的條件下實(shí)現(xiàn)電能質(zhì)量的綜合評(píng)估。文獻(xiàn)[3]提出了一種模糊綜合評(píng)判的二級(jí)評(píng)判法,事先給定主觀權(quán)重,然后進(jìn)行電能質(zhì)量綜合評(píng)估。文獻(xiàn)[4]采用組合賦權(quán)的評(píng)估方法有效克服了單一賦權(quán)法的缺點(diǎn)。文獻(xiàn)[5]運(yùn)用加權(quán)主成分分析進(jìn)行電能質(zhì)量評(píng)估。文獻(xiàn)[6]運(yùn)用遺傳算法進(jìn)行電能質(zhì)量評(píng)估,2種方法使電能質(zhì)量評(píng)估結(jié)果更加準(zhǔn)確、具體。文獻(xiàn)[7]采用模糊層次分析法、模糊數(shù)學(xué)綜合評(píng)估供電服務(wù)質(zhì)量,克服了主觀判斷的模糊不確定性難題。文獻(xiàn)[8]應(yīng)用模糊多目標(biāo)決策理論的極大極大決策方法,相比其他方法,該評(píng)估方法更簡(jiǎn)單易行。
逼近理想解的技術(shù)(Technique for Order Preference by Similarity to deal Solution,TOP SIS),是一種非常有效的多指標(biāo)決策模型,被廣泛用于供應(yīng)商選擇、評(píng)估土地資源等領(lǐng)域,并取得了良好的效果。TOPSIS法在評(píng)估過(guò)程中涉及計(jì)算指標(biāo)權(quán)重,使用層次分析法(analytic hierarchy process,AHP)可以求解多指標(biāo)綜合權(quán)重,該方法由專家分別比較各個(gè)指標(biāo)的重要程度,從而得到判斷矩陣,使用方便,原理簡(jiǎn)單,被眾多技術(shù)人員使用[9-11]。但該方法存在弊端,當(dāng)參與比較的指標(biāo)數(shù)量較多時(shí),構(gòu)造出的判斷矩陣經(jīng)常難以符合一致性要求,而且由專家比較各指標(biāo)的重要程度會(huì)引起評(píng)估結(jié)果帶有主觀色彩,限制了該方法的實(shí)用性和客觀性??紤]層次分析法的此種缺陷,提出了改進(jìn)層次分析法(IAHP),利用電能質(zhì)量監(jiān)測(cè)值得到初始判斷矩陣推薦值,由IAHP 得到電能質(zhì)量各指標(biāo)權(quán)重[12-13],進(jìn)而由TOPSIS法綜合評(píng)估項(xiàng)目電能質(zhì)量。
設(shè)指標(biāo)體系中包含m項(xiàng)指標(biāo),分別為x1,x2,…,x m,監(jiān)測(cè)點(diǎn)樣本容量個(gè)數(shù)為n,x ij為第j個(gè)監(jiān)測(cè)點(diǎn)的第i個(gè)指標(biāo)值。由此可得原始數(shù)據(jù)矩陣
按照式(2)計(jì)算第j個(gè)監(jiān)測(cè)點(diǎn)的第i個(gè)指標(biāo)值x ij的嚴(yán)重度系數(shù)
式中:x ijlim為第i個(gè)電能質(zhì)量指標(biāo)合格等級(jí)所對(duì)應(yīng)的數(shù)值[14]。
平均n個(gè)監(jiān)測(cè)點(diǎn)的第i個(gè)指標(biāo)的嚴(yán)重度系數(shù)
按照式(4)計(jì)算第i個(gè)指標(biāo)的客觀權(quán)重系數(shù)
按照式(5)計(jì)算兩相鄰指標(biāo)客觀權(quán)重系數(shù)比值
由式(5)計(jì)算結(jié)果并結(jié)合表1給出的對(duì)應(yīng)關(guān)系,可得b i,i+1(1≤i≤m-1),由其形成初始判斷矩陣B。
層次分析法中檢驗(yàn)一致性的根本是要求判斷矩陣中元素的取值能夠滿足乘法傳遞性,然而這與其對(duì)元素取值的限制及其定義是矛盾的,因此采用加法傳遞性逼近乘法傳遞性[15]。
假設(shè)初始判斷矩陣B中的元素每增加1,重要性程度增加Δ,作為基本重要性單元。通過(guò)初始判斷矩陣B推導(dǎo)判斷矩陣A的步驟如下:
a.當(dāng)b i,i+1(i=1,2,…,m-1)>1時(shí),a i,i+1=(b i,i+1-1)*Δ,說(shuō)明b i比b i+1重要程度多a i,i+1。
b.當(dāng)b i,i+1(i=1,2,…,m-1)=1時(shí),a i,i+1=0,說(shuō)明b i與b i+1同等重要。
c.當(dāng)b i,i+1(i=1,2,…,m-1)<1時(shí),a i,i+1=-(1/b i,i+1-1)*Δ,說(shuō)明b i比b i+1重要程度多a i,i+1。
d.判斷矩陣A的上半三角元素中除主對(duì)角線外其余元素的行坐標(biāo)都小于其列坐標(biāo),用a ij(i 表1 a i,i+1取值原則 e.根據(jù)判斷矩陣A為正互反陣這一性質(zhì),求出A的下半三角全部元素。 f.當(dāng)通過(guò)上述法則求出的判斷矩陣A中元素出現(xiàn)大于9或小于1/9時(shí),按照層次分析法對(duì)判斷矩陣元素的要求,分別強(qiáng)行賦值令其為9或1/9,可以得到最終判斷矩陣A。 得到判斷矩陣A后,再按照層次分析法的計(jì)算公式求電能質(zhì)量指標(biāo)權(quán)重,步驟如下。 a.按列對(duì)判斷矩陣A=(a ij)m×m做歸一化處理,可得矩陣Q=(q ij)m×m,其中, b.按行將矩陣Q相加得向量c =(c1,c2,c3,…,c m)T,其中, c.將c=(c1,c2,c3,…,c m)T歸一化,可得最大特征值對(duì)應(yīng)的特征向量,即權(quán)重系數(shù) d.計(jì)算判斷矩陣的最大特征值 e.計(jì)算衡量判斷矩陣A不一致程度的一致性指標(biāo) f.用平均隨機(jī)一致性指標(biāo)R.I.(R.I.的取值與判斷矩陣階數(shù)的對(duì)應(yīng)關(guān)系如表2所示)修正C.I.,可得隨機(jī)一致性比率 表2 平均隨機(jī)一致性指標(biāo) g.通過(guò)檢驗(yàn)C.R.是否小于等于0.10進(jìn)行一致性檢驗(yàn),所得數(shù)值越小,說(shuō)明一致性程度越好,如大于0.10則無(wú)法通過(guò)一致性檢驗(yàn)。 TOPSIS法開(kāi)展電能質(zhì)量綜合評(píng)估步驟如下。 a.建立樣本指標(biāo)矩陣。 指標(biāo)體系中包含m項(xiàng)指標(biāo),分別為x1,x2,…,x m,監(jiān)測(cè)點(diǎn)樣本容量為n,x ij為第j個(gè)監(jiān)測(cè)點(diǎn)的第i個(gè)指標(biāo)值,連同m項(xiàng)指標(biāo)的p個(gè)等級(jí)限值一起構(gòu)成樣本指標(biāo)初始矩陣。因?yàn)殡娔苜|(zhì)量指標(biāo)中含有效益性指標(biāo)和成本性指標(biāo),故采取求倒數(shù)方法將成本性指標(biāo)變成效益性指標(biāo)。則初始矩陣變換后得到矩陣Y=(y ij)(n+p)×m。 b.建立加權(quán)化標(biāo)準(zhǔn)決策矩陣。 因各項(xiàng)指標(biāo)量綱不同,且數(shù)量級(jí)大小相差也比較懸殊,每組比較數(shù)據(jù)存在不可比性,所以對(duì)上述矩陣進(jìn)行標(biāo)準(zhǔn)化處理,可得矩陣E=(e ij)(n+p)×m,其中 構(gòu)建規(guī)范化加權(quán)決策矩陣Z=(z ij)(n+p)×m,其中 c.確定規(guī)范化決策矩陣的理想解。 d.計(jì)算各評(píng)價(jià)點(diǎn)與理想解、虛擬最劣解距離。 各評(píng)價(jià)點(diǎn)與理想解的相對(duì)接近程度為 根據(jù)H+i的大小對(duì)各監(jiān)測(cè)點(diǎn)和等級(jí)限值樣本點(diǎn)進(jìn)行排序,再根據(jù)其所處位置對(duì)各監(jiān)測(cè)點(diǎn)進(jìn)行分級(jí),從而確定各監(jiān)測(cè)點(diǎn)的電能質(zhì)量等級(jí)。 采用文獻(xiàn)[14]中的算例開(kāi)展仿真分析,本地域5個(gè)監(jiān)測(cè)點(diǎn)的電能質(zhì)量實(shí)測(cè)數(shù)據(jù)如表3所示。 表3 監(jiān)測(cè)點(diǎn)的實(shí)測(cè)數(shù)據(jù) 依據(jù)我國(guó)公認(rèn)要求,將電能質(zhì)量各指標(biāo)劃分為5個(gè)等級(jí),從Ⅰ-Ⅴ分別對(duì)應(yīng)優(yōu)質(zhì)、良好、中等、合格與不合格,指標(biāo)等級(jí)界限值如表4所示。 表4 指標(biāo)等級(jí)界限值 電能質(zhì)量各項(xiàng)指標(biāo)中,除可靠性、服務(wù)性指標(biāo)外,其他指標(biāo)均是越小越好,為了保證數(shù)據(jù)的一致性,考慮可靠性和服務(wù)性指標(biāo)滿分為1的原則,將可靠性和服務(wù)性指標(biāo)作如下處理:1-可靠性、1-服務(wù)性。通過(guò)計(jì)算可得初始判斷矩陣 可得判斷矩陣 可得電能質(zhì)量指標(biāo)權(quán)重 運(yùn)用TOPSIS法綜合評(píng)估電能質(zhì)量,可得樣本指標(biāo)矩陣 構(gòu)建規(guī)范化加權(quán)決策矩陣 確定規(guī)范化決策矩陣的理想解F+、F- 各監(jiān)測(cè)點(diǎn)到理想解距離D+、到負(fù)理想解距離D-、與理想解的相對(duì)接近程度H+為 電能質(zhì)量綜合評(píng)估結(jié)果如表5所示,表5中監(jiān)測(cè)點(diǎn)6—9 評(píng)估結(jié)果表示等級(jí)Ⅰ—Ⅳ的評(píng)估結(jié)果,因此可得監(jiān)測(cè)點(diǎn)1—5 電能質(zhì)量綜合評(píng)估結(jié)果,其等級(jí)分別為2級(jí)、4級(jí)、3級(jí)、4級(jí)、4級(jí)。評(píng)估結(jié)果與文獻(xiàn)[4],[6],[16],[17]評(píng)估結(jié)果對(duì)比,如表6所示。 表5 綜合評(píng)估結(jié)果 表6 評(píng)估結(jié)果比較 除監(jiān)測(cè)點(diǎn)5外,評(píng)估結(jié)果與其他文獻(xiàn)評(píng)估結(jié)果基本一致,其他文獻(xiàn)計(jì)算權(quán)重方法均包含主觀因素,文中評(píng)估方法無(wú)論是計(jì)算權(quán)重還是綜合評(píng)估均以監(jiān)測(cè)數(shù)據(jù)為基礎(chǔ),結(jié)果具有客觀性。此外,該方法除了可以評(píng)估監(jiān)測(cè)點(diǎn)電能質(zhì)量等級(jí)外,還可以比較監(jiān)測(cè)點(diǎn)電能質(zhì)量好壞,即使同一等級(jí)的監(jiān)測(cè)點(diǎn),通過(guò)表5也可以確定其優(yōu)劣。 以上提出的電能質(zhì)量綜合評(píng)估模型通過(guò)電能質(zhì)量監(jiān)測(cè)值得到初始判斷矩陣推薦值,再由IAHP計(jì)算各指標(biāo)權(quán)重,應(yīng)用TOPSIS 法進(jìn)行電能質(zhì)量綜合評(píng)估,該模型以監(jiān)測(cè)數(shù)據(jù)為基礎(chǔ)能夠保證評(píng)估結(jié)果的客觀性,盡可能的減少了人為主觀因素的影響,提供了一種電能質(zhì)量綜合評(píng)估的新方法。同時(shí),該方法既可以得出各個(gè)監(jiān)測(cè)點(diǎn)電能質(zhì)量等級(jí),又可以得出各個(gè)監(jiān)測(cè)點(diǎn)電能質(zhì)量?jī)?yōu)劣排序,因此提出的方法具有實(shí)用價(jià)值。1.3 判斷矩陣求權(quán)重
2 TOPSIS法數(shù)學(xué)模型
3 算例分析
4 結(jié)論