亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Review of inflammatory bowel disease and COVID-19

        2020-10-23 07:23:14KeithSultanAnjaliMoneLauraDurbinSamreenKhuwajaArunSwaminath
        World Journal of Gastroenterology 2020年37期

        Keith Sultan, Anjali Mone, Laura Durbin, Samreen Khuwaja, Arun Swaminath

        Abstract The first cases of a novel corona virus infection were reported in Wuhan China in December of 2019, followed by the declaration of an international pandemic by the World Health Organization in March 2020. Early reports of the virus, now known as severe acute respiratory syndrome coronavirus 2, and its clinical disease coronavirus disease 2019 (COVID-19), has shown higher rates of morbidity and mortality in the elderly and those with pre-existing medical conditions. Of particular concern is the safety of those with compromised immune systems. Inflammatory Bowel disease (IBD) is itself caused by a disordered immune response, with the most effective medical therapies being immune suppressing or modifying. As such, the risk of COVID-19, virus related outcomes, and appropriate management of IBD patients during the global pandemic is of immediate concern to gastroenterologists worldwide. There has been a rapid accumulation of clinical data and expert opinion on the topic. This review will highlight the latest source information on clinical observation/outcomes of the IBD population and provide a concise summary of the most up to date perspectives on IBD management in the age of COVID-19.

        Key Words: Inflammatory bowel disease; COVID-19; SARS-CoV-2; Corona virus; Pandemic

        INTRODUCTION

        The first cases of a novel coronavirus infection were reported in Wuhan, China in December of 2019[1]. Since that time the virus has spread to all continents except Antarctica, with the World Health Organization declaring a global pandemic on March 11, 2020. As with other, similar coronaviruses, such as those associated with severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), the primary manifestations of active infection are respiratory. Patients typically develop fever, cough, and shortness of breath, with a significant minority progressing to severe lung injury requiring the use of supplemental oxygen, and the need for mechanical ventilation with a high associated mortality rate[2-4]. Since its identification, the virus has been assigned the formal nomenclature of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with the associated clinical illness designated as 2019 novel coronavirus (2019-nCoV) or coronavirus disease 2019 (COVID-19)[5].

        As was observed during the initial outbreak in China, and then even more dramatically in Italy, those at highest risk were noted to be the elderly and those with preexisting medical conditions, particularly cardiovascular, respiratory, endocrine, and oncologic[6,7]. As with most communicable infectious diseases, particular concern has also been raised for the safety of those with coexisting immune mediated disease, and/or those on immune compromising therapies. For the gastroenterology community (providers, patients and caregivers) this has obviously sparked particular concern for those individuals with inflammatory bowel disease (IBD). IBD is regarded as a disease of immune dysregulation, and with the exception of some limited use of diet, antibiotic and topical anti-inflammatory therapies, the vast majority of effective IBD medications for moderate to severe disease are immune suppressing/ modifying[8-10]. While IBD itself is not regarded to increase non-gastrointestinal (GI) infectious disease risk[11], there is ample evidence demonstrating an increased risk of non-GI, opportunistic infections associated with IBD therapies[12-16]. Given the need for clinical evidence and expert guidance, the past weeks have seen the rapid growth of information specifically geared towards answering the core questions faced by IBD patients and providers. This work falls into two main categories, each of which we will briefly review: (1) Clinical observation of the IBD patient experience during the COVID-19 pandemic; and (2) Expert opinion on the management of IBD in an environment of COVID-19.

        IBD AND COVID-19 CLINICAL EXPERIENCE

        Though there is currently no evidence of SARS-CoV-2 exacerbating underlying IBD, it is now well recognized that many patients with COVID-19 will develop GI complaints. The SARS-CoV-2 invades human cells by interactions with angiotensin-converting enzyme 2 (ACE2). The ACE2 receptor is found in different tissues throughout the body, including those of enterocytes[17-19]. Studies have shown the presence of SARSCoV-2 in stool with persistence of viral shedding in the stool even after the resolution of respiratory complaints[20,21]. Notably, recent basic scientific evidence has observed an up-regulation of ACE2 in the inflamed mucosa of IBD patients, suggesting how IBD patients might be at increased risk for COVID-19[22,23]. However, it is also worth noting that a soluble form of ACE2 circulating in the blood is also up-regulated in IBD, which may provide an alternate binding site for SARS-CoV-2 that could limit viral binding to cell surfaces[24]. Further studies on viral load and viral dynamics are required to clarify the clinical significance of these findings.

        Cheunget al[25]in their systematic review and meta-analysis of 69 studies (53 from China) including 4243 COVID-19 patients, demonstrated a pooled prevalence of all gastrointestinal symptoms of 16.1% [95% Confidence Interval (CI): 10.9-23.0] from China, and 33.4% (95%CI: 15.2-58.3) in studies from all other countries. The most common complaint was anorexia 26.8% (95%CI: 16.2-40.8), followed by nausea/vomiting 10.2% (95%CI: 6.6-15.3), diarrhea 12.5% (95%CI: 9.6-16.0), and abdominal pain/discomfort 9.2% (95%CI: 5.7-14.5). It is unknown however how many of these patients had a prior IBD diagnosis or other GI condition. Goyalet al[26]in a more recent analysis of 393 consecutive patients admitted to 2 New York City hospitals also showed GI complaints were prominent, including diarrhea (23.7%) and nausea with vomiting (19.1%).

        Despite these high rates of GI complaints, Maoet al[27]in their report of COVID-19’s impact on those with preexisting GI conditions, noted that there had been no reports of IBD patients infected with SARS-CoV-2 in the IBD Elite Union, a consortium of the seven largest Chinese IBD referral centers, caring for over 20000 patients. The authors also reported that there had been no cases of IBD/SARS-CoV-2 infected patients in the three largest tertiary IBD centers in Wuhan (Tongji Hospital, Union Hospital, and Zhongnan Hospital) at the time their manuscript was prepared, March 8, 2020. While these results are encouraging, the methodology of case identification/reporting, and thus the true rate of IBD/SARS-CoV-2, remains unclear. Also, as rates of IBD and utilization of IBD medication may differ in China from those in other countries, these results may not be applicable to other populations.

        Low rates of IBD/SARS-CoV-2 have also been reported in Lombardy, Italy, the next major COVID-19 hot spot. Norsaet al[28]acknowledging that the pandemic is still ongoing, reported on their region’s experience (including their IBD center) up to the time of publication. At that time they observed the highest rates reported in the world: 6471 cases of COVID-19 out of a population of 1.1 million. Of the 522 IBD patients followed at their center (11% pediatric, 22% on immunomodulators (IMM), and 16% on biologics) there had been no cases of COVID-19 reported. Based on Wuhan population modeling, the authors had anticipated 21 IBD infected patients by that time point. The authors do acknowledge that their results are not definitive, as only patients with severe symptoms and/or those receiving a nasopharyngeal swab were counted. The case reporting methodology, which was at least partially dependent upon patient self-reporting, again may have been biased towards an underestimate of true cases.

        More recently, case series and observational cohort data has emerged reporting on identified IBD/COVID-19 patients. Rodriguez-Lagoet al[29]reported on 40 cases of IBD (21 hospitalized) with confirmed positive tests for SARS-CoV-2 from 5 sites in the Basque Country (Spain), median age 59 years, 60% male, 32% Crohn’s disease (CD), with 28% on immune therapy, 18% biologic, and 10% systemic corticosteroids. Two deaths (5%) were reported, including an 86 years old male, on mesalamine, with prostate adenocarcinoma, and a 77 years old male on mesalamine and methotrexate. Taxoneraet al[30]reporting from the Madrid region of Spain, observed 12 IBD cases with laboratory confirmed COVID-19 from 1912 IBD patients followed in their database. Their patients’ mean age was 52 years, with 75% female, and 58.3% CD. Seven patients (58.3%) were on immune and/or biologic therapy. There was no reporting of rates of corticosteroid use. Eight patients required hospitalization, 1 required mechanical ventilation and 2 died; a 76 years old male with UC and a 72 years old female with UC, neither of whom was receiving immune or biologic therapy. The authors additionally compared their findings in the IBD cohort to the observed rates and mortality of COVID-19 in the general population of Madrid. They found a significantly lower risk of COVID-19 for IBD [Odds ratio (OR) 0.74, 95%CI: 0.70-0.77;P< 001], with no significant difference in the case fatality rate for COVID-19 for IBD patients of 16.7%vs13.2% for the general population (OR 1.31, 95%CI: 0.29-6.00,P= 0.72). An additional 15 IBD patients with COVID-19 have been reported by the combined centers of Nancy University Hospital in France and Humanitas, Milan, Italy[31]from their combined cohorts of over 6000 IBD patients, they identified 15 patients who tested positive for COVID-19 via routine tele-medicine and infusion center visits. Thirteen patients were on immune and/or biologic therapy, and there was no mention of corticosteroid use. Five patients required hospitalization, but no deaths were reported. The authors observed an incidence of COVID-19 positive IBD patients in the cohort of 0.0025, which was similar to the current cumulative incidence of 0.0017 in France and Italy at that time.

        To date, the largest national case reporting has come from a combined 24 IBD referral centers in Italy, affiliated with the Italian Group for the Study of Inflammatory Bowel Disease (IG-IBD)[32]. Patients either had laboratory testing confirming Sars-CoV-2 or a known infected contact and a combination of suspicious clinical complaints and/or lung CT findings of COVID-19. In total 79 patients were described, median age 45 years, 44.3% female, 32 CD, of whom 8% were on thiopurines, 37% anti-TNF, 20% vedolizumab, 4% ustekinumab and 11% systemic corticosteroids. Additionally, 28% of patients (12% of CD and 35% of UC) were determined to have active disease based upon chart abstraction of the Harvey-Bradshaw index for CD and partial Mayo score for UC. Overall 36 patients (46%) had COVID-19 related pneumonia, 22 (28%) were hospitalized, 2 (3%) required mechanical ventilation, and 6 (8%) died. Important observations included a significant association between active IBD and COVID-19 related pneumonia (OR 10.25, 95%CI 2.11-49.73,P= 0.003), and active IBD and COVID-19 related death (OR 8.45, 95%CI: 1.26-56.56,P= 0.02). There was no association between either corticosteroid use or anti-TNF use and COVID-19 related death. Age > 65 years was the strongest predictor of COVID-19 related death (OR 19.6, 95%CI 2.95-130.6,P= 0.002).

        Also, in keeping with the observed low rates of clinically significant disease in the young, low rates have also been reported from a sample of the 102 pediatric IBD (PIBD) centers (mostly in Europe), part of the Porto group of the European Society of Pediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN)[33]. A voluntary reporting system was constructed to include those with virologically confirmed SARSCoV-2, as well as cases with strong clinical suspicion in those without access to testing. Reporting required a 7-d follow-up to ensure documentation of disease severity. The Chinese pediatric centers (84% from Wuhan) reported 917 confirmed or suspected cases of COVID-19, none in the IBD patients. The South Korean cohort reported no cases of COVID-19 out of the 272 children with IBD followed at four tertiary care centers. Reporting from a combined 32 centers in Europe, Canada, and Israel up through March 26, 2020 resulted in a total of 7 cases of PIBD and COVID-19, all with mild disease despite ongoing treatment with immunomodulators, corticosteroids and/or biologics. Notably, despite reporting no cases of IBD patients contracting COVID-19 at the Chinese centers, the crisis created by COVID-19 resulted in delays of scheduled infusions. There were 233 PIBD patients scheduled to receive infliximab during the pandemic. Of these, 66 (28%) had their infusions delayed, resulting in 14 disease exacerbations and 10 hospitalizations.

        In an attempt to keep up with the pace of the pandemic and the need for updated data, the Surveillance Epidemiology of Coronavirus Under Research Exclusion (SECURE-IBD) database has been established[34]. It is an international, pediatric and adult database to monitor and report on outcomes of COVID-19 occurring in IBD patients. The database is open to reporting by IBD clinicians, both pediatric and adult, worldwide. Reporters are encouraged to include both symptomatic and asymptomatic patients. De-identified data points collected for analysis include age, gender, country of origin, IBD disease type and IBD medication use. The database is tracking rates of hospitalizations, ICU admission, need for mechanical ventilation and mortality. At the time of this manuscript’s submission, the first published reports from the database have become available. Currently “in press,” the authors report 525 cases from 33 countries (Median age 43 years, 53% men). The primary outcome of interest was severe COVID-19, defined as a composite of ICU admission, ventilator use, and/or death. Thirty seven patients (7%) had severe COVID-19 (as determined by physician global assessment), 161 (31%) were hospitalized, and 16 patients died (3% case fatality rate). Age-standardized mortality ratios for IBD patients were 1.8 (95%CI: 0.9-2.6), 1.5 (95%CI: 0.7-2.2), and 1.7 (95%CI: 0.9-2.5) relative to data from China, Italy, and the US, respectively. On multivariable analysis, risk factors for severe COVID-19 among IBD patients included increasing age [adjusted OR (aOR) 1.04, 95%CI: 1.01-1.02], ≥ 2 comorbidities (aOR 2.9, 95%CI: 1.1-7.8), systemic corticosteroids (aOR 6.9, 95%CI: 2.3-20.5), and sulfasalazine or 5-aminosalicylate use (aOR 3.1, 95%CI: 1.3-7.7). TNF antagonist treatment was not associated with severe COVID-19 (aOR 0.9, 95%CI: 0.4-2.2). Of note, only 3 cases of COVID-19 were reported in the age range of 0-9 years, and 26 patients in the range 1-19 years. Only 3 pediatric patients required hospitalization; none required ICU or ventilator support.

        IBD AND COVID-19 EXPERT RECOMMENDATIONS

        In the weeks and months since the initial outbreak, several GI professional societies and patient support organizations have developed recommendations for the management of IBD in the era of COVID-19[27,35-38]. Expert opinion has focused on several core questions: (1) Are IBD patients at greater risk for contracting COVID-19? (2) How should IBD be managed in an environment of COVID-19? And (3) How should IBD patients with known or suspected COVID-19 be treated? As acknowledged by the authors, much more data is still needed, with the current recommendations drawing heavily upon IBD experience with other infections, and with the mechanisms and the accumulated clinical experience with different IBD therapies. The current consensus is that IBD itself is not a risk factor for COVID-19, but that the risk lies mainly with the use of IBD medications, including corticosteroids, immunomodulators and biologic therapies. While there are active clinical trials using immune therapies to treat the inflammatory storm typical of severe COVID-19, none of the drugs involved are those currently approved for IBD management, and the results of these trials all are still pending. None of the society statements recommend discontinuing 5-ASA/mesalamine therapies. All of the recommendations support continuity of IBD therapy as long as the patient has not acquired SARS-CoV-2 or developed COVID-19, and all of the groups that address endoscopy/surgery suggest postponing any nonurgent procedures. Tables 1 and 2 summarize some key points related to disease management from the recommendations. For detailed clinical management scenarios, we recommend referring to the treatment algorithm provided in the AGA practice update or to the 76 expert consensus statements provided by the IOIBD.

        CONCLUSION

        Just a few months ago patients with IBD and their providers entered a new and uncertain world dominated daily by the specter of COVID-19. Added to the significant concerns of the general public, facing a highly communicable and sometimes fatal illness, the IBD community carries the additional concerns of a high-risk group. While IBD is characterized by an innate immune dysfunction, there fortunately is no evidence yet to suggest a higher risk for a severe clinical course of COVID-19 conferred by IBD alone. While it is too early to say whether the therapies used for IBD, currently centered around immune suppression/modification, place patients at higher risk of infection itself or severe outcomes of infection, we are hopeful that the rapid accumulation of collaborative data from around the world will begin to provide answers. While the rapidity of data collection is impressive, there remains a significant risk of bias in the cases submitted to “real time” registries that may prevent their generalization to specific populations. It is also not clear whether “risks” of a severe outcome from COVID-19 infection in this population is modified by country specific variables, such as severity of lockdowns, access to care, access to ventilators, threshold for admission to hospitals based on availability of beds, availability of COVID PCR testing, all of which vary by locality and cannot be adjusted for in the final analysis. This leaves a knowledge gap for concentrated data from a single location that minimizes the risk of bias during data collection and variability in outcomes resulting from country specific health care resources. Just as we are increasingly in a world where many of our patients can receive expert care without the risks of leaving their own home, so too does the almost real time collection and analysis of data from around the world offer the promise of rapidly providing answers to those most urgent questions raised by the worldwide IBD community.

        Table 1 Summary of expert opinions and guidelines

        Table 2 Continued summary of expert opinions and guidelines

        久久综合九色综合久久久| 又硬又粗又大一区二区三区视频| 日本VA欧美VA精品发布| 久久亚洲一级av一片| 人妻少妇精品视频专区二区三区| 亚洲精品无码av人在线观看| 少妇高潮惨叫久久久久久| 精品免费久久久久国产一区| 色婷婷亚洲精品综合影院| 狠狠色丁香婷婷久久综合| 国产一区二区三区在线观看免费 | 亚洲AV成人无码天堂| 亚洲一区二区三区在线最新| 国产成人无码综合亚洲日韩| 久久99精品国产99久久| 欧美h久免费女| 一区二区三区蜜桃av| 北条麻妃国产九九九精品视频| 可以免费观看的毛片| 久久国产精品国产精品久久| 国产精品久久免费中文字幕| 骚片av蜜桃精品一区| 久久99精品久久久久久齐齐百度| 国产精品丝袜美腿诱惑| 成人日韩熟女高清视频一区| 97久久香蕉国产线看观看| 在线观看精品国产福利片87| 日韩av在线亚洲女同| 免费无码av片在线观看播放| 国产高潮刺激叫喊视频| 中文字幕亚洲精品第一页| 公厕偷拍一区二区三区四区五区| 精品国产一区二区三区免费| 久久久国产精品免费无卡顿| 精品日韩在线观看视频| 久久国产成人精品国产成人亚洲| 亚洲av无码片一区二区三区| 国产免费人成视频在线观看播放| 日本一级特黄aa大片| 97在线观看| 白丝美女被狂躁免费视频网站|