殷 丹,李 歡,徐江兵,樊劍波,王艷玲?
長(zhǎng)期配施秸稈與豬糞的紅壤旱地有機(jī)碳庫(kù)組成特征*
殷 丹1,李 歡1,徐江兵1,樊劍波2,王艷玲1?
(1. 南京信息工程大學(xué)應(yīng)用氣象學(xué)院,南京 210044;2. 土壤與農(nóng)業(yè)可持續(xù)發(fā)展國(guó)家重點(diǎn)實(shí)驗(yàn)室(中國(guó)科學(xué)院南京土壤研究所),南京 210008)
以長(zhǎng)期(1988 —2014年)配施有機(jī)肥小區(qū)的對(duì)照(CK)、CK+花生秸稈(PS)、CK+稻稈(RS)及CK+豬糞(PM)的紅壤旱地土壤為材料,采用Zimmermann等建立的方法將土壤有機(jī)碳逐級(jí)篩分為顆粒有機(jī)碳(POC)、砂粒和穩(wěn)定團(tuán)聚體碳(SAOC)、溶解性有機(jī)碳(DOC)、易氧化有機(jī)碳(LOC)以及惰性有機(jī)碳(rSOC)組分,并基于洛桑模型(RothC)將上述碳組分進(jìn)一步劃分為易分解植物殘?bào)w碳(DPM)、難分解植物殘?bào)w碳(RPM)、微生物生物量碳(BIO)、腐殖質(zhì)碳(HUM)以及惰性有機(jī)碳(IOM)五個(gè)碳庫(kù),分析了長(zhǎng)期配施作物秸稈與豬糞對(duì)各組分有機(jī)碳的影響,探討了外源碳投入量及鐵鋁氧化物與各組分碳的相關(guān)關(guān)系。結(jié)果表明:長(zhǎng)期配施秸稈與豬糞的紅壤旱地中各組分有機(jī)碳含量和分布比例大小依次為:SAOC > rSOC > LOC > POC > DOC,而RothC模型各碳庫(kù)含量和比例大小依次為:HUM > IOM > RPM > BIO > DPM。長(zhǎng)期配施作物秸稈與豬糞的紅壤旱地中HUM、BIO與IOM碳庫(kù)組分的含量與比例均無顯著變化,已處于相對(duì)穩(wěn)定的平衡狀態(tài)。與CK處理相比,PM處理可顯著增加紅壤旱地SOC;PS和RS處理可顯著提高紅壤旱地中DPM和RPM的含量,且RS處理有助于DPM與RPM中的有機(jī)碳向BIO與HUM轉(zhuǎn)換。相關(guān)分析表明,外源碳投入量及土壤中非晶質(zhì)氧化鋁數(shù)量的增加有助于紅壤旱地中穩(wěn)定態(tài)有機(jī)碳的累積。
有機(jī)無機(jī)配施;紅壤旱地;有機(jī)碳庫(kù);洛桑(RothC)模型;物理-化學(xué)聯(lián)合分組法
明確土壤有機(jī)碳庫(kù)(Soil organic carbon pool,SOCP)的組成特征是認(rèn)知與理解土壤碳循環(huán)過程的重要基礎(chǔ),為此,化學(xué)分組法、物理分組法及物理-化學(xué)聯(lián)合分組法先后被用于SOCP的分離與提取?;瘜W(xué)分組法主要是依據(jù)SOCP組分的溶解性與氧化性,采用不同浸提劑對(duì)SOCP逐級(jí)提取,如采用333 mmol·L–1KMnO4對(duì)土壤進(jìn)行氧化后,可將SOCP分為易氧化有機(jī)碳和穩(wěn)定有機(jī)碳[1-2];物理分組方法主要是結(jié)合土壤顆粒的大小對(duì)SOCP進(jìn)行分級(jí),如Tiessen和Stewart[3]將SOCP篩分為砂粒(53~2 000 μm)、粗粉粒(5~53 μm)、細(xì)粉粒(2~5 μm)、粗黏粒(0.2~2 μm)和細(xì)黏粒(< 0.2 μm)等顆粒結(jié)合態(tài)碳;物理-化學(xué)聯(lián)合分組法則是將化學(xué)方法與物理方法有機(jī)結(jié)合起來,將團(tuán)聚體篩分、密度分組和酸解方法結(jié)合,將SOCP依次分離為游離活性有機(jī)碳庫(kù)、物理保護(hù)有機(jī)碳庫(kù)、化學(xué)保護(hù)有機(jī)碳庫(kù)和生物化學(xué)保護(hù)有機(jī)碳庫(kù)[4]。
為了更好地表征與預(yù)測(cè)SOCP對(duì)氣候變化、土地利用方式轉(zhuǎn)換及農(nóng)業(yè)生產(chǎn)管理的響應(yīng),世紀(jì)模型(Century)、洛桑模型(Rothamasted Carbon Model,RothC)、脫氮-分解作用模型(DNDC)和碳氮?jiǎng)討B(tài)模型(CANDY)等SOCP的周轉(zhuǎn)模型相應(yīng)地被提出與建立;其中,RothC模型不僅可以動(dòng)態(tài)模擬農(nóng)業(yè)生產(chǎn)管理和植物投入量對(duì)有機(jī)碳的影響,也可以推算出SOCP達(dá)到平衡狀態(tài)前,可繼續(xù)向該田塊投放的植物或有機(jī)碳量,而且模型所需的參數(shù)簡(jiǎn)單且容易獲取[5-8]?;谖锢砘瘜W(xué)聯(lián)合分組法并借助于RothC模型可以將SOCP進(jìn)一步劃分為:易分解的植物殘?bào)w碳(Decomposable plant material,DPM)、難分解的植物殘?bào)w碳(Resistant plant material,RPM)、微生物生物量碳(Microbial biomass,BIO)、腐殖質(zhì)碳(Humified organic matter,HUM)以及惰性有機(jī)碳(Inert organic matter,IOM)[5]。王金洲[9]使用RothC-26.3模型模擬了長(zhǎng)期施肥條件下典型黑土、潮土和紅壤旱地有機(jī)碳的動(dòng)態(tài)演變特征,擬合結(jié)果較好??梢?,建立與明確土壤中可測(cè)量碳組分與RothC模型中概念碳庫(kù)的相關(guān)關(guān)系,是運(yùn)用RothC模型準(zhǔn)確模擬與預(yù)測(cè)SOCP變化的關(guān)鍵因子[10]。
因此,本文以長(zhǎng)期配施花生秸稈(PS)、稻稈(RS)及豬糞(PM)的紅壤旱地土壤為研究材料,采用物理-化學(xué)聯(lián)合分組法,將SOCP依次篩分為粒級(jí)63~2 000 μm的粗顆粒有機(jī)碳(CPOC)、溶解性有機(jī)碳(DOC)及粒級(jí)為0.45~63 μm的細(xì)顆粒有機(jī)碳(SCOC),并采用密度分組法將粗顆粒有機(jī)碳區(qū)分為重組有機(jī)碳(SAOC)與輕組有機(jī)碳(POC),采用氧化法將細(xì)顆粒有機(jī)碳(SCOC)區(qū)分為惰性有機(jī)碳(rSOC)及易氧化有機(jī)碳(LOC);再結(jié)合RothC模型中將上述組分有機(jī)碳進(jìn)一步劃分為DPM、RPM、BIO、HUM及IOM,并將物理化學(xué)分組獲得的有機(jī)碳組分與RothC模型的碳庫(kù)進(jìn)行關(guān)聯(lián),探討長(zhǎng)期配施作物秸稈與豬糞對(duì)紅壤旱地有機(jī)碳庫(kù)組分的影響過程與機(jī)制,分析RothC模型對(duì)紅壤旱地有機(jī)碳庫(kù)變化的模擬效果與適應(yīng)性,研究結(jié)果可為紅壤旱地有機(jī)碳庫(kù)管理及農(nóng)業(yè)的可持續(xù)發(fā)展提供參考數(shù)據(jù)。
長(zhǎng)期肥料定位試驗(yàn)于1988年建于江西省鷹潭農(nóng)田生態(tài)系統(tǒng)國(guó)家野外研究站內(nèi)(28°04′N~28°37′N,116°41′E~117°09′E)。該地屬中亞熱帶季風(fēng)氣候,年平均溫度大于17.8℃,年降水量1 758 mm,大于10℃積溫為5 528℃,無霜期262 d。供試土壤為第四紀(jì)紅黏土發(fā)育的典型紅壤。該試驗(yàn)小區(qū)共設(shè)置了CK(1/2NPK)、1/2NPK +花生秸稈(PS)、1/2NPK +稻稈(RS)和1/2NPK +豬糞(PM)四個(gè)肥料處理。試驗(yàn)小區(qū)面積為33 m2,每個(gè)處理重復(fù)3次,隨機(jī)排列。1995 年以前進(jìn)行花生和油菜輪作,后改為一季花生,冬季休田。1988—2012年的肥料用量參見文獻(xiàn)[11],2013年種植前調(diào)整施肥量,將所有處理中的養(yǎng)分均等氮量投入,其中,有機(jī)物料占總投入量的30%(以N計(jì)算)。
土壤樣品于2014年在CK、PS、RS及PM小區(qū)內(nèi)按“S”形采樣法采集耕層(0~20 cm)10點(diǎn),采用四分法混合均勻后,保留約1 kg土樣帶回室內(nèi),將肉眼可見的根系、石礫及動(dòng)植物殘?bào)w挑揀出去后,風(fēng)干、磨細(xì)、過2 mm篩、保存?zhèn)溆?。供試土壤的基本理化性質(zhì)參見文獻(xiàn)[11]。
土壤有機(jī)碳分組方法在Zimmermann等[10]的方法上基礎(chǔ)上略作修改,具體步驟為:
(1)稱取過2 mm篩的風(fēng)干土壤20 g于250 mL振蕩瓶中,加入純水200 mL,浸泡分散24 h后,在平行式往復(fù)振蕩機(jī)(270 r·min–1)上振蕩2 h后,抽取過濾(0.45 μm)適量浸提液用總有機(jī)碳(TOC)分析儀(TOC-L CPH CN 200,島津,日本)測(cè)定溶解性有機(jī)碳(DOC)含量;(2)然后,將土壤懸液倒入團(tuán)聚體分析儀(XY-100,北京翔宇偉業(yè))中直徑為63 μm的篩子上,并加水至淹沒篩上土壤3 cm處,以20 min–1上下篩動(dòng)30 min后,將殘留在篩子上的土壤顆粒轉(zhuǎn)至已知重量的鋁盒中并烘干至恒重,即獲得粒徑63~2 000 μm粗成分顆粒(CPOC);(3)將土壤篩分液用質(zhì)量已知的0.45 μm濾膜進(jìn)行抽濾,殘留在濾膜上的土壤顆粒烘干后即可得到粒徑為0.45~63 μm的細(xì)成分顆粒(SCOC);(4)稱取2 g粒徑為63~2 000 μm的粗成分于已知重量的50 mL塑料離心管中,加入20 mL密度為1.78 g·mL–1的碘化鈉(NaI)溶液,在平行式復(fù)振蕩機(jī)上振蕩30 min,再離心(5 000 r·min–1)15 min后,將含有輕組部分的NaI溶液過濾,并反復(fù)沖洗濾紙,殘留在濾紙上的殘?jiān)礊檩p組組分(POC);離心管內(nèi)殘留的土壤樣品反復(fù)沖洗2~3次后,烘干即獲得重組組分(SAOC);(5)稱取粒徑為0.45~63 μm的細(xì)成分0.50 g于50 mL塑料離心管中,加入25 mL濃度為60 g·L–1的次氯酸鈉溶液(NaClO,pH = 8.0),在25℃條件下氧化18 h,振蕩10 min(270 r·min–1)后、離心15 min(5 000 r·min–1),倒掉上清液;再重復(fù)一遍上述氧化過程后所得土壤殘?jiān)礊槎栊杂袡C(jī)碳組分(rSOC)。具體操作流程圖見圖1。
注:DOC,溶解性有機(jī)碳;SCOC,細(xì)顆粒有機(jī)碳;LOC,易氧化有機(jī)碳;rSOC,惰性有機(jī)碳;POC,輕組(顆粒態(tài))有機(jī)碳;SAOC,重組有機(jī)碳;CPOC,粗顆粒有機(jī)碳。下同。Note:DOC,dissolved organic carbon;SCOC,organic carbon in silt and clay;LOC,labile organic carbon;rSOC,resistant soil organic carbon;POC,particulate organic carbon;SAOC,organic carbon in sand and stable aggregates;CPOC,organic carbon in coarse particle. The same below.
結(jié)合RothC模型將上述物理化學(xué)分組獲得的各組分SOC進(jìn)一步劃分為DPM、RPM、BIO、HUM及IOM,劃分流程如圖2所示。
分組獲得的各級(jí)有機(jī)碳采用碳氮(CN)元素分析儀(Vario EL cube,Elementar,德國(guó))測(cè)定。
游離態(tài)氧化鐵(-Fe2O3)、氧化鋁(-Al2O3)采用DCB(連二亞硫酸鈉-檸檬酸鈉-重碳酸氫鈉)法提取,非晶質(zhì)氧化鐵(-Fe2O3)、氧化鋁(-Al2O3)采用0.2 mol·L–1草酸銨緩沖液(pH = 3.17)提取[12],上述提取液中的鐵鋁濃度均采用電感耦合等離子光譜發(fā)生儀(ICP-OES Optima800,PerkinElmer,美國(guó))測(cè)定。
各組分有機(jī)碳含量(t·hm–2,以C計(jì),下同)= [該組分有機(jī)碳含量(g·kg–1)×土壤容重(g·cm–3)×土層深度(20 cm)]/10。
注:DPM,易分解的植物殘?bào)w碳;RPM,難分解的植物殘?bào)w碳;BIO,微生物生物量碳;HUM,腐殖質(zhì)碳;IOM,惰性有機(jī)碳。下同。Note:DPM,decomposable plant material;RPM,resistant plant material;BIO,microbial biomass;HUM,humified organic matter;IOM,inert organic matter. The same below.
數(shù)據(jù)統(tǒng)計(jì)分析采用IBM SPSS Statistics 20軟件,繪圖采用Visio 2007和Origin 2018軟件。顯著性檢驗(yàn)采用鄧肯氏新復(fù)極差法(SSR)。
與試驗(yàn)前(1988年)相比,長(zhǎng)期平衡施肥的CK處理及PS、RS及PM處理的紅壤旱地SOC依次顯著增加了1.43倍、1.50倍、1.59倍及1.84倍,但各處理的SOC總增量及年增量無顯著差異(表1)。與CK處理相比,PM處理使紅壤旱地SOC顯著提高了1.2倍,而PS和RS處理影響不顯著(表1)。
長(zhǎng)期配施秸稈與豬糞的紅壤旱地中63~2 000 μm粗顆粒有機(jī)碳(CPOC)含量為7.4~8.5 t·hm–2,約占SOC的45.4%~50.0%;但與CK處理相比,PS、RS、PM處理對(duì)紅壤旱地中CPOC影響不顯著(表2)。由表2可以看出,將CPOC組分進(jìn)行密度分組后,SAOC重組組分有機(jī)碳含量為6.6~7.2 t·hm–2,約占SOC的41.3%~43.8%,顯著大于POC輕組組分含量占比(3.8 %~8.4%),說明紅壤旱地CPOC主要以與砂粒結(jié)合或包裹于穩(wěn)定團(tuán)聚體內(nèi)的形式存儲(chǔ)于土壤之中;但長(zhǎng)期配施秸稈與豬糞對(duì)紅壤旱地SAOC和POC組分有機(jī)碳含量影響不顯著(表2)。
表1 長(zhǎng)期施肥下土壤中總有機(jī)碳含量的變化
注:CK、PS、RS、PM分別表示對(duì)照、配施花生秸稈、配施稻稈及配施豬糞處理。同列相同字母表示不同施肥處理間統(tǒng)一理化性質(zhì)間無顯著差異(> 0.05)。下同。Note:CK,PS,RS and PM represent chemical fertilizer,peanut straw,rice straw and pig manure. Mean values affixed with the same letters are insignificantly different at> 0.05 in soils the same in soil physical and chemical property relative to between fertilization treatments. The same below.
表2 長(zhǎng)期配施有機(jī)肥對(duì)紅壤旱地各有機(jī)碳組分的影響
注:同列相同小寫字母表示不同施肥類型間同一碳組分有機(jī)碳無顯著差異(> 0.05);同行相同大寫字母表示同一施肥類型下不同碳組分有機(jī)碳無顯著差異(> 0.05)。下同。Note:Mean values with the same lowercase uppercase letters are insignificantly different at> 0.05 in content of organic carbon of the same fraction between treatments;Mean values with the same uppercase letters are insignificantly different at> 0.05 between fractions of organic carbon in the same soil. The same below.
DOC含量為0.3~0.4 t·hm–2,約占SOC的1.9%~2.0%(表2)。與CK處理相比,PS、RS和PM處理對(duì)紅壤旱地DOC含量無顯著影響(表2)。而0.45~63 μm細(xì)顆粒有機(jī)碳(SCOC)含量為7.8~8.5 t·hm–2,約占SOC的48.0%~52.7%;但與CK處理相比,PS、RS和PM處理對(duì)紅壤旱地SCOC影響不顯著(表2)。按有機(jī)碳能否被6%NaClO氧化,可將紅壤旱地中SCOC組分區(qū)分為rSOC(殘?jiān)鼞B(tài)有機(jī)碳)和LOC(易氧化有機(jī)碳);其中,rSOC含量為5.6~7.1t·hm–2,約占SOC的34.5%~40.7%,顯著高于LOC的占比(8.4%~13.7%)。與CK處理相比,PS、RS及PM處理對(duì)rSOC和LOC含量無顯著影響(表2)。
長(zhǎng)期配施秸稈與豬糞的紅壤旱地中難分解的植物殘?bào)w碳(RPM)含量為0.9~1.7 t·hm–2,約占SOC的5.6%~10.6%,易分解的植物殘?bào)w碳(DPM)含量占SOC的比例僅為0.1%(表3)。與CK處理相比,PS和PM處理紅壤旱地中DPM與RPM含量分別顯著增加了94.4%和86.7%,而RS處理無顯著影響(表3)。
紅壤旱地中腐殖質(zhì)碳(HUM)含量為8.4~9.1 t·hm–2,約占SOC的48.4%~56.0%,微生物生物量碳(BIO)所占比例僅為1.3%~1.5%(表3)。與CK處理相比,RS處理紅壤旱地中BIO與HUM占SOC的比例均顯著增加了5.0%,而PS和PM處理則無顯著影響(表3)。
惰性有機(jī)碳(IOM)含量為5.6~7.0 t·hm–2,約占SOC的34.5%~40.7%;與CK處理相比,PM、PS和RS處理對(duì)IOM均無顯著影響(表3)。
表3 長(zhǎng)期配施有機(jī)肥對(duì)紅壤旱地RothC模型碳庫(kù)組分的影響
相關(guān)分析表明,隨著-Al2O3數(shù)量的增加,紅壤旱地中LOC數(shù)量顯著增加(< 0.05),rSOC(IOM)數(shù)量則顯著降低(< 0.05),而-Fe2O3則無顯著變化;隨著-Fe2O3數(shù)量的增加,紅壤旱地中rSOC(IOM)數(shù)量則顯著增加(< 0.05);隨著-Al2O3數(shù)量的增加,紅壤旱地中各POC數(shù)量則顯著減少(= –0.60,< 0.05),而-Fe2O3的數(shù)量變化對(duì)紅壤旱地各組分碳均無顯著影響(表4)。隨著外源有機(jī)碳累積投入量的增加,紅壤旱地中rSOC(IOM)積累量增加顯著(< 0.05)(表4)。長(zhǎng)期配施秸稈與豬糞的紅壤旱地中DPM、RPM與POC均呈極顯著的正相關(guān)關(guān)系(< 0.01),但與DOC間卻無顯著相關(guān)關(guān)系;BIO與HUM 及SAOC 均呈顯著正相關(guān)關(guān)系(< 0.05),但與LOC間無顯著相關(guān)關(guān)系;而LOC與rSOC(IOM)呈極顯著負(fù)相關(guān)關(guān)系(= –0.82,< 0.01)(表4)。
表4 土壤有機(jī)碳組分與鐵鋁氧化物及有機(jī)碳累積投入量間的相關(guān)系數(shù)
注:*在0.05水平顯著;**在0.01水平顯著;TSOC為1988—2014年各小區(qū)累積投入有機(jī)碳總量;-Fe2O3、-Al2O3為游離態(tài)氧化鐵、氧化鋁;-Fe2O3、-Al2O3為非晶質(zhì)氧化鐵、氧化鋁。Note:*significant at 0.05 level;**significant at 0.01 level;TSOC stands for total amount of organic carbon input from 1988 to 2014 in each plot;-Fe2O3for free - iron oxides;-Al2O3for free - aluminum oxides;-Fe2O3for free - iron oxides;and-Al2O3for amorphous - aluminum oxides.
施肥是影響土壤有機(jī)碳庫(kù)組分及其穩(wěn)定性的主要農(nóng)業(yè)管理措施之一,外源有機(jī)肥施用的種類與數(shù)量是影響土壤有機(jī)碳組分的重要方面。本研究發(fā)現(xiàn),與CK處理相比,只有長(zhǎng)期配施豬糞處理使紅壤旱地SOC顯著提高了1.2倍,而PS和RS處理影響不顯著(表1);這可能是由于有機(jī)無機(jī)肥配施顯著提高土壤酶及微生物的活性[13],其中,豬糞對(duì)土壤脲酶活性的增加作用優(yōu)于作物秸稈,而脲酶活性與有機(jī)碳含量和微生物生物量呈正相關(guān)關(guān)系(< 0.05)[14]。PS處理紅壤旱地中DPM與RPM均顯著增加了94.4%,PM處理下DPM與RPM則均顯著增加了86.7%,而RS處理無顯著影響(表3);與豬糞相比,秸稈含氮量低、C/N大,且以稻稈更顯著,因此,長(zhǎng)期配施稻稈后,土壤中缺乏足量可供給的氮而限制了微生物的活性,進(jìn)而阻礙有機(jī)質(zhì)的分解,減弱施加作物秸稈對(duì)有機(jī)碳含量的增加作用[15]。本研究發(fā)現(xiàn),DPM與RPM在不同施肥處理間的變異系數(shù)最大可達(dá)29.4%(表3),受長(zhǎng)期配施秸稈與豬糞的影響較為顯著,可以作為有效反映SOC變化的指標(biāo)[16]。長(zhǎng)期配施花生秸稈、稻稈及豬糞對(duì)紅壤旱地中BIO、HUM及IOM均無顯著影響(表3),這可能是隨著花生秸稈、稻稈及豬糞的施肥年限及施肥量的增大使得紅壤旱地逐漸接近或者已經(jīng)達(dá)到其固碳的飽和容量[17],而導(dǎo)致土壤有機(jī)碳無顯著差異(表3)。有研究[18]表明長(zhǎng)期施肥的紅壤有機(jī)碳含量呈現(xiàn)出先迅速增加后逐漸趨于平緩的趨勢(shì);也有研究[19]表明,單施無機(jī)肥的土壤有機(jī)碳仍處于緩慢增加的趨勢(shì),而長(zhǎng)期連續(xù)配施有機(jī)肥的紅壤有機(jī)碳含量呈現(xiàn)先迅速上升,后緩慢下降的趨勢(shì),可見,若無耕作管理方式的顯著改變,土壤有機(jī)碳將一直處于現(xiàn)階段較穩(wěn)定的平衡狀態(tài)。余喜初等[19]的研究表明,長(zhǎng)期配施有機(jī)肥的紅壤稻田中有機(jī)碳含量呈現(xiàn)先迅速上升,后緩慢下降的趨勢(shì),且在連續(xù)配施有機(jī)肥20年時(shí)即可達(dá)到基本穩(wěn)定。與本文中長(zhǎng)期配施秸稈與豬糞26年后,紅壤旱地中BIO、HUM及IOM在三個(gè)肥料處理中的變異系數(shù)分別不超過8.9%、9.6%和9.6%的結(jié)果相符(表3)。
長(zhǎng)期施肥可影響土壤中有機(jī)碳組分的分布特征,而有機(jī)碳組分的分布特征又可反映土壤結(jié)構(gòu)和功能的變化。長(zhǎng)期配施秸稈與豬糞的紅壤旱地中CPOC和LOC顯著大于DOC,其中,又以SAOC和rSOC為主要組分,二者占SOC的百分比之和可達(dá)78.1%及以上,而LOC、POC與DOC組分含量相對(duì)較少(表2);RothC模型中HUM及IOM分別占SOC的48.4%~56.0%和34.5%~40.7%,而DPM與RPM僅占SOC的5.7%~10.8%,由此可見,紅壤旱地中的有機(jī)碳主要以砂粒和穩(wěn)定的團(tuán)聚體碳和惰性碳組分的形式儲(chǔ)存于HUM和IOM碳庫(kù)中(圖3)。SAOC組分有機(jī)碳與砂粒結(jié)合或存儲(chǔ)于團(tuán)聚體中而受物理性保護(hù),而rSOC具有抗氧化的化學(xué)特性,均可在很大程度上降低SAOC和rSOC的分解速率,故大部分的有機(jī)碳均保存于IOM和HUM碳庫(kù)中[20];DPM與RPM則是土壤中活性碳庫(kù)的主要成分,具有抗氧化程度低、水溶性強(qiáng)、分解迅速和周轉(zhuǎn)速率高等特性,促進(jìn)了DPM與RPM的轉(zhuǎn)化,因此在總有機(jī)碳含量中的占比較低[21]。有研究[22-23]表明,施肥可為土壤提供直接的有機(jī)碳源,而稻稈中含有更多易被微生物分解的糖類、淀粉等物質(zhì),纖維素、木質(zhì)素等不易分解的物質(zhì)較少,促進(jìn)有機(jī)碳及養(yǎng)分的分解和轉(zhuǎn)化。與CK處理相比,PS和PM處理紅壤旱地中DPM與RPM占SOC的百分比分別顯著增加了88.7%和68.1%,RS處理無顯著影響;但RS處理使紅壤旱地中BIO與HUM占SOC的百分比均顯著增加了5.0%,而PS和PM處理則無顯著影響(表3)。由此可見,不同施肥類型對(duì)紅壤有機(jī)碳分布特征的影響存在差異,其中,長(zhǎng)期配施花生秸稈和豬糞可向土壤直接輸送大量外源碳,顯著提高土壤中DPM與RPM的占比,而稻稈則可顯著促進(jìn)DPM與RPM中的有機(jī)碳向BIO與HUM中受物理性保護(hù)的有機(jī)碳轉(zhuǎn)換,且長(zhǎng)期施用稻稈可提高農(nóng)業(yè)土壤質(zhì)量[24]。長(zhǎng)期配施秸稈與豬糞的紅壤旱地中DPM及RPM與POC數(shù)量均呈極顯著正相關(guān)關(guān)系,而與DOC數(shù)量無顯著關(guān)系;BIO及HUM與SAOC 數(shù)量呈顯著正相關(guān)關(guān)系,而與LOC數(shù)量無顯著關(guān)系(表4);這均是由于與POC和SAOC相比,DOC和LOC含量過少造成的,因此不受保護(hù)的DPM與RPM主要受POC的影響,而受物理性保護(hù)的BIO與HUM主要受SAOC組分碳的影響。隨著外源有機(jī)碳累積投入量的增加,旱地紅壤中的rSOC(IOM)呈顯著增加趨勢(shì)(表4),這表明外源有機(jī)質(zhì)更容易通過微生物固定為較為穩(wěn)定的有機(jī)碳,在農(nóng)業(yè)生產(chǎn)中也可建議農(nóng)民施用高碳投入量的有機(jī)肥以達(dá)到固碳減排的目的[25]。
圖3 長(zhǎng)期配施有機(jī)肥下紅壤旱地有機(jī)碳分布比例
鐵鋁氧化物作為土壤中與有機(jī)碳結(jié)合的重要礦質(zhì)膠結(jié)物質(zhì),對(duì)土壤結(jié)構(gòu)和穩(wěn)定性有顯著影響,尤其是在紅壤等酸性土壤中,有機(jī)碳與無機(jī)礦物(鐵鋁氧化物等)之間的吸附作用對(duì)維持有機(jī)碳的穩(wěn)定、抵抗微生物分解有重要的調(diào)控作用[26-27]。本研究發(fā)現(xiàn),-Al2O3與LOC含量呈顯著正相關(guān)關(guān)系,而與rSOC(IOM)呈顯著負(fù)相關(guān)關(guān)系;-Fe2O3與rSOC(IOM)呈顯著正相關(guān)關(guān)系(表4)。夏昕[28]的研究結(jié)果也證實(shí)紅壤旱地中非晶質(zhì)鐵鋁氧化物與穩(wěn)定性有機(jī)碳呈極顯著正相關(guān)關(guān)系,而游離態(tài)鐵鋁氧化物與穩(wěn)定性有機(jī)碳呈顯著負(fù)相關(guān)關(guān)系。這是由于鐵鋁氧化物與穩(wěn)定表面的吸附作用促進(jìn)了SOC的穩(wěn)定性,因此,鐵鋁氧化物的分布規(guī)律基本與穩(wěn)定性有機(jī)碳的分布一致[29]。有機(jī)肥的施用雖促進(jìn)了SOC的增加,但SOC又可抑制鐵氧化物的晶質(zhì)化過程[30],且與游離態(tài)鐵鋁氧化物相比,非晶質(zhì)鐵鋁氧化物具有更大的表面積和表面活性,盡管含量相對(duì)較低,但可通過離子或配位交換與有機(jī)碳形成穩(wěn)定的復(fù)合體,具有更強(qiáng)的膠結(jié)能力[26,31]。根據(jù)相關(guān)研究[32-33]可知,由于鋁離子的離子電荷/半徑比大于鐵離子,鐵的電負(fù)性大于鋁,故氧化鋁的吸附能力可能強(qiáng)于氧化鐵,而這與氧化鋁在土壤中的形態(tài)和電荷密度有關(guān)。
有研究表明,在可耕地中BIO和HUM的量化值與模擬值間相關(guān)性較強(qiáng),而DPM、RPM及IOM的量化值與模擬值間相關(guān)性較弱,且DPM與RPM模擬值大于量化值,而BIO、HUM及IOM的量化值大于模擬值[10]。這是由于計(jì)算RothC模型碳庫(kù)的量化值時(shí),需要根據(jù)DPM /RPM和BIO/HUM的比值來分別計(jì)算出DPM、RPM、BIO、HUM及IOM,當(dāng)比值不同時(shí),計(jì)算出的碳庫(kù)有機(jī)碳含量也有一定差異。根據(jù)Zimmermann等[10]對(duì)瑞士不同地區(qū)123個(gè)土壤樣品的分析可知,DPM /RPM比值不僅會(huì)受到土地利用類型、采樣時(shí)間等的影響,且可耕地土壤中的DPM /RPM與年平均溫度呈負(fù)相關(guān)關(guān)系。不同作物殘?bào)w的物料性質(zhì)差異較大,因此,不同作物殘?bào)w的DPM /RPM比值也不同,如小麥根系、小麥秸稈、玉米根系和玉米秸稈的DPM /RPM比值調(diào)整為0.89、3.04、4.35和3.25后,模擬值和實(shí)測(cè)值間相對(duì)誤差明顯減小[34]。盡管如此,受模型運(yùn)行時(shí)間的影響,量化值卻較模擬值更能準(zhǔn)確地反映真實(shí)的環(huán)境條件,且隨著時(shí)間的延長(zhǎng),用量化值和模擬值預(yù)測(cè)的土壤SOC變化趨勢(shì)的差異也逐漸減小[35]。但為了進(jìn)一步論證研究所得RothC碳庫(kù)有機(jī)碳含量與實(shí)際田間的適配性,還需將試驗(yàn)地區(qū)的降水、蒸發(fā)、溫度、表層黏土含量等值為輸入?yún)?shù),使用RothC模型正向模擬出各個(gè)碳庫(kù)的理論值,再與本文測(cè)量結(jié)果進(jìn)行比較,以期修訂更合理的有機(jī)碳分組步驟,提升量化RothC碳庫(kù)的準(zhǔn)確性,并提高RothC模型在紅壤區(qū)的適用性[36]。
長(zhǎng)期配施豬糞可以顯著增加紅壤旱地SOC及DPM、RPM的含量,但土壤中的各有機(jī)碳組分及HUM、BIO及IOM均無顯著變化;而且土壤有機(jī)碳主要以SAOC和rSOC的形式儲(chǔ)存于HUM和IOM碳庫(kù)中。外源碳投入量及土壤非晶質(zhì)氧化鋁數(shù)量的增加有助于紅壤旱地中穩(wěn)定態(tài)有機(jī)碳的累積;施用高碳投入量的有機(jī)肥可以達(dá)到固碳減排的目的。為了提高RothC模型在紅壤旱地上的適用性及模擬的準(zhǔn)確性,還需結(jié)合當(dāng)?shù)貧夂驐l件及農(nóng)業(yè)生產(chǎn)實(shí)踐狀況,通過模型模擬結(jié)果調(diào)整DPM /RPM比值,并完善有機(jī)碳(庫(kù))的分組方法。
[ 1 ] Blair G J,Lefroy R,Lisle L. Soil carbon fractions based on their degree of oxidation,and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research,1995,46(7):14599—1466.
[ 2 ] Lefroy R D B,Blair G J,Strong W M. Changes in soil organic matter with cropping as measured by organic carbon fractions and13C natural isotope abundance[J]. Plant and Soil,1993,155/156(1):399—402.
[ 3 ] Tiessen H,Stewart J W B. Particle-size fractions and their use in studies of soil organic matter:II. cultivation effects on organic matter composition in size fractions[J]. Soil Science Society of America Journal,1983,47(3):509—514.
[ 4 ] Stewart C E,Plante A F,Paustian K,et al. Soil carbon saturation:Linking concept and measurable carbon pools[J]. Soil Science Society of America Journal,2008,72(2):379—392.
[ 5 ] Coleman K,Jenkinson D S. RothC-26.3 - A Model for the turnover of carbon in soil[M]//Evaluation of soil organic matter models. Berlin,Heidelberg:Springer Berlin Heidelberg,1996:237—246.
[ 6 ] Franko U,Oelschl?gel B,Schenk S. Simulation of temperature-,water- and nitrogen dynamics using the model CANDY[J]. Ecological Modelling,1995,81(1/2/3):213—222.
[ 7 ] Parton W J,Rasmussen P E. Long-term effects of crop management in wheat-fallow:II. CENTURY model simulations[J]. Soil Science Society of America Journal,1994,58(2):530—536.
[ 8 ] Li C S,F(xiàn)rolking S,F(xiàn)rolking T A. A model of nitrous oxide evolution from soil driven by rainfall events:2. Model applications[J]. Journal of Geophysical Research:Atmospheres,1992,97(D9):9777—9783.
[ 9 ] Wang J Z. RothC model simulation of soil organic carbon dynamics and equilibrium point of typical upland soils in China[D]. Beijing:Chinese Academy of Agricultural Sciences,2011.[王金洲. RothC模型模擬我國(guó)典型旱地土壤的有機(jī)碳動(dòng)態(tài)及平衡點(diǎn)[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院,2011.]
[ 10 ] Zimmermann M,Leifeld J,Schmidt M W I,et al. Measured soil organic matter fractions can be related to pools in the RothC model[J]. European Journal of Soil Science,2007,58(3):658—667.
[ 11 ] Wang J W,Wang Y L,Yao Y,et al. Effects of long-term fertilization on phosphorus retention and release of soil aggregates in upland red soils[J]. Acta Pedologica Sinica,2017,54(5):1240—1250. [王經(jīng)緯,王艷玲,姚怡,等. 長(zhǎng)期施肥對(duì)旱地紅壤團(tuán)聚體磷素固持與釋放能力的影響[J]. 土壤學(xué)報(bào),2017,54(5):1240—1250.]
[ 12 ] Lu R K. nalytical methods for soil and agro-chemistry [M]. Beijing:China Agriculture Science and Technology Press,2000. [魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法[M]. 北京:中國(guó)農(nóng)業(yè)科學(xué)術(shù)技出版社,2000.]
[ 13 ] Yang X D,Zeng X B,Wen J,et al. Effect of application of pig manure on physicochemical properties and enzyme activities of red soil upland[J]. Acta Pedologica Sinica,2020,57(3):739—749.[楊小東,曾希柏,文炯,等. 豬糞施用量對(duì)紅壤旱地理化性質(zhì)及酶活性的影響[J]. 土壤學(xué)報(bào),2020,57(3):739—749.]
[ 14 ] Li W T,Li Z P,Liu M,et al. Activities of extracellular enzymes and nutrients in red paddy soil response to long term fertilizations[J]. Soils,2016,48(4):686—691. [李委濤,李忠佩,劉明,等. 紅壤水稻土累積酶活性及養(yǎng)分對(duì)長(zhǎng)期不同施肥處理的響應(yīng)[J]. 土壤,2016,48(4):686—691.]
[ 15 ] Huang J X. Effect of Long-term organic and inorganic fertilizer application on soil microbiological characteristics and soil fertility[J]. Agriculture & Technology,2016,36(4):35. [黃金喜. 長(zhǎng)期有機(jī)無機(jī)肥料配施對(duì)土壤微生物學(xué)特性及土壤肥力的影響[J]. 農(nóng)業(yè)與技術(shù),2016,36(4):35.]
[ 16 ] Wang W,Lai D Y F,Wang C,et al. Effects of rice straw incorporation on active soil organic carbon pools in a subtropical paddy field[J]. Soil and Tillage Research,2015,152:8—16.
[ 17 ] Tong X G,Xu M G,Wang X J,et al. Long-term fertilization effects on organic carbon fractions in a red soil of China[J]. Catena,2014,113:251—259.
[ 18 ] Huang J,Zhang Y Z,Gao J S,et al. Variation characteristics of soil carbon sequestration under long-term different fertilization in red paddy soil[J]. Chinese Journal of Applied Ecology,2015,26(11):3373—3380. [黃晶,張楊珠,高菊生,等. 長(zhǎng)期施肥下紅壤性水稻土有機(jī)碳儲(chǔ)量變化特征[J]. 應(yīng)用生態(tài)學(xué)報(bào),2015,26(11):3373—3380.]
[ 19 ] Yu X C,Li D M,Liu K L,et al. Evolution and influencing factors of soil organic carbon under long-term fertilization in subtropical paddy field of China[J]. Soils,2013,45(4):655—660. [余喜初,李大明,柳開樓,等. 長(zhǎng)期施肥紅壤稻田有機(jī)碳演變規(guī)律及影響因素[J]. 土壤,2013,45(4):655—660.]
[ 20 ] Xu J H,Sun Y,Gao L,et al. A review of the factors influencing soil organic carbon stability[J]. Chinese Journal of Eco-Agriculture,2018,26(2):222—230. [徐嘉暉,孫穎,高雷,等. 土壤有機(jī)碳穩(wěn)定性影響因素的研究進(jìn)展[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2018,26(2):222—230.]
[ 21 ] Huang S,Peng X X,Huang Q R,et al. Soil aggregation and organic carbon fractions affected by long-term fertilization in a red soil of subtropical China[J]. Geoderma,2010,154(3/4):364—369.
[ 22 ] Wei M,Zhang A J,Li H M,et al. Effect of different long-term fertilization on soil organic carbon storage in fluvo-aquic soil[J]. Acta Agriculturae Boreali-Sinica,2018,33(1):233—238. [魏猛,張愛君,李洪民,等. 長(zhǎng)期不同施肥對(duì)潮土有機(jī)碳儲(chǔ)量的影響[J]. 華北農(nóng)學(xué)報(bào),2018,33(1):233—238.]
[ 23 ] Wang J K,Xu Y D,Ding F,et al. Process of plant residue transforming into soil organic matter and mechanism of its stabilization:A review[J]. Acta Pedologica Sinica,2019,56(3):528—540. [汪景寬,徐英德,丁凡,等. 植物殘?bào)w向土壤有機(jī)質(zhì)轉(zhuǎn)化過程及其穩(wěn)定機(jī)制的研究進(jìn)展[J]. 土壤學(xué)報(bào),2019,56(3):528—540.]
[ 24 ] Guan L Z,Jiang X N,Zhang G C,et al. Effects of rice straw-derived biochar on organic carbon activity in coastal saline paddy soil[J]. Soils,2019,51(1):205—209. [關(guān)連珠,姜雪楠,張廣才,等. 添加稻草生物質(zhì)炭對(duì)濱海水稻土有機(jī)質(zhì)活性的影響[J]. 土壤,2019,51(1):205—209.]
[ 25 ] Xu Y M. The evolution characteristics and turnover mechanisms of soil organic carbon under long-term fertilization in grey desert soil in Xinjiang Province[D]. Beijing:Chinese Academy of Agricultural Sciences,2014. [許詠梅. 長(zhǎng)期不同施肥下新疆灰漠土有機(jī)碳演變特征及轉(zhuǎn)化機(jī)制[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院,2014.]
[ 26 ] Xu J L,Zhu Z F,Huang C Q,et al. Interactions between organic matters and clay minerals in soils for different land uses in Jianghan plain,China[J]. Acta Mineralogica Sinica,2014,34(1):47—52. [徐晉玲,朱志鋒,黃傳琴,等. 江漢平原不同利用方式下土壤有機(jī)質(zhì)與粘粒礦物的交互作用[J]. 礦物學(xué)報(bào),2014,34(1):47—52.]
[ 27 ] Guo X M,Wu H H,Luo M,et al. The morphological change of Fe/Al-oxide minerals in red soils in the process of acidification and its environmental significance[J]. Acta Petrologica et Mineralogica,2007,26(6):515—521. [郭杏妹,吳宏海,羅媚,等. 紅壤酸化過程中鐵鋁氧化物礦物形態(tài)變化及其環(huán)境意義[J]. 巖石礦物學(xué)雜志,2007,26(6):515—521.]
[ 28 ] Xia X. Effects of long-term fertilization on organic carbon morphology and microflora in red upland and paddy soil[D]. Nanjing:Nanjing Agricultural University,2015. [夏昕. 長(zhǎng)期施肥對(duì)紅壤旱地和水田有機(jī)碳形態(tài)結(jié)構(gòu)及微生物群落的影響[D]. 南京:南京農(nóng)業(yè)大學(xué),2015.]
[ 29 ] Heng L S,Wang D Z,Jiang X,et al. Relationship between Fe,Al oxides and stable organic carbon,nitrogen in the yellow-brown soils[J]. Chinese Journal of Environmental Science,2010,31(11):2748—2755. [衡利沙,王代長(zhǎng),蔣新,等. 黃棕壤鐵鋁氧化物與土壤穩(wěn)定性有機(jī)碳和氮的關(guān)系[J]. 環(huán)境科學(xué),2010,31(11):2748—2755.]
[ 30 ] Pizarro C,Escudey M,F(xiàn)abris J D. Influence of organic matter on the iron oxide mineralogy of volcanic soils[J]. Hyperfine Interactions,2003,148/149(1/2/3/4):53—59.
[ 31 ] Wang X H,Yang Z J,Liu X F,et al. Effects of different forms of Fe and Al oxides on soil aggregate stability in mid-subtropical mountainous area of Southern China[J]. Acta Ecologica Sinica,2016,36(9):2588—2596. [王小紅,楊智杰,劉小飛,等. 中亞熱帶山區(qū)土壤不同形態(tài)鐵鋁氧化物對(duì)團(tuán)聚體穩(wěn)定性的影響[J]. 生態(tài)學(xué)報(bào),2016,36(9):2588—2596.]
[ 32 ] Wei S Y,Tan W F,Liu F. Advances on the study of mineral-humus interactions in soils[J]. Soil and Fertilizer Sciences in China,2009(1):1—6. [魏世勇,譚文峰,劉凡. 土壤腐殖質(zhì)-礦物質(zhì)交互作用的機(jī)制及研究進(jìn)展[J]. 中國(guó)土壤與肥料,2009(1):1—6.]
[ 33 ] Zhang Q,F(xiàn)ang H L,Shi Z H,et al. Advances in influence factors of aggregate stability under erosion[J]. Scientia Silvae Sinicae,2007,43(S1):77—82. [張琪,方海蘭,史志華,等. 侵蝕條件下土壤性質(zhì)對(duì)團(tuán)聚體穩(wěn)定性影響的研究進(jìn)展[J]. 林業(yè)科學(xué),2007,43(S1):77—82.]
[ 34 ] Zhao Y W. RothC model simulation of soil organic carbon on farmland crop residue in North China[D]. Beijing:Chinese Academy of Agricultural Sciences,2017. [趙雅雯. RothC模型在我國(guó)北方農(nóng)田作物殘?bào)w提升土壤有機(jī)碳中的應(yīng)用[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院,2017.]
[ 35 ] Xu X L,Liu W,Kiely G. Modeling the change in soil organic carbon of grassland in response to climate change:Effects of measured versus modelled carbon pools for initializing the Rothamsted Carbon model[J]. Agriculture,Ecosystems & Environment,2011,140(3/4):372—381.
[ 36 ] Poeplau C,Don A,Dondini M,et al. Reproducibility of a soil organic carbon fractionation method to derive RothC carbon pools[J]. European Journal of Soil Science,2013,64(6):735—746.
Composition Characteristics of Organic Carbon Pool in Upland Red Soil under Long-term Application of Straw and Pig Manure
YIN Dan1, LI Huan1, XU Jiangbing1, FAN Jianbo2, WANG Yanling1?
(1. College of Applied Meteorology, Nanjing University of Information Sciences and Technology, Nanjing 210044, China; 2. State Key Laboratory of Soil Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China)
This study aimed(i)to investigate processes and mechanisms of long-term application of crop straw and pig manure affecting content and fractionation of organic carbon pools in upland red soil; (ii)to analyze effect and adaptability of the RothC model simulating changes in organic carbon in upland red soil; and (iii) to provide reference data for management of organic carbon and sustainable development of agriculture in upland red soil.Soil samples were collected from the topsoil layer (0~20 cm) of a upland of red soil, where out laid were the four treatments, that is, CK (chemical fertilizer), PS (peanut straw), RS(rice straw) and PM (pig manure), in the National Agro-Ecosystem Observation and Research Station in Yingtan, Jiangxi Province of China. Organic cabon in the soil samples was extracted and sorted into five fractions, i.e. particulate organic carbon (POC), organic carbon in sand and stable aggregates (SAOC), dissolved organic carbon (DOC), labile organic carbon (LOC), and inert organic carbon (rSOC), with the modified Zimmermanns’ method. Based on the RothC model, the above-listed fractions of soil carbon were further sorted separately into five subfractions, i.e. organic carbon in readily-decomposable plant residue (DPM), organic carbon in hardly-decomposable plant residue (RPM), microbial biomass carbon (BIO), organic carbon in humus (HUM)and inert organic carbon (IOM). Content and proportion of each fraction and subfraction was determined for analysis of effects of the long-term fertilization relative to treatment. And relationships of each carbon fraction or subfraction with soil iron-aluminum oxides and input of extraneous carbon were analyzed and discussed.Results show that in terms of content and proportion, the fractions of organic carbon in the upland red soil exhibited an order of SAOC > rSOC > LOC > POC > DOC and HUM > IOM > RPM > BIO > DPM. Compared with CK, Treatment PM was 17.0% , 86.7% and 86.7% higher in SOC, DPM and RPM, respectively, and Treatment PS was 94.4% higher in both DPM and RPM. However, the three fertilized treatments did not have much impact on content and proportion of the fractions of BIO, HUM and IOM. The correlation analysis shows that the fraction of rSOC(IOM)was negatively related to free aluminum oxides in the soil, but positively withamorphous - iron oxides in content; that POC was ultra-significantly and positively related to DPM and RPM; that SAOC was significantly and positively related to BIO and HUM; and that rSOC (IOM) was ultra-significantly and negatively related to LOC.Long-term fertilization significantly increases soil organic carbon in red soil upland, but the effect varies with fertilization practice. However, the increasing trend levels off after 26 years of fertilization, thus, in the RothC model, the effects of amendament of organic manure to chemical fertilization on BIO, HUM and IOM appear to be quite insignificant. In the soils applied with PS, RS or PM, organic carbon is dominated with SAOC (63~2 000 μm) and rSOC (0.45 μm~63 μm)in HUM and IOM. Long-term chemical fertilization amended with PS or PM brings a large volume of carbon into the soil and significantly increases the proportions of DPM and PRM, while amendament of RS can significantly promote transformation of organic carbon from DPM and PRM into BIO and HUM, thus improving soil quality of the farmlands. Long-term fertilization high in organic carbon input and high soil free - aluminum oxides content both accelerate sequestration of inert organic carbon by soil microorganisms.
Combined application of organic manure and inorganic fertilizer; Upland red soil; Soil organic carbon pool; RothC model; Physical-chemical combined grouping
S147.2;S153.6
A
10.11766/trxb201905130190
殷丹,李歡,徐江兵,樊劍波,王艷玲. 長(zhǎng)期配施秸稈與豬糞的紅壤旱地有機(jī)碳庫(kù)組成特征[J]. 土壤學(xué)報(bào),2020,57(5):1259–1269.
YIN Dan,LI Huan,XU Jiangbing,F(xiàn)AN Jianbo,WANG Yanling. Composition Characteristics of Organic Carbon Pool in Upland Red Soil under Long-term Application of Straw and Pig Manure [J]. Acta Pedologica Sinica,2020,57(5):1259–1269.
* 國(guó)家自然科學(xué)基金項(xiàng)目(41571130053,41571286 )資助Supported by the National Natural Science Foundation of China(Nos. 41571130053 and 41571286)
,E-mail:ylwang@nuist.edu.cn
殷 丹(1995—),女,陜西咸陽(yáng)人,碩士,主要從事土壤生態(tài)學(xué)研究。E-mail:512879395@qq.com
2019–05–13;
2019–07–01;
優(yōu)先數(shù)字出版日期(www.cnki.net):2019–08–20
(責(zé)任編輯:陳榮府)