亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Sweedler’s dual of Hopf algebras in

        2020-10-15 02:56:04ZhangTaoWangShuanhong

        Zhang Tao Wang Shuanhong

        (School of Mathematics, Southeast University, Nanjing 211189, China)

        Abstract:Firstly, the notion of the left-left Yetter-Drinfeld quasicomodule M=(M,·,ρ) over a Hopf coquasigroup H is given, which generalizes the left-left Yetter-Drinfeld module over Hopf algebras. Secondly, the braided monoidal category is introduced and the specific structure maps are given. Thirdly, Sweedler’s dual of infinite-dimensional Hopf algebras in is discussed. It proves that if (B,mB,μB, ΔB, εB) is a Hopf algebra in with antipode SB, then (B0,(mB0)op, (ΔB0)op, which generalizes the corresponding results over Hopf algebras.

        Key words:Hopf (co)quasigroup; Yetter-Drinfeld quasi(co)module; braided monoidal category; duality

        LetHbe a Hopf algebra. Schauenburg[1]obtained a braided monoidal category equivalence between the category of right-right Yetter-Drinfeld modules overHand the category of two-sided two-cosided Hopf modules overHunder some suitable assumption. This yields new sources of braiding by which one can obtain the solutions to the Yang-Baxter equation, which plays a fundamental role in various areas of mathematics[23].

        The most well-known examples of Hopf algebras are the linear spans of (arbitrary) groups. Dually, also the vector space of linear functionals on a finite group carries the structure of a Hopf algebra. In the case of quasigroups (nonassociative groups), however, it is no longer a Hopf algebra, but more generally, a Hopf quasigroup[510], which is a specific case of the notion of unital coassociative bialgebra[11].

        Throughout this paper, letkbe a fixed field. We will work overk. LetCbe a coalgebra with a coproductΔ. We will use Heyneman-Sweedler’s notation[12],Δ(c)=∑c1?c2for allc∈C, for coproduct.

        1 Preliminaries

        Recall from Ref.[5] that a Hopf coquasigroup is a unital associative algebraH,armed with three linear maps:Δ:H→H?H,ε:H→KandS:H→Hsatisfying the following equations for alla,b∈H:

        Δ(ab)=Δ(a)Δ(b)

        ε(ab)=ε(a)ε(b)

        (id?ε)Δ(a)=a=(ε?id)Δ(a)

        ∑S(a1)a21?a22=1?a=∑a1S(a21)?a22

        ∑a11?S(a12)a2=a?1=∑a11?a12S(a2)

        Recall from Ref.[6], the authors gave the notion of a leftH-quasimodule over a Hopf quasigroupH. Duality, a leftH-quasicomodule over a Hopf coquasigroupHis a vector spaceMwith a linear mapρ:M→H?M, whereρ(m)=∑m-1?m0such that ∑ε(m-1)m0=mand

        ∑S(m-1)m0-1?m00=∑m-1S(m0-1)?m00=1?m

        for allm∈M.

        Moreover, the authors studied the notion of the left-left Yetter-Drinfeld quasimoduleM=(M,·,ρ) over a Hopf quasigroupH.

        Duality, a left-left Yetter-Drinfeld quasicomoduleM=(M,·,ρ) over a Hopf coquasigroupHis a leftH-module (M,·) and a leftH-quasicomodule (M,·) satisfying the following equations:

        ∑(a1·m)-1a2?(a1·m)0=∑a1m-1?a2·m0

        ∑a1·m?a21?a22=∑a11·m?a12?a2

        ∑a1?a21·m?a22=∑a11?a12·m?a2

        for alla∈H,m∈M.

        Remark that the first equation is equivalent to the following formula:

        ρ(a·m)=∑a11m-1S(a2)?a12·m0

        τ:M?N→N?M,τ(m?n)=∑m-1·n?m0

        τ-1:N?M→M?N,τ-1(n?m)=∑m0?S-1(m-1)·n

        One can check the following lemmas and Corollary 1.

        ∑m-11·n?m-12·p?m0=∑m-1·n?m0-1·p?m00

        Corollary1LetHbe a Hopf coquasigroup with a bijective antipodeS. If the following equations hold:

        ∑m-11·n?m-12?m0=∑m-1·n?m0-1?m00

        ∑m-11?m-12·n?m0=∑m-1?m0-1·n?m00

        LetHbe a Hopf coquasigroup with a bijective antipodeS. Under the hypotheses of the above results, we have the relationship:

        Δ(xy)=∑x1(x2-1·y1)?x20y2,Δ(1)=1?1

        ε(xy)=ε(x)ε(y),ε(1H)=1

        ρH(xy)=∑(xy)-1?(xy)0=

        ∑x-1y-1?x0y0,ρH(1H)=1L?1H

        ∑x-1?x01?x02=∑x1-1x2-1?x10?x20

        ∑x-1εH(x0)=εH(x)1

        l·(xy)=∑(l1·x)(l2·y),l·1H=ε(l)1H

        Δ(l·x)=∑(l1·x1)?(l2·x2),ε(l·x)=ε(l)ε(x)

        SH(xy)=∑((S(x))-1·SH(y))(S(x))0=

        ∑(x-1·S(y))S(x0),S(1)=1

        SH(xy)=∑((S(x))-1·SH(y))(S(x))0=

        ∑(x-1·S(y))S(x0),S(1)=1

        for anyx,y∈Handl∈L.

        2 A Generalization of Sweedler’s Dual of Hopf Algebras

        Let (A,mA,μA) be an associative algebra. Then, we have coalgebraA0given in Ref.[13] as

        A0={f∈A*|Kerf?an ideal ofAof cofinite dimension}

        dim(fB)<∞,dim(B?fB)<∞

        For anyf∈B*anda,b∈B, we define (a?f)(b)=f(ba) and (fa)(b)=f(ab). This defines aB-Bbimodule structure onB*.

        We consider the action ofHonB*given by (h·f)(b)=f(S(h) ·b) and the quasicoaction ofHonB*defined byρ(f)(b)=S-1(b(-1))?f(b0) for allh∈H,b∈Bandf∈B*.

        It is not difficult for one to check the following two lemmas.

        Lemma3The action:B*?B→Bis a leftH-linear and the action ?:B?B*→Bis a leftHcop-linear.

        ProofBy Lemma 3, for anyf,g∈B*anda,b∈B, we obtain

        ((fg)a)(b)=(fg)(ab)=(f?g)Δ(ab)=

        f(a1(a2(-1)·b1)g(a20b2)=

        f(a2(-1)2·[(S-1(a2(-1)1)·a1)b1])g(a20b2)=

        (S-1(a2(-1)2)·f)[(S-1(a2(-1)1)·a1)b1]×

        g(a20b2)=[(S-1(a2(-1)2)·f)

        (S-1(a2(-1)1)·a1)](b1)(ga20)(b2)=

        Δ*[(S-1(a2(-1))·(fa1)?ga20)](b)

        Thus,

        (fg)B?Δ*[H·(fB)?gB]?Δ*[(H·f)B)?gB]

        ProofApplying the quasicoaction ofHonB*, the proof is complete.

        ProofAccording to Ref.[13], we check that

        1)B0is anH-subquasicomodule ofB*.

        4) (ΔB0)op:(B0)op→(B0)op?(B0)opis an algebra map.

        In the setting of Hopf coquasigroups, the notion of the leftH-module is exactly the same as that for ordinary Hopf algebras since it only depends on the algebra structure ofH. Thus, the proof of these assertions is either trivial or will become trivial after acquainting the Hopf coquasigroup calculus developed above.

        四虎影视永久在线精品| 中文字幕日韩人妻少妇毛片| 亚洲国产精彩中文乱码av| 色播久久人人爽人人爽人人片av| 亚洲色AV性色在线观看| 免费av在线视频播放| 人妻少妇中文字幕在线观看| 日本高清视频www| 波多野结衣在线播放一区| 91精品国产色综合久久不| 亚洲国产美女高潮久久久| 国内露脸少妇精品视频| 亚洲AⅤ无码日韩AV中文AV伦| 魔鬼身材极品女神在线| 日本区一区二区三视频 | 中文人成影院| 国产精品久久久看三级| 亚洲国产果冻传媒av在线观看| 自拍偷自拍亚洲精品情侣| 中文字幕久久久久久久系列| 精品久久精品久久精品| 国产精品高清一区二区三区不卡| 69久久夜色精品国产69| 国产精品国产午夜免费福利看 | 午夜亚洲国产精品福利| av在线免费观看男人天堂| 亚洲日韩国产一区二区三区| 亚洲国产精品无码久久电影| 亚洲中文字幕人妻诱惑| 女色av少妇一区二区三区| 久久人妻内射无码一区三区| 久久精品国产亚洲婷婷| 亚洲a级视频在线播放| 国产乱子轮xxx农村| 精品国产福利一区二区在线| 中文字幕中乱码一区无线精品 | 久久国产精品男人的天堂av| 亚洲不卡高清av网站| 亚洲av无码专区在线播放中文 | 久久婷婷色香五月综合激激情| 人人妻人人澡人人爽欧美一区|