張 海 劉淑嫻 楊宗桃 王 彤 程光遠(yuǎn) 商賀陽(yáng) 徐景升
甘蔗PsbS亞基應(yīng)答甘蔗花葉病毒侵染及其與6K2蛋白的互作研究
張 海 劉淑嫻 楊宗桃 王 彤 程光遠(yuǎn) 商賀陽(yáng) 徐景升*
福建農(nóng)林大學(xué)國(guó)家甘蔗工程技術(shù)研究中心 / 農(nóng)業(yè)農(nóng)村部福建甘蔗生物學(xué)與遺傳育種重點(diǎn)實(shí)驗(yàn)室 / 教育部作物遺傳育種與綜合利用重點(diǎn)實(shí)驗(yàn)室, 福建福州 350002
非光化學(xué)猝滅(non-photochemical quenching, NPQ)是高等植物主要的光保護(hù)調(diào)節(jié)機(jī)制, 光合系統(tǒng)II (Photosystem II, PSII)的PsbS亞基在NPQ起關(guān)鍵作用。甘蔗(spp. hybrid)中PSII PsbS亞基應(yīng)答甘蔗花葉病毒(, SCMV)的侵染尚未見報(bào)道。本課題組在前期研究中克隆了甘蔗的PsbS亞基編碼基因, 命名為, 該基因開放讀碼框(open reading frame, ORF)長(zhǎng)度為798 bp, 編碼長(zhǎng)度為265個(gè)氨基酸的蛋白。生物信息學(xué)分析表明, ScPsbS為穩(wěn)定的疏水性蛋白, 具有葉綠體定位信號(hào), 有4個(gè)跨膜結(jié)構(gòu)域; 具有典型的PsbS亞基結(jié)構(gòu)域。系統(tǒng)進(jìn)化樹分析表明, ScPsbS在單子葉、雙子葉以及單子葉的C3和C4植物中存在明顯的分化。亞細(xì)胞定位分析表明, ScPsbS定位于葉綠體且與SCMV-6K2部分共定位于葉綠體。雙分子熒光互補(bǔ)(bimolecular fluorescence complementation, BiFC)試驗(yàn)進(jìn)一步證實(shí)了ScPsbS與SCMV-6K2互作。實(shí)時(shí)熒光定量PCR分析發(fā)現(xiàn),基因的表達(dá)具有明顯的組織特異性, 在成熟葉片中相對(duì)表達(dá)量最高, 未成熟葉片和初衰葉中次之, 莖和根中幾乎不表達(dá); SCMV侵染對(duì)基因表達(dá)影響顯著,基因在侵染早期顯著上調(diào), 侵染后期沒有明顯的差異。
甘蔗; PsbS亞基; 甘蔗花葉病毒; 6K2; 光保護(hù)
甘蔗(spp. hybrid)是我國(guó)重要的糖料作物, 我國(guó)食糖約90%來(lái)自甘蔗[1-2]。同時(shí), 甘蔗還是重要生物質(zhì)能源作物[3-5]。甘蔗花葉病是發(fā)生最普遍、危害最嚴(yán)重的一類病毒病性病害, 嚴(yán)重影響甘蔗產(chǎn)量和品質(zhì)[6-8]。甘蔗花葉病的病原主要有甘蔗花葉病毒(, SCMV)、高粱花葉病毒(, SrMV)和甘蔗條紋花葉病毒(SCSMV) 3種[9-10], 均為馬鈴薯Y病毒科(Potyviridae)病毒[7,11-19]。SCMV和SrMV屬于馬鈴薯Y病毒屬()[20-21], SCSMV是該科新屬, 即禾病毒屬()[22-24]。近年來(lái), 我國(guó)蔗區(qū)SrMV和SCSMV的檢出率呈上升趨勢(shì)[23,25], 但是SCMV依然是主要病原, 且在全世界普遍發(fā)生, 威脅甘蔗產(chǎn)業(yè)[14,26-28]。
SCMV、SrMV和SCSMV的基因組由約為10,000 nt的單鏈正義RNA組成, 編碼2個(gè)多聚蛋白, 最終水解成11個(gè)成熟蛋白, 分別為P1、HC-Pro、P3、P3N-PIPO、6K1、CI、6K2、VPg、NIa-Pro、NIb和CP[29-35]。其中, 6K2蛋白在馬鈴薯Y病毒科病毒侵染中具有重要作用, 參與病毒的復(fù)制和胞間移動(dòng)[32,35-38]。該蛋白以衣被蛋白I (coatomer protein complex I, COPI)和COPII依賴方式形成[39-41]誘導(dǎo)內(nèi)質(zhì)網(wǎng)(endoplasmic reticulum, ER)形成復(fù)制囊泡[41-43], 將病毒RNA、蛋白以及病毒復(fù)制所需的一些宿主蛋白包裹其中[44-46]。這些囊泡在細(xì)胞內(nèi)沿著微絲移動(dòng)[41], 并通過6K2與CI互作到達(dá)胞間連絲(plasmodesmata, PD), 然后通過PD進(jìn)入未感染的相鄰細(xì)胞[47], 或通過早期分泌途徑沿著微絲達(dá)到葉綠體, 與葉綠體外膜融合, 進(jìn)行病毒基因組高效復(fù)制[48]。病毒侵染造成葉綠素減少[49-51], 光合電子傳遞速率和同化效率降低[52-53], 甚至破壞葉綠體結(jié)構(gòu)[49,54], 嚴(yán)重影響植物的光合作用[27,49,55]。病毒侵染也影響植物的非光化學(xué)猝滅(non-photochemical quenching, NPQ)[49,51,55], 但其潛在的分子機(jī)制尚不清楚。NPQ是植物在長(zhǎng)期進(jìn)化過程中發(fā)展的一種光保護(hù)機(jī)制, 植物藉此將過剩光能轉(zhuǎn)化為熱能耗散, 以減少過強(qiáng)光照的損傷[56-63]。光合系統(tǒng)II (Photosystem II, PSII)的PsbS亞基在NPQ起關(guān)鍵作用, 在缺失該基因的擬南芥突變體中, 光捕獲和光合作用未受影響, 但是NPQ嚴(yán)重受抑[62,64]。進(jìn)一步研究表明, 過量光照導(dǎo)致PsbS質(zhì)子化, 進(jìn)而誘導(dǎo)一系列生理生化反應(yīng)如葉黃素循環(huán)、LHCII的磷酸化以及LHCII在PSI和PSII間的遷移, 調(diào)節(jié)激發(fā)能在2個(gè)光合系統(tǒng)上的合理分配, 以保護(hù)光合膜免遭受強(qiáng)光危害[63,65-69]; 同時(shí), PsbS還可以通過與LHCII三聚體蛋白直接互作來(lái)增強(qiáng)過剩光能的猝滅從而保護(hù)光合膜[70]。
在前期研究工作中, 我們以SCMV編碼的6K2蛋白為誘餌, 利用酵母雙雜交(yeast two hybrid, Y2H)技術(shù)從甘蔗ROC22葉片的 cDNA 酵母文庫(kù)中篩選并克隆了甘蔗的PsbS編碼基因, 命名為(GenBank登錄號(hào)為MN167889), 并利用Y2H驗(yàn)證了ScPsbS與SCMV-6K2的互作[71]。的開放讀碼框(open reading frame, ORF)長(zhǎng)度為798 bp, 編碼長(zhǎng)度為 265 aa的蛋白。在本研究中, 我們對(duì)ScPsbS進(jìn)行了深入的生物信息學(xué)分析, 利用定量PCR技術(shù)分析了組織特異性與應(yīng)答SCMV侵染的表達(dá)模式, 利用雙分子熒光互補(bǔ)(bimolecular fluorescent complimentary, BiFC)技術(shù)進(jìn)一步驗(yàn)證了ScPsbS與SCMV-6K2 的互作關(guān)系, 并對(duì)其在SCMV侵染中的作用做了探討。本研究為闡明病毒影響植物NPQ的分子機(jī)制及甘蔗抗花葉病育種提供了基礎(chǔ)數(shù)據(jù)和實(shí)驗(yàn)依據(jù)。
SCMV-FZ1病毒株系[72]、甘蔗品種和本氏煙()由福建農(nóng)林大學(xué)農(nóng)業(yè)農(nóng)村部福建甘蔗生物學(xué)與遺傳育種重點(diǎn)實(shí)驗(yàn)室提供。本氏煙用于亞細(xì)胞定位和BiFC實(shí)驗(yàn), 在光周期為16 h光照/8 h暗, 光照強(qiáng)度為130 μmol m–2s–1, 溫度為22℃和空氣濕度為60%的條件下培養(yǎng)。參照翟玉山等[73]的方法, 研究目的基因應(yīng)答SCMV侵染的表達(dá)模式。采用腋芽快繁技術(shù)培養(yǎng)組培苗, 培養(yǎng)條件為光強(qiáng)200 μmol m–2s–1, 光周期16 h光照/8 h暗, 溫度28℃, 空氣濕度60%。待組培苗長(zhǎng)至15~25 cm、出現(xiàn)4~5片完全展開的葉片時(shí), 摩擦接種SCMV, 設(shè)置3個(gè)重復(fù), 每個(gè)重復(fù)3株, 在光培養(yǎng)期間的第1小時(shí)后接種, 使用磷酸緩沖液(pH 7.0)摩擦接種對(duì)照植株, 取接種部位, 使用-CP基因特異引物(表1)檢測(cè)接種是否成功。分別在接種后0 h、4 h、8 h、12 h、1 d、3 d、5 d、7 d取樣。從福建農(nóng)林大學(xué)隔離網(wǎng)室中選取長(zhǎng)勢(shì)一致的伸長(zhǎng)期甘蔗品種健康植株, 于早上9點(diǎn)取未成熟葉心葉、成熟葉片正一葉(甘蔗植株由上到下第一個(gè)有可見肥厚帶的葉片)、初衰葉片正七葉、未成熟節(jié)間第三節(jié)間、完成形態(tài)建成的第八節(jié)間和根, 用于基因的組織特異性表達(dá)實(shí)驗(yàn), 設(shè)3個(gè)生物學(xué)重復(fù), 每個(gè)生物學(xué)重復(fù)設(shè)置3株。取樣后用液氮速凍, 置?80℃冰箱保存?zhèn)溆谩?/p>
表1 本研究使用的引物
利用ProtParam (http://expasy.org/tools/protparam. html)預(yù)測(cè)ScPsbS蛋白的一級(jí)結(jié)構(gòu)、理化性質(zhì); 利用GOR4 (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat. pl?page=npsa_gor4.html)、SignalP 5.0 (http://www.cbs. dtu.dk/services/SignalP/)和TMHMM 2.0 (http://www. cbs.dtu.dk/services/TMHMM/)分別預(yù)測(cè)分析ScPsbS的二級(jí)結(jié)構(gòu)、信號(hào)肽和跨膜特性; 利用SWISS- MODEL (https://www.swissmodel.Expasy.org/)進(jìn)行蛋白三維建模分析; 通過NCBI中的CDD (conserved domain database)數(shù)據(jù)庫(kù)(https://www.ncbi.nlm.nih. gov/Structure/cdd/wrpsb.cgi)預(yù)測(cè)ScPsbS蛋白保守結(jié)構(gòu)域; 通過ChloroP (http://www.cbs.dtu.dk/services/ ChloroP/)預(yù)測(cè)分析ScPsbS蛋白的轉(zhuǎn)運(yùn)肽; 用Blastp在線工具查找ScPsbS的同源氨基酸序列, 使用DNAman 8.0進(jìn)行氨基酸序列比對(duì)分析, 使用ClustalX和MEGA 6.0的ML (maximum likelihood, LG+G)法構(gòu)建系統(tǒng)進(jìn)化樹。
ProtParam分析表明, ScPsbS蛋白的分子量為27.81 kD, 等電點(diǎn)為9.07; 不穩(wěn)定系數(shù)為28.47, 為穩(wěn)定蛋白; 脂溶指數(shù)為100.53, 總平均親水性是0.238, 可能是疏水性蛋白。GOR4預(yù)測(cè)表明, ScPsbS中無(wú)規(guī)則卷曲所占的比例最高, 為47.17%; 其次是α螺旋, 占42.64%; 延伸鏈所占比例是10.19%; 無(wú)β-折疊結(jié)構(gòu)。SignalP 5.0分析表明, ScPsbS蛋白不含信號(hào)肽, 是非分泌蛋白??缒そY(jié)構(gòu)域預(yù)測(cè)結(jié)果表明, ScPsbS具有4個(gè)跨膜結(jié)構(gòu)域。將ScPsbS蛋白序列提交SWISS-MODEL, 以蛋白質(zhì)數(shù)據(jù)庫(kù)中的菠菜PsbS (SMTL ID: 4ri2.1)A鏈晶體分子[76]為模板, 對(duì)ScPsbS、玉米()的ZmPsbS (NP_0011 05228.2)、水稻()的OsPsbS (XP_ 015621169.1)和擬南芥()的AtPsbS (NP_973971.1)進(jìn)行同源建模結(jié)構(gòu)預(yù)測(cè)。由于PsbS亞基是以二聚體執(zhí)行其生物學(xué)功能的[76], 因此結(jié)構(gòu)預(yù)測(cè)以二聚體的形式體現(xiàn)。預(yù)測(cè)結(jié)果表明, ScPsbS、玉米ZmPsbS、水稻OsPsbS、擬南芥AtPsbS與模板菠菜PsbS蛋白的氨基酸序列一致性分別為83.89%、84.36%、85.31%和88.21%,空間結(jié)構(gòu)類似(圖1)。
利用Gateway技術(shù), 將基因構(gòu)建到pEarleygate-202-YC和pEarleygate-201-YN載體中, 獲得ScPsbSYC和YN-ScPsbS載體。用目的片段, 以黃色熒光蛋白(yellow fluorescence protein, YFP)為標(biāo)記, 構(gòu)建ScPsbS蛋白的亞細(xì)胞定位載體ScPsbS-YFP。所有構(gòu)建的載體都經(jīng)過上海生工生物工程有限公司測(cè)序驗(yàn)證。亞細(xì)胞定位載體SCMV-6K2-CFP以及用于BiFC實(shí)驗(yàn)的SCMV-6K2-YN和SCMV-6K2-YC均來(lái)自本課題組前期研究工作[71]。
(5)全球范圍內(nèi),自動(dòng)駕駛技術(shù)研究方向主要集中在環(huán)境感知、決策控制系統(tǒng)和全球定位系統(tǒng)這三大方面,這也是自動(dòng)駕駛技術(shù)的三大核心技術(shù)。
參照Cheng等[32]的方法, 將含有植物表達(dá)載體ScPsbS-YFP的農(nóng)桿菌GV3101以及等比例混合的含有植物表達(dá)載體SCMV-6K2-CFP和ScPsbS-YFP的農(nóng)桿菌GV3101分別注射到健康的本氏煙葉片, 48 h后在激光共聚焦顯微鏡(Leica TCS SP5II)下觀察本氏煙葉片表皮細(xì)胞中SCMV-6K2蛋白的定位以及ScPsbS蛋白和SCMV-6K2蛋白的共定位。CFP的激發(fā)波長(zhǎng)為442 nm, 采集波長(zhǎng)為450~500 nm; GFP的激發(fā)波長(zhǎng)為514 nm, 采集波長(zhǎng)為530~590 nm; 葉綠素自熒光的激發(fā)光波長(zhǎng)為552 nm, 采集波長(zhǎng)為 650~680 nm。圖像采用數(shù)字采集, 使用LSM 2.6.3軟件處理。
可視化是BIM技術(shù)在項(xiàng)目信息管理中應(yīng)用的基本特征。具體而言,在BIM技術(shù)應(yīng)用過程中,建筑工程的數(shù)字化立體模型得以有效建立,其使得傳統(tǒng)二維圖紙指導(dǎo)工程實(shí)踐的信息管理模式發(fā)生轉(zhuǎn)變;現(xiàn)代信息管理體系下,三維模型的應(yīng)用使得建筑工程內(nèi)容信息更加直觀,其在可視化的條件下,充分保證了工程項(xiàng)目信息管理的質(zhì)量,確保了信息決策的高效和精確。
參照朱海龍等[74]的方法將含有ScPsbS-YC和SCMV-6K2-YN, ScPsbS-YN和SCMV-6K2-YC的農(nóng)桿菌GV3101等比例混合, 分別注射入健康的本氏煙葉片中。在正常條件下培養(yǎng)2~3 d后在激光共聚焦顯微鏡(Leica TCS SP5II)下觀察照相。YFP的激發(fā)光波長(zhǎng)為514 nm, 捕獲波長(zhǎng)為530~590 nm?圖像采用數(shù)字采集, 并用LSM 2.6.3軟件處理。
以小立碗蘚()的PsbS蛋白序列作為外源序列, 使用ClustalX和MEGA 7.0的ML (maximum likelihood, LG+G)法構(gòu)建系統(tǒng)進(jìn)化樹, 分析ScPsbS蛋白與其他物種PsbS蛋白的進(jìn)化關(guān)系。結(jié)果表明, 雙子葉植物番茄()、煙草()、擬南芥()、葡萄()、三葉楊()、大豆()、苜蓿()形成群I; 單子葉植物甘蔗、高粱、玉米、谷子、狗尾草()、黍、柳枝稷()、水稻、二穗短柄草、短柄草()、小麥、大麥()形成群II, 同時(shí)單子葉中的C3植物和C4植物分別形成亞群II-1和II-2 (圖4)。這表明, 在遺傳進(jìn)化上PsbS蛋白在單子葉植物和雙子葉植物之間, 以及在單子葉中的C3植物和C4植物之間存在明顯分化。
將采集的樣品在液氮中研磨成粉末, 采用TRIzol (Invotrigen, USA)試劑按照其說(shuō)明書提取樣品總RNA, 使用1.0%瓊脂糖凝膠電泳檢測(cè)RNA質(zhì)量。利用反轉(zhuǎn)錄試劑盒(艾科瑞, 中國(guó)), 參照其說(shuō)明書, 將RNA反轉(zhuǎn)錄成cDNA。
BiFC試驗(yàn)結(jié)果表明, 共注射的YN-6K2和ScPsbS-YC, YN-ScPsbS和6K2-YC組合都分別產(chǎn)生黃色熒光信號(hào)(圖6), 說(shuō)明ScPsbS與SCMV-6K2互作, 與我們前期Y2H試驗(yàn)結(jié)果一致[71], 進(jìn)一步證明了ScPsbS與SCMV-6K2互作。
通過NCBI 網(wǎng)站的Blastp和Phytozome網(wǎng)站的Proteome Blastp搜索不同物種的PsbS同源序列, 結(jié)果顯示, ScPsbS蛋白與高粱(, XP_ 002456704.1)、玉米、谷子(, XP_004970 722.1)、黍(, XP_025818476.1)、二穗短柄草(, XP_003564 708.1)、小麥(, CDM85166.1)和水稻的PsbS相似性分別為98%、95%、84%、89%、81%、80%和79%。其在PsbS結(jié)構(gòu)域的氨基酸序列高度保守, 而在N端的轉(zhuǎn)運(yùn)肽由于物種的不同而表現(xiàn)出差異, 且C3和C4植物有明顯的差異(圖3)。
圖1 基于SWISS-MODEL的ScPsbS、ZmPsbS、OsPsbS和AtPsbS蛋白三維建模
ZmPsbS (NP_001105228.2): 玉米的PsbS亞基; OsPsbS (XP_ 015621169.1): 水稻的PsbS亞基; AtPsbS (NP_973971.1): 擬南芥的PsbS亞基。
ZmPsbS (NP_001105228.2) is from; OsPsbS (XP_ 015621169.1) is from; AtPsbS (NP_973971.1) is from.
圖2 ScPsbS基因的核苷酸序列及其編碼的氨基酸序列
圖3 甘蔗ScPsbS與其他單子葉植物PsbS蛋白的氨基酸序列比對(duì)
高粱: SbPsbS (XP_002456704.1); 玉米: ZmPsbS (NP_ 001105228.2); 黍: PhPsbS (XP_025818476.1); 谷子: SiPsbS (XP_ 004970722.1); 水稻: OsPsbS (XP_015621169.1); 二穗短柄草: BdPsbS (XP_003564708.1); 小麥: TaPsbS (CDM85166.1)。
: SbPsbS (XP_002456704.1);: ZmPsbS (NP_001105228.2);: PhPsbS (XP_025818476.1);: SiPsbS (XP_004970722.1);: OsPsbS (XP_015621169.1);: BdPsbS (XP_ 003564708.1);: TaPsbS (CDM85166.1).
根據(jù)基因的ORF序列, 設(shè)計(jì)特異性實(shí)時(shí)熒光定量PCR引物, 以供試材料的cDNA為模板, 以基因和基因(表1)為內(nèi)參基因[75], 利用SYBR Green PCR Master Mix Kit (Roche, 日本)試劑盒, 參照其說(shuō)明書配制反應(yīng)體系。在7500型實(shí)時(shí)熒光定量PCR儀(ABI, USA)上完成PCR擴(kuò)增, 反應(yīng)程序?yàn)?0℃ 2 min; 95℃ 10 min; 95℃ 15 s; 60℃ 1 min, 40個(gè)循環(huán)。每個(gè)樣品設(shè)置3次重復(fù), 以DEPC處理的無(wú)菌水作為空白對(duì)照, 采用2–ΔΔCt算法進(jìn)行基因表達(dá)水平分析, 使用統(tǒng)計(jì)軟件SPSS 12.0對(duì)基因表達(dá)差異進(jìn)行顯著性分析。
其次,還可以看出《紐約時(shí)報(bào)》中的心理過程和行為過程都多于《中國(guó)日?qǐng)?bào)》;而物質(zhì)過程和關(guān)系過程《中國(guó)日?qǐng)?bào)》多于《紐約時(shí)報(bào)》。這反映出中國(guó)記者在報(bào)道“一帶一路”使更多的強(qiáng)調(diào)中國(guó)與其他國(guó)家的合作關(guān)系;而美國(guó)記者則多用一些表達(dá)情感的詞匯來(lái)暗示他們對(duì)中國(guó)“一帶一路”的看法,且多用沒有行為目標(biāo)的行為過程,反映出他們對(duì)此戰(zhàn)略的不重視與漠不關(guān)心。
圖4 ScPsbS與其他物種PsbS蛋白的系統(tǒng)進(jìn)化樹分析
以健康植株為材料, 研究基因在不同組織表達(dá)的特異性, 熒光定量PCR結(jié)果表明,基因在不同組織中的表達(dá)具有顯著差異(圖7): 在正一葉中相對(duì)表達(dá)量最高, 正七葉和心葉次之, 莖和根中表達(dá)量極低。正一葉是完全展開的光合作用最旺盛的葉片, 正七葉為初衰葉, 心葉基本是分生組織, 莖和根中則基本無(wú)光合作用, 因此的表達(dá)與其所在組織的光合能力呈正相關(guān)。
保守結(jié)構(gòu)域分析表明,編碼的蛋白包含2個(gè)PsbS保守結(jié)構(gòu)域, 分別在88~132、192~249位(圖2), 確定屬于基因家族。PsbS蛋白由核基因編碼, 其N端具有轉(zhuǎn)運(yùn)肽, 靶向葉綠體內(nèi)囊體腔, 進(jìn)入葉綠體后在保守結(jié)構(gòu)域AXA (X為任意氨基酸)后切割[77-78]。使用ChloroP對(duì)ScPsbS進(jìn)行轉(zhuǎn)運(yùn)肽預(yù)測(cè)分析表明, ScPsbS蛋白N端的66 aa片段為轉(zhuǎn)運(yùn)肽, 其64~66位氨基酸為AAA (圖2)。
在本實(shí)驗(yàn)中仍然存在一定的局限性。輸血患者減少的比例差異無(wú)統(tǒng)計(jì)學(xué)意義。雖然氨甲環(huán)酸組的患者比對(duì)照組接受輸血的人數(shù)少,但是差異無(wú)統(tǒng)計(jì)學(xué)意義,這可能與樣本量較少有關(guān)。其次,術(shù)中失血量的評(píng)估,并未將手術(shù)衣、鋪巾上的失血算入,這可能導(dǎo)致誤差。而氨甲環(huán)酸藥物的使用劑量仍然是基于大部分脊柱外科推薦劑量使用,而具體氨甲環(huán)酸在腫瘤手術(shù)中的最佳劑量仍然需要大量的不同實(shí)驗(yàn)去驗(yàn)證。最后,兩組患者術(shù)后的引流量的比較差異無(wú)統(tǒng)計(jì)學(xué)意義,可能與術(shù)后未使用氨甲環(huán)酸,患者血液中氨甲環(huán)酸濃度下降,而未發(fā)揮藥物作用有關(guān)。
亞細(xì)胞定位試驗(yàn)表明, ScPsbS-YFP的黃色熒光信號(hào)與葉綠體的熒光信號(hào)重合(圖5-A), 表明ScPsbS定位于葉綠體, 與擬南芥PsbS的葉綠體定位結(jié)果一致[64,79]。Y2H表明ScPsbS與SCMV-6K2互作[65], 因此本研究探討了ScPsbS和SCMV-6K2的共同定位情況。結(jié)果表明, ScPsbS-YFP的黃色熒光信號(hào)與6K2-CFP的青色熒光蛋白信號(hào)重合, 部分共定位信號(hào)與葉綠體熒光信號(hào)重合, 且這些葉綠體均分布在細(xì)胞膜周圍(圖5-B)。
以SCMV-FZ1接種的葉片為材料[73], 研究SCMV侵染對(duì)基因表達(dá)的影響。使用SCMV-CP基因特異引物(表1)檢測(cè)SCMV接種甘蔗, 擴(kuò)增出目的片段, 表明接種成功。熒光定量PCR結(jié)果表明, SCMV侵染對(duì)基因表達(dá)影響顯著, 與對(duì)照相比,基因在侵染早期顯著上調(diào), 然后下調(diào)至略高于對(duì)照的水平, 但是差異不顯著(圖8)。
圖5 ScPsbS-YFP在本氏煙表皮細(xì)胞中的定位
A: ScPsbS-YFP亞細(xì)胞定位; B: ScPsbS-YFP和6K2-CFP亞細(xì)胞共定位。白色箭頭表示葉綠體, 標(biāo)尺= 25 μm。
A: subcellular localization of ScPsbS-YFP; B: subcellular colocalization of ScPsbS-YFP with 6K2-CFP. White arrows indicate the chloroplasts; bar = 25 μm.
圖6 BiFC檢測(cè)ScPsbS與SCMV-6K2的互作
A: YC融合于ScPsbS的C末端, YN融合于SCMV-6K2的N末端; B: YN融合于ScPsbS的N末端, YC融合于SCMV-6K2的C末端。將YN-6K2和ScPsbS-YC(A), YN-ScPsbS和6K2-YC(B)分別共注射到本氏煙葉片中進(jìn)行瞬時(shí)表達(dá), 48 h后激光共聚焦觀察。標(biāo)尺= 25 μm。
A: the C-terminal half of YFP was fused to the C-terminal of ScPsbS to generate ScPsbS-YC, while the N-terminal half of YFP was fused to the N-terminla of SCMV-6K2 to generate YN-6K2; B: the N-terminal half of YFP was fused to the N-terminal of ScPsbS to generate YN- ScPsbS, while the C-terminal half of YFP was fused to the C-terminal of SCMV-6K2 to generate 6K2-YC. Plasmids combination of YN-6K2 plus ScPsbS-YC (A), YN-ScPsbS plus SCMV-6K2-YC (B) were individually co-injected intoleaves for transient expression. The fluorescent signal was monitored by confocal microscopy at 48 h after infiltration; bar = 25 μm.
甘蔗是生長(zhǎng)于熱帶亞熱帶的C4植物, 具有很高的光合效能[80]。甘蔗在光照強(qiáng)度最高的中午時(shí)段, 存在光抑制現(xiàn)象[81], 但是對(duì)凈光合效率影響不大[82], 主要是因?yàn)楦收峋哂休^強(qiáng)的光呼吸和光抑制自我保護(hù)能力, 相應(yīng)地, 其NPQ也在中午出現(xiàn)峰值[80]。在甘蔗伸長(zhǎng)期, 正一葉是光合作用最旺盛的葉片[81]。本研究對(duì)的組織特異性表達(dá)分析(圖7)也表明,的表達(dá)可能與其所在組織的光合能力相關(guān)。由于PsbS是植物NPQ的關(guān)鍵因子[62,64,67,70], 因此推測(cè)這種相關(guān)源自以NPQ為主的光保護(hù)。
圖7 ScPsbS基因在甘蔗不同組織中的表達(dá)模式
誤差線為每組處理的標(biāo)準(zhǔn)誤差(= 3)。LR: 心葉; +1 L: 正一葉; +7 L: 正七葉; +3 I: 第三節(jié)間; +8 I: 第八節(jié)間; R: 根。
The error bars represent the standard error of each treatment group (= 3). LR: leaf roll; +1 L: +1 leaf; +7 L: +7 leaf; +3 I: +3 internode; +8 I: +8 Internode; R: root.
圖8 ScPsbS基因應(yīng)答SCMV侵染的表達(dá)模式
誤差線為每組處理的標(biāo)準(zhǔn)誤差(= 3)。
The error bars represent the standard error of each treatment group (= 3).
植物病毒基因組簡(jiǎn)單, 必須與寄主因子互作才能在寄主體內(nèi)建立系統(tǒng)性侵染[82-83]。本課題組在前期研究中, 利用Y2H驗(yàn)證了SCMV-6K2與ScPsbS的互作[71], 本研究利用BiFC技術(shù)進(jìn)一步證明了它們的互作(圖 6)。SCMV-6K2定位于內(nèi)質(zhì)網(wǎng)和葉綠體[71], ScPsbS定位于葉綠體(圖5-A), SCMV-6K2與ScPsbS的部分共定位信號(hào)出現(xiàn)在葉綠體上(圖5-B)。葉綠體是馬鈴薯Y病毒屬病毒高效復(fù)制的場(chǎng)所, 比如蕪菁花葉病毒(, TuMV)利用6K2與Syp71互作[48], 煙草脈帶花葉病毒(, TVBMV)利用6K2與NbPsbO1互作[84], 促進(jìn)病毒基因組復(fù)制。因此, 我們推測(cè)SCMV可能利用6K2與ScPsbS互作, 使SCMV的復(fù)制復(fù)合體定位于葉綠體, 有利于SCMV基因組的高效復(fù)制。供試材料極易感染甘蔗花葉病,在SCMV侵染早期表達(dá)顯著上調(diào)(圖8), 一方面有助于SCMV在寄主體內(nèi)建立系統(tǒng)性侵染, 另一方面則是寄主對(duì)SCMV侵染的抗性反應(yīng)。甘蔗花葉病的主要癥狀是出現(xiàn)花葉、植株矮小、產(chǎn)量和品質(zhì)下降等, 主要是因?yàn)镾CMV侵染導(dǎo)致葉綠素減少[50]、葉綠體破壞[85], 進(jìn)而光合作用受損。在SCMV侵染后期,表達(dá)量迅速下降(圖8)至略高于對(duì)照, 但無(wú)顯著性差異。Lei等[55]對(duì)黃瓜花葉病毒(, CMV)侵染煙草的研究表明, 在侵染后的第8天和第12天, 感病葉片與健康葉片相比, NPQ略高但無(wú)顯著差異, 推測(cè)是煙草應(yīng)對(duì)CMV侵染的抗逆反應(yīng)[49]。ScPsbS與SCMV-6K2互作于細(xì)胞膜上(圖6), 改變了ScPsbS的葉綠體定位, 因此可能抑制NPQ, 使甘蔗的光合作用失去保護(hù), 加劇葉綠體的損傷, 導(dǎo)致葉片黃化, 進(jìn)而吸引蚜蟲等昆蟲載體傳播病毒[14,86-90]。
一是擴(kuò)寬了農(nóng)產(chǎn)品的銷售途徑。“互聯(lián)網(wǎng)+農(nóng)產(chǎn)品”銷售模式在傳統(tǒng)銷售模式的基礎(chǔ)上,突破了場(chǎng)地和時(shí)間的局限,拉近了生產(chǎn)方和消費(fèi)方的距離,幫助農(nóng)產(chǎn)品市場(chǎng)營(yíng)銷主體更好地認(rèn)識(shí)市場(chǎng)需求、市場(chǎng)價(jià)格趨向以及競(jìng)爭(zhēng)者的信息,推動(dòng)了市場(chǎng)營(yíng)銷向精細(xì)化、專業(yè)化、個(gè)性化方向發(fā)展。
目前,由于可編程邏輯控制器已相對(duì)比較成熟,使其在生產(chǎn)的過程當(dāng)中普遍替代了機(jī)電控制。通過應(yīng)用可編程邏輯控制器,能夠使電氣化生產(chǎn)過程當(dāng)中所具有的優(yōu)點(diǎn)得到更加充分的體現(xiàn),利用此方式能夠有效確保整個(gè)電氣系統(tǒng)始終保持正常運(yùn)行的狀態(tài)。與此同時(shí),可編程邏輯控制器不僅可以達(dá)到供電體互相轉(zhuǎn)換的目的,還可以讓電氣工程的相關(guān)項(xiàng)目體系更加穩(wěn)定,以此提高電氣及其自動(dòng)化控制的效率。
基因在成熟葉片中表達(dá)量最高, 在SCMV侵染早期上調(diào)表達(dá)。ScPsbS蛋白定位于葉綠體, 可與SCMV-6K2共定位于葉綠體。ScPsbS蛋白與SCMV-6K2互作于細(xì)胞膜。
[1] 翁卓, 黃寒. 中國(guó)制糖產(chǎn)業(yè)競(jìng)爭(zhēng)力對(duì)比與政策建議—基于對(duì)巴西、印度、泰國(guó)考察的比較. 甘蔗糖業(yè), 2015, (4): 65–72.Weng Z, Huang H. Comparative analysis on China’s sugar industry competitiveness: based on the comparison of Brazil, India and Thailand Sugar Industry., 2015, (4): 65–72 (in Chinese with English abstract).
[2] 劉曉雪, 王新超. 2017/18榨季中國(guó)食糖生產(chǎn)形勢(shì)分析與2018/19榨季展望.農(nóng)業(yè)展望,2018, 14(11): 40–46. Liu X X, Wang X C. Domestic sugar production situation in 2017/18 crushing season and its prospect for 2018/19 crushing season., 2018, 14(11): 40–46 (in Chinese with English abstract).
[3] 劉燕群, 李玉萍, 梁偉紅, 宋啟道, 秦小立, 葉露. 國(guó)外甘蔗產(chǎn)業(yè)發(fā)展現(xiàn)狀. 世界農(nóng)業(yè), 2015, (8): 147–152. Liu Y Q, Li Y P, Liang H W, Song Q D, Qin X L, Ye L. Current status and development of the abroad sugarcane industry., 2015, (8): 147–152 (in Chinese with English abstract).
[4] 王明強(qiáng), 李文鳳, 黃應(yīng)昆, 王曉燕, 盧文潔, 羅志明. 我國(guó)大陸蔗區(qū)發(fā)生的甘蔗病毒病及防控對(duì)策. 中國(guó)糖料,2010, (4): 55–58. Wang M Q, Li Y P, Huang Y K, Wang X Y, Lu W J, Luo Z M. Occurrence and controlling strategies on sugarcane viral diseases in Chinese mainland., 2010, (4): 55–58 (in Chinese with English abstract).
[5] 周晚秋, 婁春, 何子林, 傅峻濤. 巴西生物燃料技術(shù)現(xiàn)狀與發(fā)展.中外能源, 2017, 22(6): 24–31. Zhou W Q, Lou C, He Z L, Fu J T. Status quo and development of Brazilian biofuel technologies., 2017, 22(6): 24–31 (in Chinese with English abstract).
[6] 周豐靜, 黃誠(chéng)華, 李正文, 商顯坤, 黃偉華, 潘雪紅, 魏吉利, 林善海. 廣西蔗區(qū)甘蔗花葉病病毒種群分析. 南方農(nóng)業(yè)學(xué)報(bào), 2015, 46: 609–613. Zhou F J, Huang C H, Li Z W, Shang X S, Huang W H, Pan X H, Wei J L, Lin S H. Analysis of the virus population causingdisease in sugarcane growing area of Guangxi., 2015, 46: 609–613 (in Chinese with English abstract).
[7] Ling H, Huang N, Wu Q, Su Y, Peng Q, Ahmed W, Gao S, Su W, Que Y, Xu L. Transcriptional insights into theinteraction.,2018, 11: 163–176.
[8] 周國(guó)輝, 許東林, 沈萬(wàn)寬. 甘蔗重要病害研究及防治策略. 甘蔗糖業(yè), 2005, (1): 11–16. Zhou G H, Xu D L, Shen W K. On sugarcane major diseases and their controlling., 2005, (1): 11–16 (in Chinese with English abstract).
[9] Shukla D D, Frenkel M J, McKern N M, Ward C W, Jilka J, Tosic M, Ford R E. Confirmation that thesubgroup consists of four distinct potyviruses by using peptide profiles of coat proteins., 1992, 5: 363–373.
[10] Shukla D D, Tosic M, Jilka J, Ford R E, Toler R W, Langham M A C.Taxonomy of potyviruses infecting maize, sorghum, and sugarcane in Australia and the United States as determined by reactivities of polyclonal., 1989, 79: 223–229.
[11] 梁姍姍, 羅群, 陳如凱, 高三基. 引起甘蔗花葉病的病原分子生物學(xué)進(jìn)展. 植物保護(hù)學(xué)報(bào),2017, 44: 363–370. Liang S S, Luo Q, Chen R K, Gao S J. Advances in researches on molecular biology of viruses causing sugarcane mosaic., 2017, 44: 363–370 (in Chinese with English abstract).
[12] 李文鳳, 單紅麗, 張榮躍, 王曉燕, 羅志明, 尹炯, 倉(cāng)曉燕, 李婕, 黃應(yīng)昆. 我國(guó)新育成甘蔗品種(系)對(duì)甘蔗線條花葉病毒和高粱花葉病毒的抗性評(píng)價(jià). 植物病理學(xué)報(bào),2018, 48: 389–394. Li W F, Shan H L, Zhang R Y, Wang X Y, Luo Z M, Yin J, Cang X Y, Li J, Huang Y K. Screening for resistance toandin new elite sugarcane varieties/clones from China., 2018, 48: 389–394 (in Chinese with English abstract).
[13] 馮小艷, 王文治, 沈林波, 馮翠蓮, 張樹珍. 甘蔗線條花葉病毒研究進(jìn)展. 生物技術(shù)通報(bào), 2017, 33(7): 22–28. Feng X Y, Wang W Z, Shen L B, Feng C L, Zhang S Z. Research advances on., 2017, 33(7): 22–28 (in Chinese with English abstract).
[14] Wu L, Zu X, Wang S, Chen Y.-long history but still a threat to industry., 2012, 42: 74–78.
[15] Xu D L, Park J W, Mirkov T E, Zhou G H. Viruses causing mosaic disease in sugarcane and their genetic diversity in southern China., 2008, 153: 1031–1039.
[16] 鄭艷茹, 翟玉山, 鄧宇晴, 成偉, 程光遠(yuǎn), 楊永慶, 徐景升. 甘蔗花葉病毒(SCMV)種群結(jié)構(gòu)分析. 福建農(nóng)林大學(xué)學(xué)報(bào)(自然科學(xué)版), 2016, 45(2): 135–140. Zheng Y R, Zhai Y S, Deng Y Q, Cheng W, Cheng G Y, Yang Y Q, Xu J S. The population structure of(SCMV).(Nat Sci Edn), 2016, 45(2): 135–140 (in Chinese with English abstract).
[17] 翟玉山, 彭磊, 楊永慶, 鄧宇晴, 程光遠(yuǎn), 鄭艷茹, 徐景升. 甘蔗條紋花葉病毒 HC-Pro、P3N-PIPO、CP 和 VPg基因酵母雙雜交誘餌表達(dá)載體的構(gòu)建及自激活檢測(cè). 華北農(nóng)學(xué)報(bào), 2016, 31(1): 83–89. Zhai Y S, Peng L, Yang Y Q, Deng Y Q, Cheng G Y, Zheng Y R, Xu J S. Construction and self-activated detection of the baits of HC-Pro, P3N-PIPO, CP and VPg fromfor yeast two hybrid system., 2016, 31(1): 83–89 (in Chinese with English abstract).
[18] Dong M, Cheng G Y, Peng L, Xu Q, Yang Y Q, Xu J S. Transcriptome analysis of sugarcane response to the infection by(SCSMV)., 2017, 10: 45–55.
[19] Zhai Y S, Deng Y Q, Cheng G Y, Peng L, Zheng Y R, Yang Y, Xu J S. Sugarcane elongin C is involved in infection by sugarcane mosaic disease pathogens., 2015, 466: 312–318.
[20] Hall J S, Adams B, Parsons T J, French R, Lane L C, Jensen S G. Molecular cloning, sequencing, and phylogenetic relationships of a new potyvirus:, and a reevaluation of the classification of the., 1998, 10: 323–332.
[21] Ward C W, Shukla D D. Taxonomy of potyviruses: current problems and some solutions.,1991, 32: 269–296.
[22] Putra L K, Kristini A, Achadian E M, Damayanti T A.in indonesia: distribution, characterisation, yield losses and management approaches.,2014, 16: 392–399.
[23] Li W F, He Z, Li S F, Huang Y K, Zhang Z X, Jiang D M, Wang X Y, Luo Z M. Molecular characterization of a new strain of(SCSMV)., 2011, 156: 2101–2104.
[24] Xu D L, Zhou G H, Xie Y J, Mock R, Li R. Complete nucleotide sequence and taxonomy of, member of a novel genus in the family., 2010, 40: 432–439.
[25] 李文鳳, 丁銘, 方琦, 黃應(yīng)昆, 張仲凱, 董家紅, 蘇曉霞, 李婷婷. 云南甘蔗花葉病病原的初步鑒定.中國(guó)糖料, 2006, (2): 8–11. Li W F, Ding M, Fang Q, Huang Y K, Zhang Z K, Dong J H, Su X X, Li T T. Evaluation of similarity-difference analysis for sugarcane varieties., 2006, (2): 8–11 (in Chinese with English abstract).
[26] Filloux D, Fernandez E, Comstock J C, Mollov D, Roumagnac P, Rott P. Viral metagenomic-based screening of sugarcane from florida reveals occurrence of six sugarcane-infecting viruses and high prevalence of.,2018, 102: 2317–2323.
[27] Akbar S, Yao W, Yu K, Qin L, Ruan M, Powell CA, Chen B, Zhang M. Photosynthetic characterization and expression profiles of sugarcane infected by(SCMV).,2020 doi: 10.1007/s11120-019- 00706-w.
[28] Yahaya A, Dangora D B, Kumar P L, Alegbejo M D, Gregg L, Alabi O J. Prevalence and genome characterization of field isolates of(SCMV) in Nigeria., 2019, 103: 818–824.
[29] Bernardi F. Potyvirus proteins: a wealth of functions., 2001, 74: 157–175.
[30] Olspert A, Carr J P, Firth A E. Mutational analysis of thetranscriptional slippage site utilized for expression of the P3N-PIPO and P1N-PISPO proteins.,2016, 44: 7618–7629.
[31] Olspert A, Chung B Y, Atkins J F, Carr J P, Firth A E. Transcriptional slippage in the positive-sense RNA virus family.,2015, 16: 995–1004.
[32] Cheng G Y, Dong M, Xu Q, Peng L, Yang Z T, Wei T Y, Xu J S. Dissecting the molecular mechanism of the subcellular localization and cell-to-cell movement of theP3N-PIPO., 2017, 7: 9868. doi: 10.1038/ s41598-017-10497-6.
[33] Riechmann J L, Laín S, García J A. Highlights and prospects of potyvirus molecular biology.,1992, 73: 1–16.
[34] Chung B Y, Miller W A, Atkins J F, Firth A E. An overlapping essential gene in the.,2008, 105: 5897–5902.
[35] Cheng G Y, Yang Z T, Zhang H, Zhang J S, Xu J S. Remorin interacting with PCaP1 impairsintercellular movement but is antagonised by VPg.,2019,225: 2122–2139.
[36] Cabanillas D, Jiang J, Movahed N, Germain H, Yamaji Y, Zheng H, Laliberté J.uses the SNARE protein VTI11 in an unconventional route for replication vesicle trafficking.,2018, 30: 2594–2615.
[37] Movahed N, Patarroyo C, Sun J, Vali H, Laliberté J F, Zheng H. Cytoplasmic inclusion ofserves as a docking point for the intercellular movement of viral replication vesicles.,2017, 175: 1732–1744.
[38] Movahed N, Sun J, Vali H, Laliberté J, Zheng H. A host ER fusogen is recruited byfor maturation of viral replication vesicles.,2019, 179: 507–518.
[39] Wei T, Wang A. Biogenesis of cytoplasmic membranous vesicles for plantreplication occurs at endoplasmic reticulum exit sites in a COPI- and COPII-dependent manner.,2008, 82: 12252–12264.
[40] Jiang J, Patarroyo C, Garcia Cabanillas D, Zheng H, Laliberté J F. The vesicle-forming 6K2 protein ofinteracts with the COPII coatomer Sec24a for viral systemic infection.,2015, 89: 6695–6710.
[41] Cotton S, Grangeon R, Thivierge K, Mathieu I, Ide C, Wei T, Wang A, Laliberté J.RNA replication complex vesicles are mobile, align with microfilaments, and are each derived from a single viral genome., 2009, 83: 10460–10471.
[42] Nicolas O, Laliberté J. The complete nucleotide sequence of turnip mosaic potyvirusRNA., 1992, 73: 2785–2793.
[43] Beauchemin C, Laliberté J F. The poly(A) binding protein is internalized in virus-induced vesicles or redistributed to the nucleolus duringinfection.,2007, 81: 10905–10913.
[44] Beauchemin C, Boutet N, Laliberté J F. Visualization of the interaction between the precursors of VPg, the viral protein linked to the genome of, and the translation eukaryotic initiation factor iso 4E in Planta.,2007, 81: 775–782.
[45] Dufresne P J, Thivierge K, Cotton S, Beauchemin C, Ide C, Ubalijoro E, Laliberté J F, Fortin M G. Heat shock 70 protein interaction withRNA-dependent RNA polymerase within virus-induced membrane vesicles.,2008, 374: 217–227.
[46] Laliberté J F, Zheng H. Viral manipulation of plant host membranes.,2014, 1: 237–259.
[47] Grangeon R, Jiang J, Wan J, Agbeci M, Zheng H, Laliberté J F. 6K2-induced vesicles can move cell to cell duringinfection.,2013, 4: 351.
[48] Wei T, Zhang C, Hou X, Sanfa?on H, Wang A. The SNARE protein Syp71 is essential forinfection by mediating fusion of virus-induced vesicles with chloroplasts., 2013, 9: e1003378.
[49] Balachandran S, Hurry V M, Kelley S E, Osmond C B, Robinson S A, Rohozinski J, Sims D A. Concepts of plant biotic stress. Some insights into the stress physiology of virus- infected plants, from the perspective of photosynthesis., 1997, 100: 203–213.
[50] 劉家勇, 趙培方, 趙俊, 崔潔, 陳學(xué)寬, 夏紅明, 楊昆, 吳才文. 甘蔗花葉病對(duì)甘蔗葉片葉綠素含量的影響. 中國(guó)糖料, 2011, (4): 7–9. Liu J Y, Zhao P F, Zhao J, Cui J, Chen X K, Xia H M, Yang K, Wu C W. Effect ofon chlorophyll content of sugarcane leaves., 2011, (4): 7–9 (in Chinese with English abstract).
[51] Farooq T, Liu D, Zhou X, Yang Q. Tomato yellow leaf curl China virus impairs photosynthesis in the infectedwith βC1 as an aggravating factor., 2019, 35: 521–529.
[52] Funayama S, Hikosaka K, Yahara T. Effects of virus infection and growth irradiance on fitness components and photosynthetic properties of Eupatorium makinoi (Compositae)., 1997, 84: 823–829.
[53] Song X S, Wang Y J, Mao W H, Shi K, Zhou Y H, Nogues S, Yu J Q. Effects ofinfection on electron transport and antioxidant system in chloroplasts and mitochondria of cucumber and tomato leaves., 2009, 135: 246–257.
[54] Xu J S, Deng Y Q, Cheng G Y, Zhai Y S, Peng L, Dong M, Xu Q, Yang Y Q.infection of model plantsand., 2019, 18: 2294–2301.
[55] Lei R, Jiang H, Hu F, Yan J, Zhu S. Chlorophyll fluorescence lifetime imaging provides new insight into the chlorosis induced by plant virus infection., 2017, 36: 327–341.
[56] Moller I, Jensen P, Hansson A. Oxidative modifications to cellular components in plants.,2007, 58: 459–481.
[57] Li Z, Wakao S, Fischer B B, Niyogi K K. Sensing and responding to excess light., 2009, 60: 239–260.
[58] Pospísil P, Arató A, Krieger-Liszkay A, Rutherford A W. Hydroxyl radical generation by photosystem II., 2004, 43: 6783–6792.
[59] Niyogi K K, Truong B T. Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis., 2013, 16: 307–314.
[60] Holt N E, Fleming G R, Niyogi K K. Toward an understanding of the mechanism of nonphotochemical quenching in green plants., 2004, 43: 8281–8289.
[61] Takahashi S, Badger M R. Photoprotection in plants: a new light on photosystem II damage., 2011, 16: 53–60.
[62] Li X P, Bj?rkman O, Shih C, Grossman A R, Rosenquist M, Jansson S, Niyogi K K. A pigment-binding protein essential for regulation of photosynthetic light harvesting.,2000, 403: 391–395.
[63] Li X P, Gilmore A M, Caffarri S, Bassi R, Golan T, Kramer D, Niyogi K K. Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein., 2004, 279: 22866–22874.
[64] Correagalvis V, Poschmann G, Melzer M, Kai S, Jahns P. PsbS interactions involved in the activation of energy dissipation in., 2016, 2: 15225.
[65] Niyogi K K, Li X P, Rosenberg V, Jung H S. Is PsbS the site of non-photochemical quenching in photosynthesis?, 2005, 56: 375–382.
[66] Johnson M P, Ruban A V.plants lacking PsbS protein possess photoprotective energy dissipation., 2010, 61: 283–289.
[67] Ruban A V, Johnson M P. Xanthophylls as modulators of membrane protein function., 2010, 504: 78–85.
[68] Allen J F. Botany. State transitions: a question of balance.,2003, 299: 1530–1532.
[69] 孫瑞雪, 楊春虹. 光系統(tǒng)II的結(jié)構(gòu)與功能以及光合膜對(duì)環(huán)境因素的響應(yīng)機(jī)制.生物物理學(xué)報(bào), 2012, 28: 537–548. Sun R X, Yang C H. Structure and function of photosystem II and the environmental response of photosynthetic membrane., 2012, 28: 537–548 (in Chinese with English abstract).
[70] Gerotto C, Franchin C, Arrigoni G, Morosinotto T.identification of photosystem II light harvesting complexes interacting with PHOTOSYSTEM II SUBUNIT S., 2015, 168: 1747–1761.
[71] Zhang H, Cheng G Y, Yang Z T, Wang T, Xu J S. Identification of sugarcane host factors interacting with the 6K2 protein of the.,2019, 20: 3867.
[72] 鄧宇晴, 楊永慶, 翟玉山, 程光遠(yuǎn), 彭磊, 鄭艷茹, 林彥銓, 徐景升. 甘蔗花葉病毒福州分離物全基因組克隆及種群分析. 植物病理學(xué)報(bào), 2016, 46: 775–782. Deng Y Q, Yang Y Q, Zhai Y S, Cheng G Y, Peng L, Zheng Y R, Lin Y Q, Xu J S. Genome cloning of twoisolates from Fuzhou and phylogenetic analysis of SCMV., 2016, 46: 775–782 (in Chinese with English abstract).
[73] 翟玉山, 趙賀, 張海, 鄧宇晴, 程光遠(yuǎn), 楊宗桃, 王彤, 彭磊, 徐倩, 董萌, 徐景升. 甘蔗NAD(P)H脫氫酶復(fù)合體O亞基基因克隆及其甘蔗花葉病毒VPg互作研究. 作物學(xué)報(bào), 2019, 10: 1478–1487. Zhai Y S, Zhao H, Zhang H, Deng Y Q, Cheng G Y, Yang Z T, Wang T, Peng L, Dong M, Xu J S. Cloning of NAD(P)H complex O subunit gene and its interaction with VPg of., 2019, 10: 1478–1487 (in Chinese with English abstract).
[74] 朱海龍, 程光遠(yuǎn), 彭磊, 柴哲, 郭晉隆, 許莉萍, 徐景升. 甘蔗條紋花葉病毒P3蛋白與甘蔗Rubisco大亞基互作的研究. 西北植物學(xué)報(bào), 2014, 34: 676–681. Zhu H L, Cheng G Y, Peng L, Chai Z, Guo J L, Xu L P, Xu J S. Interaction betweenP3 and rubisco large subunit from sugarcane., 2014, 34: 676–681 (in Chinese with English abstract).
[75] Guo J, Ling H, Wu Q, Xu L, Que Y. The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses., 2014, 4: 7042.
[76] Fan M, Li M, Liu Z, Cao P, Pan X, Zhang H, Zhao X, Zhang J, Chang W. Crystal structures of the PsbS protein essential for photoprotection in plants., 2015, 22: 729–735.
[77] Funk C, Schr?dChenger W P, Green B R, Renger G, Andersson B. The intrinsic 22 kDa protein is a chlorophyll-binding subunit of photosystem II., 1994, 342: 261–266.
[78] Wedell N, Klein R, Ljungberg U, Andersson B, Herrmann R G. The single-copy genecodes for a phylogenetically intriguing 22 kDa polypeptide of photosystem II., 1992, 314: 61–66.
[79] Daskalakis V, Papadatos S. The photosystem II subunit S under stress., 2017, 113: 2364–2372.
[80] Zhang M Q, Cheng R K, Luo J, Lu J L, Xu J S. Analyses for inheritance and combining ability of photochemical activities measured by chlorophyll fluorescence in the segregating generation of sugarcane., 2000, 65: 31–39.
[81] 羅俊, 張華, 陳由強(qiáng), 徐景升, 林彥銓, 陳如凱. 能源甘蔗不同葉位葉片形態(tài)、光合氣體交換及其與產(chǎn)量關(guān)系. 應(yīng)用與環(huán)境生物學(xué)報(bào), 2006, 12: 754–760. Luo J, Zhang H, Chen Y Q, Xu J S, Lin Y Q, Chen R K. Relationship of energy sugarcane leaf form s and gas exchange with its yield., 2006, 12: 754–760 (in Chinese with English abstract).
[82] 王勤南, 許環(huán)映, 陳俊呂, 劉壯, 常海龍, 周峰, 金玉峰, 胡后祥, 符成, 劉少謀. 甘蔗葉片葉綠素?zé)晒鈪?shù)日變化研究.熱帶農(nóng)業(yè)科學(xué), 2014, 34(10): 24–27.Wang Q N, Xu H Y, Chen J L, Liu Z, Chang H L, Zhou F, Jin Y F, Hu H X, Fu C, Liu S M. Diurnal variation of chlorophyll fluorescence parameters of sugarcane leaf., 2014, 34(10): 24–27 (in Chinese with English abstract).
[83] 張木清, 呂建林. 甘蔗光合速度的日變化及其對(duì)光溫的響應(yīng). 福建農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 1998, 27: 397–401. Zhang M Q, Lyu J L. Diurnal variation of photosynthetic rate in sugarcane and its responses to light and temperature.(Nat Sci Edn), 1998, 27: 397–401 (in Chinese with English abstract).
[84] Wang A. Dissecting the molecular network of virus-plant interactions: the complex roles of host factors., 2015, 53: 45–66.
[85] Wittmann S, Chatel H, Fortin M G, Laliberté J F. Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E ofusing the yeast two-hybrid system., 1997, 234: 84–92.
[86] Geng C, Yan Z Y, Cheng D J, Liu J, Tian Y P, Zhu C X, Wang H Y, Li X D.6K2 protein Hijacks NbPsbO1 for virus replication., 2017, 7: 43455.
[87] Fraile A, Garcíaarenal F, Carr J P, Loebenstein G. The coevolution of plants and viruses: resistance and pathogenicity., 2010, 76: 1–32.
[88] Ng J C K, Perry K L. Transmission of plant viruses by aphid vectors., 2004, 5: 505–511.
[89] Nault L R. Arthropod transmission of plant viruses: a new synthesis., 1997, 90: 521–541.
[90] Salvaudon L, Mescher M C. Outcomes of co-infection by two potyviruses: implications for the evolution of manipulative strategies., 2013, 280: 20122959.
Sugarcane PsbS subunit response toinfection and its interaction with 6K2 protein
ZHANG Hai, LIU Shu-Xian, YANG Zong-Tao, WANG Tong, CHENG Guang-Yuan, SHANG He-Yang, and XU Jing-Sheng*
Sugarcane Research & Development Center, China Agricultural Technology System, Fujian Agriculture and Forestry University / Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs / Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fuzhou 350002, Fujian, China
Non-photochemical quenching (NPQ) is the main mechanism of photoprotective regulation in higher plants. The PsbS subunit of Photosystem II (PSII) plays a key role in NPQ. The involvement of PSII PsbS subunit in(SCMV) infection of sugarcane (spp. hybrid) has not been reported. In the previous research, we cloned the coding sequence of the PsbS subunit from sugarcane and designated it as.had an open reading frame (ORF) length of 798 bp and encoded a protein of 265 aa. Bioinformatics analysis showed that ScPsbS was a stable hydrophobic protein with chloroplast localization signals and four transmembrane domains. The ScPsbS protein possesses a typical domain of PsbS protein. Phylogenetic tree analysis showed that ScPsbS was divergent between monocotyledons and dicotyledons, or C3plants and C4plants. Subcellular localization analysis showed that ScPsbS was located in chloroplasts and partially colocalized with SCMV-6k2 in chloroplasts. The interaction of ScPsbS with the SCMV-6K2 was further confirmed by bimolecular fluorescence complementation assays (BiFC).gene showed obvious tissue specificity in sugarcane tested by real-time quantitative PCR analysis.gene had highest expression in mature leaves, followed by immature leaves and leaves beginning to senesce, and hardly expressed in stems and roots. The expressionofgene was significantly affected by SCMV infection, with significant upregulation in the early stage of SCMV infection, and no significant affection in the later stage of SCMV infection.
sugarcane; PsbS subunit;; 6K2, light protection
10.3724/SP.J.1006.2020.04030
本研究由國(guó)家自然科學(xué)基金項(xiàng)目(31971991)和福建農(nóng)林大學(xué)科技創(chuàng)新基金項(xiàng)目(CXZX2018026)資助。
This study was supported by the National Natural Science Foundation of China (31971991) and the Science and Technology Innovation Project of Fujian Agriculture and Forestry University (CXZX2018026).
徐景升, E-mail: xujingsheng@126.com
E-mail: zhanghai940410@163.com
2020-02-10;
2020-04-15;
2020-04-27.
URL: http://kns.cnki.net/kcms/detail/11.1809.S.20200427.0836.008.html