亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        FAST AND SLOW DECAY SOLUTIONS FOR SUPERCRITICAL FRACTIONAL ELLIPTIC PROBLEMS IN EXTERIOR DOMAINS

        2020-09-21 13:48:06AOWeiweiLIUChaoWANGLiping
        數(shù)學(xué)雜志 2020年5期

        AO Wei-wei,LIU Chao,WANG Li-ping

        (1.School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China)

        (2.Department of Mathematics;Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice,East China Normal University,Shanghai 200241,China)

        1 Introduction and Main Results

        We construct classic solutions of the following supercritical nonlinear fractional exterior problem

        wheres∈(0,1),andB1is the unit ball in RN.As usual,the operator(-Δ)sis the fractional Laplacian,defined at any pointx∈RNas

        hereP.V.is a commonly used abbreviation for”in the principal value sense” andC(N,s)is a constant dependent ofNands.We refer to[6–7].

        For classical Laplacian,namely,s=1,which is the Lame-Emden-Fowler equation

        where Ω is a bounded open set with smooth boundary in RNandp>1 .Davila etc[4]proved(1.2)has in finitely many solutions with slow decayat infinity with eitherN≥4 andand Ω is symmetric with respect toNcoordinate axes.Later,this result was extended toand Ω is a smooth bounded domain by Davila etc[5].For fractional Laplacian,we will prove that this result also holds whens∈(0,1),andB1is the unit ball in RN.For problem(1.1)in general exterior domain,our method not be used to solve it,there exist some obstacles in Remark 1.

        Our main results can be stated as follows:

        Theorem 1.1For anys∈(0,1)and,there exists a continuum of solutionsuλ,λ>0 ,to problem(1.1)such that

        anduλ(x)→0 asλ→0 ,uniformly in.

        Theorem 1.2For anys∈(0,1),there exists a number,such that for anyproblem(1.1)has a fast decay solutionup,up(x)=O(|x|2s-N)as|x|→+∞.

        In order to prove Theorem 1.1,we will takeωas approximation of(1.1)whereωis a smooth,radially symmetric,entire solution of the following problem

        hereβis a positive constant chosen so thatis a singular solution to(-Δ)sω-ωp=0 for which the existence and linear theory has been studied recently in[1]for the fractional case.

        The basic idea in the proof of Theorem 1.2 is to consider as an initial approximation the functionλwhere

        is the unique positive radial smooth solution of the problem

        These scalings will constitute good approximations for smallλifpis sufficiently close toWe prove then adjusting bothξandλ,produces a solution as desired after addition of a lower order term.

        By the change of variables

        and the maximum principle(see the page 39 of[3]),problem(1.1)is equivalent to

        whereλ>0 is a small parameter andB1λ,ξis the shrinking domain

        Remark 1To prove Theorem 1.1 and Theorem 1.2,we will construct solutions of the equivalent problem(1.5)with the form=ω+φλ+φand=ω**+φλ+φ.To obtain the decay of,we need to know that the decay ofφλ+φ.Using the Poisson KernelP(x,y)inRNB1,we first obtain the decay ofφλis no more thanO(|x-ξ|2s-N).Secondly,we can derive the decay ofφby the Green functionG(x,y)inRNB1.But for general exterior domain,there is a lack of the explicit formulas and the decay of Poisson Kernel and Green’s function of fractional Laplace operator(-Δ)s.

        The proof of Theorem 1.1 and Theorem 1.2 refers to[2]in detail.

        永久免费看免费无码视频| 久久久亚洲精品一区二区三区| 俺去俺来也在线www色官网| 欧美亚洲一区二区三区| 欧美大屁股xxxx高潮喷水| 国产成人免费一区二区三区| 无码人妻精品一区二区三18禁 | 日韩欧美亚洲国产精品字幕久久久| 久久99热狠狠色精品一区| 亚洲a∨无码一区二区| 精品久久久久久国产潘金莲| 中文乱码字幕在线亚洲av | 蜜臀av无码人妻精品| 日本黄页网站免费大全| 无码免费人妻超级碰碰碰碰| 国产三级av在线播放| 日本国产亚洲一区二区| 国产激情视频在线观看的| 国产一区二区内射最近更新| 91亚洲无码在线观看| 亚洲AV色欲色欲WWW| 天堂影院久久精品国产午夜18禁| 亚洲av精二区三区日韩| 乱码av麻豆丝袜熟女系列| 亚洲免费观看在线视频| 精品人妻一区二区三区蜜桃| 久久夜色国产精品噜噜亚洲av| 亚洲中文字幕成人无码| 欧美人妻日韩精品| 激情在线视频一区二区三区| 中文字幕影片免费人妻少妇 | 色拍自拍亚洲综合图区| 日韩精品电影在线观看| 国产毛片精品一区二区色| 亚洲国产果冻传媒av在线观看| 我把护士日出水了视频90分钟| 少妇人妻偷人精品一区二区| 亚洲成AV人片无码不卡| 一区二区三区国产内射| 亚洲av成人无码精品电影在线| 亚洲欧洲久久久精品|