王貴云,張克強,付 莉,竇國芳,張繼圣,杜會英
RZWQM2模型模擬牛場肥水施用夏玉米土壤硝態(tài)氮遷移特征
王貴云1,張克強1,付 莉1,竇國芳2,張繼圣3,杜會英1※
(1. 農(nóng)業(yè)農(nóng)村部環(huán)境保護科研監(jiān)測所,天津 300191;2. 天津市濱海新區(qū)畜牧業(yè)發(fā)展服務(wù)中心,天津 300450;3. 天津嘉立荷牧業(yè)集團有限公司,天津 301803)
為研究華北平原種養(yǎng)結(jié)合中養(yǎng)殖肥水的合理施用,減少典型農(nóng)田水肥施用后土壤氮淋溶對地下水的影響。該研究以河北省徐水區(qū)夏玉米為研究對象,應(yīng)用RZWQM2模型驗證牛場肥水施用玉米農(nóng)田的可行性,對2014—2016年玉米種植前后數(shù)據(jù)進行模型參數(shù)率定與驗證。驗證結(jié)果表明,土壤體積含水率的均方根誤差和平均相對誤差值分別在0.000 6~0.070 7 cm3/cm3和0.21%~21.44%之間變化,土壤硝態(tài)氮均方根誤差和平均相對誤差值分別在0.000 8~2.617 3 mg/kg和0.03%~18.58%之間變化,其中牛場肥水施用土壤中硝態(tài)氮主要在0~120 cm土層發(fā)生變化,說明RZWQM2模型可以用來模擬華北平原牛場肥水施用對土壤水分、硝態(tài)氮含量及玉米產(chǎn)量的動態(tài)變化。利用率定和驗證后的模型進行了夏玉米農(nóng)田硝態(tài)氮淋溶的驗證與預(yù)測,表明硝態(tài)氮淋溶濃度隨肥水氮量的增加而增加。RZWQM2模型可以應(yīng)用于牛場肥水施用農(nóng)田的模擬,為預(yù)測和評估土壤適宜的肥水施用提供更合適的方法。
灌溉;肥水;氮;牛場;夏玉米;RZWQM2模型
畜禽集約化飼養(yǎng)程度的不斷提高,造成畜禽廢棄物大量集中產(chǎn)生,對周邊環(huán)境造成了巨大的壓力,嚴(yán)重影響了畜牧業(yè)的可持續(xù)發(fā)展[1],將養(yǎng)殖廢棄物厭氧處理后農(nóng)田利用這種生態(tài)模式已被廣泛應(yīng)用。夏玉米是華北地區(qū)主要種植作物之一,合理的氮素施用是獲得夏玉米優(yōu)質(zhì)高產(chǎn)、實現(xiàn)可持續(xù)集約化生產(chǎn)的重要影響因素[2]。研究表明,養(yǎng)殖肥水農(nóng)田利用能夠增加作物產(chǎn)量[3-4],肥水施用增加冬小麥-夏玉米輪作系統(tǒng)累計氮利用率,減少氮在土壤中的積累[5];另一方面,養(yǎng)殖肥水過量灌溉加大農(nóng)田氮淋溶損失強度[6],硝態(tài)氮淋溶對地下水和人體健康造成影響,如何在保護地下水水質(zhì)和減少硝態(tài)氮淋溶損失的同時合理進行養(yǎng)殖肥水農(nóng)田利用成為國內(nèi)外學(xué)者研究的熱點問題[7-8]。
目前,模型模擬法因操作簡單、模擬準(zhǔn)確和模擬結(jié)果代表性廣等優(yōu)點,被廣泛應(yīng)用于農(nóng)田氮淋溶計算和評估中[9]。根區(qū)水質(zhì)模型(Root Zone Water Quality Model,RZWQM)藕合了農(nóng)業(yè)生產(chǎn)管理以及環(huán)境影響的模塊,在保持對土壤溶質(zhì)運移充分模擬的基礎(chǔ)上,RZWQM2模型兼容了DSSAT4.0模型,能夠較好的模擬農(nóng)業(yè)生產(chǎn)系統(tǒng),成為預(yù)測和評估農(nóng)田氮素淋溶較為普遍的工具[10-11]。Fang等[12]研究了RZWQM2模型對華北地區(qū)冬小麥-夏玉米輪作系統(tǒng)的模擬情況;Li等[13]、谷豐[14]和Yang等[15]通過設(shè)置不同的氮肥施用量、土壤質(zhì)地、作物覆蓋等方式,探究土壤水氮運移規(guī)律;Ward等[16]結(jié)合模型模擬了一系列廣泛的農(nóng)業(yè)管理;Fang等[17]、Jiang等[18]和Sadhukhan等[19]在近期對模型進行了擴展和改進,模擬氧化亞氮(N2O)排放和磷(P)的流失運動。目前為止,應(yīng)用RZWQM2模型模擬牛場肥水灌溉夏玉米農(nóng)田的研究鮮見報道,其在華北地區(qū)牛場肥水灌溉的適用性有待進一步驗證。
因此,為了更好地將養(yǎng)殖肥水回用于農(nóng)田灌溉,定量評估養(yǎng)殖肥水灌溉對作物的氮素?fù)p失影響十分必要。本研究利用RZWQM2模型對華北地區(qū)2014—2016年夏玉米實測數(shù)據(jù),對模型中土壤含水率、硝態(tài)氮含量、作物產(chǎn)量進行率定和驗證,進一步對硝態(tài)氮淋溶液濃度實測值與模擬值進行分析驗證,綜合考慮土壤氮素?fù)p失與施氮量的關(guān)系,為牛場肥水灌溉農(nóng)田合理施用和華北地區(qū)水肥利用提供合理的科學(xué)依據(jù)。
試驗在河北省保定市徐水區(qū)(115°32′E,38°56′N)進行,該地區(qū)屬于暖溫帶季風(fēng)型大陸性氣候,年平均氣溫12.3 ℃,年平均降水575 mm,年蒸發(fā)量為1 040 mm,無霜期平均184 d。該區(qū)地下水位30 m,深井抽水灌溉農(nóng)田。試驗區(qū)土壤為砂壤質(zhì)褐土,土壤基本理化性質(zhì)和機械組成如表1所示。試驗用牛場肥水為經(jīng)過厭氧處理的牛糞尿,肥水水質(zhì)特征包括pH值為7.9、化學(xué)需氧量(Chemical Oxygen Demand,COD)為2 800 mg/L、總氮(Total Nitrogen,TN)為382 mg/L、銨態(tài)氮(NH4+-N)為244 mg/L、硝態(tài)氮(NO3--N)為3 mg/L、總磷(Total Phosphorus,TP)為62 mg/L、總鉀(Total Potassium,TK)為203 mg/L、銅(Cu)為0.51 mg/L、鋅(Zn)為1.08 mg/L、鉻(Cr)為1.49g/L、鉛(Pb)為44.23g/L、鎘(Cd)為0.16g/L,總汞(Total Mercury,THg)和總砷(Total Arsenic,TAs)未檢出。
表1 土壤基本理化性質(zhì)和機械組成
注:田間持水量為0.33 Pa水分含量,萎蔫點為15 Pa水分含量[20].
Note: Field water capacity is soil water content at 0.33 Pa, wilting point is soil water content at 15 Pa[20].
試驗從2014年6月—2016年9月進行,共設(shè)4個處理,CK表示不施肥處理、BSL表示牛場肥水20%+清水80%處理、BSM表示牛場肥水33%+清水67%處理、BSH表示牛場肥水50%+清水50%處理。4個處理肥水氮帶入量分別為0、64、105、159 kg/hm2,磷(P2O5)帶入量分別為0、24、39、59 kg/hm2,鉀(K2O)帶入量分別為0、40、67、101 kg/hm2。肥水施用時期為玉米種植后,施用量均為830 m3/hm2,施用量用超聲波流量計量,誤差1%以內(nèi)。每個處理3次重復(fù),小區(qū)面積51 m2,隨機區(qū)組排列,每個小區(qū)四周1 m土體內(nèi)用塑料布隔開,小區(qū)間有1 m保護行。玉米品種為“鄭單958”,在每年6月中旬播種,采用條播方式,9月底收獲,收獲后測定產(chǎn)量。土壤樣品在玉米收獲后采集,采集深度為200 cm,每20 cm為一層,用2 mol/L氯化鉀(KCl)浸提,流動注射分析儀(FIA-6000+,北京吉天儀器有限公司)測定土壤硝態(tài)氮含量。
模型初始階段數(shù)據(jù)的建立包括氣象數(shù)據(jù)和土壤基礎(chǔ)數(shù)據(jù)。氣象數(shù)據(jù)包括當(dāng)?shù)亟邓當(dāng)?shù)據(jù)、日最高氣溫、日最低氣溫、風(fēng)速、相對濕度等,土層基礎(chǔ)數(shù)據(jù)包括土壤容重、土壤pH值、飽和導(dǎo)水率、田間持水量、土壤含水率、剖面硝態(tài)氮和銨態(tài)氮的初始含量。試驗過程中未觀測參數(shù)采用模型缺省值。模型參數(shù)率定包括水分、養(yǎng)分和作物模塊。模型率定采用Hanson等[21]和Cameira等[22]的試錯法將2個模塊的模擬精度調(diào)校至率定的要求,然后使用率定后的參數(shù),對BSL處理與BSH處理進行模擬。
本研究利用的根區(qū)水質(zhì)模型升級版RZWQM2,該版本結(jié)合DSSAT(Decision Support System for Agrotechnology Transfer)4.0模塊在作物生長模塊代替了模型中作物生長模塊,DSSAT模塊是一個基于物理、化學(xué)和生物過程的綜合模塊,其模擬了多種作物受農(nóng)業(yè)管理實踐和環(huán)境條件影響的水、營養(yǎng)物質(zhì)和植物生長[23-24],因此需要對DSSAT模塊中的作物數(shù)據(jù)進行參數(shù)修正。作物參數(shù)的調(diào)整原則是使作物的干物質(zhì)積累、葉面積指數(shù)和產(chǎn)量模擬值與實測值盡可能一致。與作物環(huán)境資源綜合系統(tǒng)(Crop Environmental Resource Synthesis,CERES)模型中相同,主要重新定義單株最大粒穗數(shù)和潛在灌漿速率的參數(shù)[25]。本研究對夏玉米“鄭單958”的生長參數(shù)進行修正,其中夏玉米主要包括6個參數(shù),各個參數(shù)具體名稱及取值范圍如表2所示。
模型率定效果的評價是判定參數(shù)優(yōu)化的關(guān)鍵,本研究利用3個統(tǒng)計檢驗標(biāo)準(zhǔn)評估模型模擬效果,分別為均方根誤差(Root Mean Square Error,RMSE)、平均相對誤差(Mean Relative Error,MRE)和相對誤差(Relative Error,RE),RMSE和MRE的值越小表明模擬值與實測值的差異越小,模型的模擬結(jié)果越精準(zhǔn)可靠。模型參數(shù)率定和驗證過程中,當(dāng)RMSE達到最小值為優(yōu),MRE和RE越趨近于0模擬效果為優(yōu),其中MRE最大允許偏差可以達到50%,其計算如式(1)~(3)。
表2 DSSAT模塊中夏玉米“鄭單958”生長參數(shù)校正結(jié)果
注:DSSAT表示農(nóng)業(yè)技術(shù)轉(zhuǎn)移決策支持系統(tǒng),其為RZWQM2模型結(jié)合使用的模塊。
Note: DSSAT stands for the Decision Support System for Agrotechnology Transfer,which is a module used in conjunction with the RZWQM2 model.
應(yīng)用BSL處理2014—2016年3季夏玉米種植前和收獲后的土壤剖面實測水分?jǐn)?shù)據(jù)進行模型參數(shù)的率定,率定結(jié)果如表3所示,BSL處理土壤體積含水率的模擬值與實測值變化趨勢相同。模擬土壤水分的RMSE值呈現(xiàn)0.001 1~0.048 8 cm3/cm3的變化水平,總體表現(xiàn)為土壤體積含水率的模擬結(jié)果隨土壤深度增加而變化;MRE值變化范圍表現(xiàn)均在0.46%~20.66%合理變化范圍內(nèi),說明土壤體積含水率實測值與模擬值擬合程度較好,為下一步的土壤水分驗證提供可用基礎(chǔ)數(shù)據(jù)。
表3 2014—2016年BSL處理率定過程中各土層土壤體積含水率的均方根誤差和平均相對誤差
利用率定后的土壤體積含水率參數(shù),驗證BSM處理和BSH處理2014—2016年夏玉米種植前后各層土壤體積含水率,驗證結(jié)果如圖1所示,總體上模擬值與實測值變化趨勢相同,表現(xiàn)為0~120 cm土層的土壤體積含水率變化>120 cm以下的深層土壤,120 cm以下土壤體積含水率變化趨勢穩(wěn)定。其中不同深度土層的土壤體積含水率的RMSE值總體變化范圍BSM處理為0.004 8~0.066 6 cm3/cm3,BSH處理為0.000 6~0.070 7 cm3/cm3;MRE值總體變化范圍BSM處理為1.93%~21.44%,BSH處理為0.21%~20.46%;RE值總體變化范圍BSM處理為-0.18%~0.26%,BSH處理為-0.14%~0.26%;總體上說明模型能夠模擬土壤體積含水率變化,為下一步的硝態(tài)氮率定和驗證提供可用土壤體積含水率數(shù)據(jù)。
在水分率定的基礎(chǔ)上進行土壤剖面硝態(tài)氮含量率定和驗證。通過相關(guān)性分析發(fā)現(xiàn)率定過程中,BSL處理的模擬值與實測值具有相關(guān)關(guān)系,回歸方程為=0.946 0- 0.082 2(<0.05),2為0.971 8,表明養(yǎng)殖肥水施用下土壤硝態(tài)氮含量模擬值與實測值顯著相關(guān)。并且通過表4看出,2014—2016年BSL處理的土壤硝態(tài)氮含量的RMSE變化范圍為0.001 1~0.743 3 cm3/cm3,MRE變化范圍為0.26%~18.27%,說明BSL處理各土層的土壤硝態(tài)氮含量模擬結(jié)果符合模擬要求。
注:BSM、BSH分別為牛場肥水33%+清水67%處理、牛場肥水50%+清水50%處理。下同。
Note:BSM and BSH indicate cattle farm wastewater 33%+clear water 67% treatment, and cattle farm wastewater 50%+clear water 50% treatment, respectively. The same below.
圖1 2014—2016年BSM和BSH處理土壤體積含水率驗證
Fig.1 Verification of soil volumetric water content in BSM and BSH treatments from 2014 to 2016
表4 2014—2016年BSL處理率定過程中各土層硝態(tài)氮含量的均方根誤差和平均相對誤差
通過對BSL處理土壤硝態(tài)氮含量的率定,驗證BSM處理和BSH處理下2014—2016年各層土壤硝態(tài)氮含量,驗證結(jié)果如圖2所示,模擬值與實測值變化趨勢擬合較好,其中不同深度土層的土壤硝態(tài)氮含量的RMSE值總體變化范圍BSM處理為0.000 8~0.521 4 mg/kg,BSH處理為0.016 3~2.617 3 mg/kg;MRE值總體變化范圍BSM處理為0.03%~18.47%,BSH處理為0.27%~18.58%;RE值總體變化范圍BSM處理為-0.12%~0.23%,BSH處理為-0.15%~0.23%;總體上BSM處理實測值土壤硝態(tài)氮低于BSH處理,模擬結(jié)果優(yōu)于BSH處理。另外土壤硝態(tài)氮含量主要在0~120 cm土層變化較大,與土壤體積含水率變化土層相同,說明該模型能夠較好地模擬牛場肥水施用后土壤剖面硝態(tài)氮分布及對硝態(tài)氮淋溶的模擬和預(yù)測。
圖2 2014—2016年BSM和BSH處理土壤硝態(tài)氮含量驗證
通過對模型土壤體積含水率和硝態(tài)氮含量的驗證,調(diào)整作物生長參數(shù),對夏玉米產(chǎn)量進行率定和驗證。表5為2014—2016年夏玉米產(chǎn)量的模擬值與實測值,各處理產(chǎn)量的模擬值與實測值在合理誤差范圍內(nèi),產(chǎn)量RMSE值的CK處理變化范圍在216.77~894.80 kg/hm2、BSL處理變化范圍在235.59~572.30 kg/hm2、BSM處理變化范圍在168.90~523.08 kg/hm2、BSH處理變化范圍在124.21~911.09 kg/hm2,所有處理的MRE值變化范圍在0.02%~0.21%,RE值變化范圍在-0.18%~0.04%,調(diào)整夏玉米生長參數(shù)后的產(chǎn)量模擬結(jié)果顯示模型可以在合理程度內(nèi)模擬牛場肥水施用于夏玉米農(nóng)田。
表5 2014—2016年不同處理夏玉米產(chǎn)量模擬結(jié)果比較
注:±表示實測值均值±標(biāo)準(zhǔn)誤;CK、BSL、BSM、BSH分別為不施肥處理、牛場肥水20%+清水80%處理、牛場肥水33%+清水67%處理、牛場肥水50%+清水50%處理。下同。
Note:±indicates the mean of measured values±standard error; CK, BSL, BSM and BSH indicate that no fertilization treatment, cattle farm manure and wastewater 20%+clear water 80% treatment, cattle farm manure and wastewater 33%+clear water 67% treatment, and cattle farm manure and wastewater 50%+clear water 50% treatment, respectively. The same below.
綜上率定與驗證,進行不同濃度牛場肥水施用夏玉米農(nóng)田土壤硝態(tài)氮淋溶的模擬,結(jié)果如表6所示。各處理硝態(tài)氮淋溶液濃度RMSE均值分別為1.18、1.60、2.24和3.81 mg/L;MRE值變化范圍CK處理為9.59%~18.84%、BSL處理為5.76%~18.36%、BSM處理為5.57%~17.32%、BSH處理為3.94%~18.99%,總體變化范圍為3.94%~18.99%,RE變化范圍為-0.16%~0.16%,說明RZWQM2模型可以模擬2014—2016年玉米農(nóng)田200 cm深度土壤硝態(tài)氮淋溶液濃度的變化。硝態(tài)氮淋溶濃度隨肥水氮帶入量增加變化較大,從模擬值與實測值的對比看出CK處理在200 cm深度土壤硝態(tài)氮淋溶液濃度低于其他處理。通過對2017年硝態(tài)氮淋溶液濃度的預(yù)測可以看出,長期施用養(yǎng)殖肥水不會增加深層土壤硝態(tài)氮淋溶液濃度。
表6 2014—2016年夏玉米季硝態(tài)氮淋溶液濃度模擬值與實測值及2017預(yù)測值
目前,RZWQM模型已在世界不同地區(qū)被證實具有模擬土壤水氮動力學(xué)、作物生長和產(chǎn)量的能力[26]。養(yǎng)殖肥水農(nóng)田利用需要合理的濃度和氮帶入量,在不影響產(chǎn)量前提下降低土壤硝態(tài)氮淋溶,利用數(shù)學(xué)模型模擬來確定合理的肥水施用濃度是一個較好的解決措施[27]。本研究模擬驗證結(jié)果均表明各層土壤體積含水率的RMSE和MRE值分別在0.000 6~0.070 7 cm3/cm3和0.21%~21.44%之間變化,各土層硝態(tài)氮的RMSE和MRE值在0.000 8~2.617 3 mg/kg和0.03%~18.58%之間變化,其中上部土層模擬效果優(yōu)于下部土層,可能是模型所使用的土壤孔隙度為默認(rèn)值而非實測值[28],模型不能較好模擬水分入滲過程。經(jīng)過率定和驗證的作物產(chǎn)量和硝態(tài)氮淋溶液濃度的變化,說明RZWQM2模型在水氮淋失指標(biāo)表現(xiàn)出較好的模擬效果。因此,RZWQM2可以較好應(yīng)用在種養(yǎng)結(jié)合下牛場肥水施用華北平原夏玉米的模擬研究,減少養(yǎng)殖肥水的不合理利用。
硝態(tài)氮是一種可被植物吸收的氮,當(dāng)水移動到土壤剖面以下時,硝酸鹽是高度可溶的,很容易因淋溶而損失掉[29-30],淋出的硝酸鹽可能會進入飽和區(qū)并導(dǎo)致地下水污染。在中國華北地區(qū),孫滸等[31]研究表明玉米生育期較短且降水量和降水強度較大,硝態(tài)氮淋失量與降水量呈顯著相關(guān)關(guān)系。Mckague等[32]利用RZWQM模型評估氮肥施用量和施用時間對玉米種植對地下水中硝酸鹽流失的長期影響,表明模型能夠模擬不同的氣候和農(nóng)田管理,其精度在空間變化復(fù)雜的田間應(yīng)用是可行的。本研究通過對土壤硝態(tài)氮淋溶的模擬表明,夏玉米季施用牛場肥水在土壤中的硝態(tài)氮淋溶量隨施氮量的增加而增加,這與鄭文波等[9]通過模型預(yù)測的研究結(jié)果一致。有研究表明因為耕作系統(tǒng)、作物類型和種植年限的因素導(dǎo)致硝態(tài)氮濃度比淋失量變化更大[33],在夏季玉米生長季節(jié),硝態(tài)氮的淋溶量要高得多[27]。本研究通過模擬結(jié)果看出,主要由于玉米季前期降水集中,硝態(tài)氮淋洗在作物根區(qū),尤其深層土壤中存在較多硝態(tài)氮,進一步說明隨著時間推移,根區(qū)淋洗的硝態(tài)氮將進一步在深部土層堆積。土壤硝態(tài)氮濃度具有高度的瞬態(tài)性和空間變異性,本質(zhì)上對于一個模型而言,在夏玉米的多個根區(qū)土層重現(xiàn)較為困難[34],因此在利用模型對作物深層次土壤硝態(tài)氮淋溶的模擬研究應(yīng)結(jié)合當(dāng)?shù)鼐唧w情況進行。
通過對RZWQM2模型進行參數(shù)調(diào)整,對2014—2016年3季夏玉米土壤含水率、硝態(tài)氮含量以及作物產(chǎn)量進行率定和驗證,驗證結(jié)果均表明各土層土壤體積含水率的均方根誤差(Root Mean Square Error,RMSE)和平均相對誤差(Mean Relative Error,MRE)值分別在0.000 6~0.070 7 cm3/cm3和0.21%~21.44%之間變化,土層硝態(tài)氮的RMSE和MRE值在0.000 8~2.617 3 mg/kg和0.03%~18.58%之間變化,模擬的土壤含水率與氮素剖面分布趨勢與實測值相同。通過模擬結(jié)果看出,由于玉米季前期降水集中,深層土壤中存在較多硝態(tài)氮,通過對200 cm土層硝態(tài)氮淋溶的模擬與預(yù)測進一步說明隨著時間推移,根區(qū)淋洗的硝態(tài)氮在深部土層隨施氮量的增加而增加。綜合考慮作物產(chǎn)量和水肥利用情況,證明該模型對于牛場肥水灌溉后土壤氮素?fù)p失評估的可行性,并得出中濃度牛場肥水替代化肥投入農(nóng)田更利于作物生長。
[1] 楊軍香,王合亮,焦洪超,等. 不同種植模式下的土地適宜載蓄量[J]. 中國農(nóng)業(yè)科學(xué),2016,49(2):339-347. Yang Junxiang, Wang Heliang, Jiao Hongchao, et al. Stock capacity in different cropping systems[J]. Scientia Agricultura Sinica, 2016, 49(2): 339-347. (in Chinese with English abstract)
[2] 巨曉棠,谷保靜. 氮素管理的指標(biāo)[J]. 土壤學(xué)報,2017,54(2):281-296. Ju Xiaotang, Gu Baojing. Indexes of nitrogen management[J]. Acta Pedologica Sinica, 2017, 54(2): 281-296. (in Chinese with English abstract)
[3] Valencia-Gica R B, Yost R S, Porter G. Biomass production and nutrient removal by tropical grasses subsurface drip-irrigated with dairy effluent[J]. Grass and Forage Science, 2012, 67(3): 337-349.
[4] 喬冬梅,齊學(xué)斌,樊向陽,等. 養(yǎng)豬廢水灌溉對冬小麥作物-土壤系統(tǒng)影響研究[J]. 灌溉排水學(xué)報,2010,29(1):32-35. Qiao Dongmei, Qi Xuebin, Fan Xiangyang, et al. The influence of livestock wastewater irrigation on winter wheat crop-soil system[J]. Journal of Irrigation and Drainage, 2010, 29(1): 32-35. (in Chinese with English abstract)
[5] 杜會英,馮潔,郭海剛,等. 麥季牛場肥水灌溉對冬小麥-夏玉米輪作土壤氮素平衡的影響[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(3):159-165. Du Huiying, Feng Jie, Guo Haigang, et al. Effects of dairy effluents irrigation on N balance in soil under winter wheat-summer maize rotation system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transaction of the CSAE), 2015, 31(3): 159-165. (in Chinese with English abstract)
[6] 高懋芳,邱建軍,李長生,等. 應(yīng)用Manure-DNDC模型模擬畜禽養(yǎng)殖氮素污染[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(9):183-189. Gao Maofang, Qiu Jianjun, Li Changsheng, et al. Modelling nitrogen pollution from livestock breeding using Manure-DNDC model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transaction of the CSAE), 2012, 28(9): 183-189. (in Chinese with English abstract)
[7] Du Huiying, Gao Wenxuan, Li Jiajia, et al. Effects of digested biogas slurry application mixed with irrigation water on nitrate leaching during wheat-maize rotation in the North China Plain[J]. Agricultural Water Management, 2019, 213: 882-893.
[8] Hernández D, Polo A, Plzaz C. Long-term effects of pig slurry on barley yield and N use efficiency under semiarid Mediterranean conditions[J]. European Journal of Agronomy, 2013, 44: 78-86.
[9] 鄭文波,王仕琴,劉丙霞,等. 基于RZWQM模型模擬太行山低山丘陵區(qū)農(nóng)田土壤硝態(tài)氮遷移及淋溶規(guī)律[J]. 環(huán)境科學(xué),2019,40(4):252-260. Zheng Wenbo, Wang Shiqin, Liu Bingxia, et al. Simulating migration and leaching of leaching of nitrate nitrogen in farmland soil profile in hilly area of Taihang mountain with RZWQM model[J]. Environmental Science, 2019, 40(4): 252-260. (in Chinese with English abstract)
[10] 沈仕洲,張克強,王風(fēng),等. 基于RZWQM模型的華北平原冬小麥–夏玉米土壤硝態(tài)氮淋溶和氨揮發(fā)評估方法研究[J].生態(tài)與農(nóng)村環(huán)境學(xué)報,2018,34(9):769-775. Shen Shizhou, Zhang Keqiang, Wang Feng, et al. The assessment method of nitrate nitrogen leaching and ammonia volatilization of winter wheat-summer maize rotation in North China Plain based on RZWQM model[J]. Journal of Ecology and Rural Environment, 2018, 34(9): 769-775.(in Chinese with English abstract)
[11] 薛長亮,張克強,楊德光,等. RZWQM 模擬小麥–玉米輪作系統(tǒng)氮素運移及損失特征[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報,2015,23(2):150-158. Xue Changliang, Zhang Keqiang, Yang Deguang, et al. RZWQM simulation of nitrogen transport and loss under winter wheat/summer maize rotation system in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2015, 23(2): 150-158. (in Chinese with English abstract)
[12] Fang Quanxiao, Ma Liwang, Yu Qiang, et al. Irrigation strategies to improve the water use efficiency of wheat-maize double cropping systems in North China Plain[J]. Agricultural Water Management, 2010, 97: 1165-1174.
[13] Li Maona, Wang Yunling, Adeli A, et al. Effects of application methods and urea rates on ammonia volatilization, yields and ?ne root biomass of alfalfa[J]. Field Crops Research, 2018, 218: 115-125.
[14] 谷豐. 典型砂姜黑土區(qū)農(nóng)田土壤水分養(yǎng)分動態(tài)變化特征及模擬[D]. 北京:中國農(nóng)業(yè)大學(xué),2018. Gu Feng. Characteristic and Modeling of Soil Water and Nutrition Dynamics in a Typical Calcic Vertisol[D]. Beijing: China Agricultural University, 2018. (in Chinese with English abstract)
[15] Yang Wei, Feng G, Adeli A, et al. Long-term effect of cover crop on rainwater balance components and use efficiency in the no-tilled and rained corn and soybean rotation system[J]. Agricultural Water Management, 2019, 3(22): 27-39.
[16] Ward S, Brain G, Qi Zhiming, et al. Development of the DNDC model to improve soil hydrology and incorporate mechanistic tile drainage: A comparative analysis with RZWQM2[J]. Environmental Modelling and Software, 2020, 123: 104577-104592.
[17] Fang Quanxiao, Ma Liwang, Halvorson AD, et al. Evaluating four nitrous oxide emission algorithms in response to N rate on an irrigated corn field[J]. Environmental Modelling and Software, 2015, 72(10): 56-70.
[18] Jiang Qianjing, Qi Zhiming, Chandra AM, et al. Mitigating greenhouse gas emissions in subsurface-drained field using RZWQM2[J]. Science of Total Environment, 2019, 646: 377-389.
[19] Sadhukhan D, Qi Zhiming, Zhang Tiequan, et al. Development and evaluation of a phosphorus (P) module in RZWQM2 for phosphorus management in agricultural fields[J]. Environmental Modelling and Software, 2019, 113(3): 48-58.
[20] 劉海濤. 華北平原高產(chǎn)區(qū)農(nóng)田土壤條件與水氮利用效率定量評價[D]. 北京:中國農(nóng)業(yè)大學(xué),2018. Liu Haitao. Evaluating Soil Profile Properties and Water Nitrogen Use Efficiencies of High Yield Region in the North China Plain[D]. Beijing: China Agricultural University, 2018. (in Chinese with English abstract)
[21] Hanson J D, Rojas K W, Shaffer M J. Calibrating the root zone water quality model[J]. Agronomy Journal, 1999, 91(2): 171-177.
[22] Cameira M R, Fernando R M, Ahuja L R, et al. Simulating the fate of water in field soil-crop environment[J]. Journal of Hydrology, 2005, 315(1/4): 1-24.
[23] Ma Liwang, Hoogenboom G, Ahuja L R, et al. Development and evaluation of the RZWQM-CROPGRO hybrid model for soybean production[J]. Agronomy Journal, 2005, 97(4): 1172-1182.
[24] Ma Liwang, Hoogenboom G, Ahuja L A, et al. Evaluation of the RZWQM-CERES-Maize hybrid model for maize production[J]. Agricultural Systems, 2006, 87(3): 274-295.
[25] Anar M J, Lin Zhulu, Hoogenboom G, et al. Modeling growth, development and yield of Sugarbeet using DSSAT[J]. Agricultural Systems, 2019, 169: 58-70.
[26] Malone R W, Herbstritt S, Ma Liwang, et al. Corn stover harvest N and energy budgets in central Iowa[J]. Science of the Total Environment, 2019, 663: 776-792.
[27] Li Zhuoting, Wen Xiumei, Hu Chunsheng, et al. Regional simulation of nitrate leaching potential from winter wheat-summer maize rotation croplands on the North China Plain using the NLEAP-GIS model[J]. Agriculture, Ecosystems and Environment2020, 294: 106861-106874.
[28] Kumar A, Kanwar R S, Singh P, et al. Evaluation of the root zone water quality model for predicting water and NO3-N movement in an lowa soil[J]. Soil & Tillage Research, 1999, 50(3/4): 223-236.
[29] Zheng Wenbo, Wang Shiqin, Tan Kangda, et al. Nitrate accumulation and leaching potential is controlled by land-use and extreme precipitation in a headwater catchment in the North China Plain[J]. Science of the Total Environment, 2020, 707: 136-168.
[30] Li Shengxiu, Wang Zhaohui, Hu Tiantian, et al. Chapter 3 nitrogen in dryland soils of China and its management[J]. Advances in Agronomy, 2009, 101: 123-181.
[31] 孫滸,張吉旺,靳立斌. 玉米高產(chǎn)與氮肥高效協(xié)同實現(xiàn)存在的問題及其途徑[J]. 玉米科學(xué),2014,22(1):143-148. Sun Hu, Zhang Jiwang, Jin Libin, et al. Problems and approaches of achieving high yield and high nitrogen use efficiency in maize production[J]. Journal of Maize Sciences, 2014, 22(1): 143-148. (in Chinese with English abstract)
[32] Mckague K, Rudra R P, Ahmed S I, et al. Simulating effects of MERN and other BMPs on subsurface drainage water quality and crop yield in Southern Ontario[J]. Canadian Biosystems Engineering, 2006, 48(1): 31-40.
[33] Ernst S, Clay H, Walter R, et al. Does no-tillage decrease nitrate leaching compared to ploughing under a long-term crop rotation in Switzerland[J]. Soil & Tillage Research, 2020, 199: 1-10.
[34] Sara E, Thomson N R, David L R. Evaluation of nutrient beneficial management practices on nitrate loading to groundwater in a Southern Ontario agricultural landscape[J]. Canadian Water Resources Journal/Revue Canndienne Des Ressources Hydriques, 2020, 45(1): 90-107.
Simulation of the soil nitrate nitrogen migration characteristics of summer maize fertilized with dairy manure and wastewater using RZWQM2
Wang Guiyun1, Zhang Keqiang1, Fu Li1, Dou Guofang2, Zhang Jisheng3, Du Huiying1※
(1-,,300191,; 2,300450,; 3.,.,301803,)
The continuous improvement of the intensive breeding of livestock and poultry had resulted in a large amount of livestock waste, which caused seriously affected the sustainable development of animal husbandry. The ecological model of farmland reuse after anaerobic treatment of breeding waste has been widely used. Wastewater application increased the cumulative nitrogen utilization rate of the winter wheat-summer corn rotation system and reduced the accumulation of nitrogen in the soil; on the other hand, excessive irrigation of farming manure and wastewater increased the intensity of nitrogen leaching losses in the farmland, and nitrate nitrogen leaching affected groundwater and human health. As a result, how to protect groundwater quality and reduce nitrate nitrogen leaching loss while rationally using farming fertilizer and water farmland had become a hot issue for domestic and foreign scholars. This study took summer corn in Xushui District of Hebei Province as the research object, using the RZWQM2 model to verify the feasibility of irrigating the corn on the farmland with dairy effluents, and uses the data from 2014 to 2016 corn to verify the model parameters. The verification results showed that the RMSE values of the water content of each soil layer vary from 0.000 6 cm3/cm3to 0.070 7 cm3/cm3and the MRE values from 0.21% to 21.44%, and the RMSE values of the soil layer nitrate-nitrogen from 0.000 8 mg/kg to 2.617 3 mg/kg and the MRE values from 0.03% to 18.58%. The results showed that the RZWQM2 model after calibration and verification can be used to simulate the dynamic changes of soil water, nitrogen and crop yields under the application of dairy effluents on summer corn planting in the North China Plain. The utilization rate and verification model carried out the verification and prediction of nitrate nitrogen leaching, which showed that the application of dairy effluents mainly occurred in the 0-120 cm soil layer, and the leaching amount of the deep layer increased with the increase of nitrogen application. It can be seen from the simulation results that due to the concentration of pre-season rainfall in corn, there is more nitrate nitrogen in the deep soil. The simulation and prediction of nitrate-nitrogen leaching in the 200 cm soil layer further illustrated that the leaching of the root zone over time nitrate nitrogen in deep soil layers increased with increasing nitrogen application rate. The results showed that the RZWQM2 model can be better applied to farms for applying dairy effluents, and provided a more suitable method for predicting and evaluating the appropriate amount of dairy effluents brought into the soil. But in essence, for a model, it was difficult to reproduce the soil layer in the multiple root zone of summer maize. Therefore, the simulation study of the nitrate-nitrogen leaching in the deep soil of the crop should be combined with the specific local conditions. Comprehensive consideration of crop yield and water and fertilizer utilization proves the feasibility of the model for the assessment of soil nitrogen loss after irrigation of cattle farm fertilizer and water, and it was concluded that the replacement of fertilizer with medium-concentration cattle farm fertilizer and water in farmland is more conducive to crop growth.
irrigation; wastewater; nitrogen; dairy; summer maize; RZWQM2 model
王貴云,張克強,付莉,等. RZWQM2模型模擬牛場肥水施用夏玉米土壤硝態(tài)氮遷移特征[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(14):47-54.doi:10.11975/j.issn.1002-6819.2020.14.006 http://www.tcsae.org
Wang Guiyun, Zhang Keqiang, Fu Li, et al. Simulation of the soil nitrate nitrogen migration characteristics of summer maize fertilized with dairy manure and wastewater using RZWQM2[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(14): 47-54. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.14.006 http://www.tcsae.org
2020-04-29
2020-06-11
公益性行業(yè)(農(nóng)業(yè))科研專項(201503106);天津市現(xiàn)代奶牛產(chǎn)業(yè)技術(shù)體系創(chuàng)新團隊建設(shè)專項(ITTCRS2018006)
王貴云,主要從事農(nóng)業(yè)廢棄物資源化利用及模型模擬研究。Email:guiyun225@qq.com
杜會英,博士,副研究員,主要從事養(yǎng)殖廢棄物面源污染防控方面研究。Email:duhuiying@caas.cn
10.11975/j.issn.1002-6819.2020.14.006
S275
A
1002-6819(2020)-14-0047-08