陳世超,杜太生,王素芬,韓萬海,董平國,佟 玲,胡鐵民
基于農(nóng)田管理分區(qū)的制種玉米產(chǎn)量估算與限制因子評價
陳世超1,2,杜太生1,2※,王素芬1,2,韓萬海2,董平國2,佟 玲1,2,胡鐵民2
(1. 中國農(nóng)業(yè)大學中國農(nóng)業(yè)水問題研究中心,北京 100083;2. 農(nóng)業(yè)農(nóng)村部作物高效用水武威科學觀測實驗站,武威 733000)
為了提升規(guī)模化農(nóng)田不同管理分區(qū)的玉米產(chǎn)量,實現(xiàn)精準管理,該研究使用相關成分回歸法(Correlated Component Regression,CCR),考慮地形因素(高程)、土壤理化性質(砂粒、粉粒、黏粒、容重、土壤含水率、土壤有機碳、全氮、全磷、速效氮、電導率)11個因子,評估規(guī)?;r(nóng)田和聚類分析得到的3個管理區(qū)(M1、M2和M3)內(nèi)產(chǎn)量的限制因子,并在不同分區(qū)內(nèi)建立產(chǎn)量估算模型。模型驗證結果表明:未分區(qū)的情況下,產(chǎn)量限制因子為土壤粉粒、砂粒、土壤有機碳、土壤含水率、速效氮和全氮,經(jīng)驗證,產(chǎn)量估算模型的決定系數(shù)(2)為0.70,標準均方根誤差(Normalized Root Mean Square Error,nRMSE)為0.21。分區(qū)后,M1的產(chǎn)量限制因子為土壤粉粒、砂粒、黏粒、速效氮、電導率、全氮和全磷,M2的產(chǎn)量限制因子為土壤粉粒、砂粒和土壤含水率,M3的產(chǎn)量限制因子為高程、土壤砂粒、黏粒和電導率,產(chǎn)量估算模型的精度高(經(jīng)驗證,0.71<2<0.83,0.16 農(nóng)田;分區(qū);玉米;限制因子;產(chǎn)量估算模型;精準農(nóng)業(yè);相關成分回歸 依據(jù)土壤理化性質確定農(nóng)田管理分區(qū),進而“因地制宜”地制定提升產(chǎn)量與水肥利用效率的管理策略是近年來的研究熱點[1]。劃分管理區(qū)可以將土壤因子相似的區(qū)域作為管理單元,依據(jù)各管理單元不同的土壤條件制定科學的管理方案,以實現(xiàn)農(nóng)業(yè)生產(chǎn)要素的精準管理,提升水肥利用效率、減少資源浪費和對環(huán)境的不利影響[2]。 土壤各因子的空間變異是導致農(nóng)田產(chǎn)量存在差異的主要原因[3]。國內(nèi)外諸多學者研究表明,聚類分析法是對農(nóng)田進行管理區(qū)劃分的一種有效方法。Miao等[4]結合土壤屬性(高程、土壤養(yǎng)分、陽離子交換量等)和作物產(chǎn)量的綜合信息,對2塊農(nóng)田進行聚類分析,分別得到5個和4個管理分區(qū),并制定了變量施氮策略,提升經(jīng)濟收益約37%;Chen等[5]基于土壤質地、農(nóng)田高程及初始土壤屬性對玉米種植區(qū)進行管理區(qū)劃分,分區(qū)后各因子的變異系數(shù)減小,為進一步分區(qū)優(yōu)化灌溉制度奠定了基礎;Li等[6]基于土壤電導率、有機質、全氮、速效氮和速效磷等因子的空間變異性,應用模糊聚類法為鹽堿農(nóng)田進行了棉花種植管理分區(qū);Albornoz 等[7]利用MZA v1.01軟件(Management Zone Analyst, 美國)實現(xiàn)了模糊c均質聚類劃分管理區(qū),比較了不同分區(qū)數(shù)下的模糊性能指數(shù)和歸一化分類熵的變化,并尋找兩者與歐氏距離之間的關系。模糊聚類的分區(qū)方法同樣適用于流域尺度的土壤管理區(qū)劃分,減小分區(qū)內(nèi)土壤因子的異質性[8-9]。 科學的農(nóng)田管理區(qū)的劃分方法已經(jīng)較為成熟,但是未涉及分區(qū)后的管理策略,管理區(qū)之間作物產(chǎn)量存在差異的根本原因也尚未確定。在農(nóng)業(yè)系統(tǒng)中,影響產(chǎn)量的土壤因子種類繁多,且部分因子之間存在共線性[10-11]。依據(jù)土壤因子對產(chǎn)量進行精確估算,需要消除因子間的共線性,避免各因子表達重復信息,從而提高估算精度。相關成分回歸法(Correlated Component Regression,CCR)是一種針對多變量且變量之間存在多重共線性的回歸方法[11]。相比于傳統(tǒng)的稀疏正則化方法(如偏最小二乘法),CCR的估算結果具有精度高、成分少的特點,可以提高運算速度?;诖?,為探究農(nóng)田內(nèi)不同管理區(qū)的產(chǎn)量限制因子,探討基于不同管理區(qū)建立產(chǎn)量估算模型的可行性,本文依據(jù)課題組前期關于管理區(qū)劃分的結果[12],應用CCR確定各管理區(qū)的產(chǎn)量限制因子以及各因子的標準權重,建立基于產(chǎn)量限制因子的CCR產(chǎn)量估算模型;同時,依據(jù)管理區(qū)內(nèi)不同的產(chǎn)量限制因子,定性地提出不同分區(qū)的產(chǎn)量提升途徑,以期為各管理區(qū)提供科學的管理策略,提升作物產(chǎn)量和水肥利用效率,為精準農(nóng)業(yè)提供方法支撐。 試驗地點位于甘肅省武威市涼州區(qū)(102°55′E,37°49′N),該區(qū)屬典型的大陸性溫帶干旱荒漠氣候。全年日照時數(shù)3 000 h以上,無霜期約150 d,年均氣溫8.8 ℃。該地區(qū)水資源匱乏,多年平均降水量為164 mm,但同時多年平均水面蒸發(fā)量為2 000 mm以上。研究區(qū)為制種玉米種植區(qū),位于黃羊河農(nóng)場七隊2號地,面積為6.84 hm2(120 m×570 m)。依據(jù)測得的土壤砂粒、粉粒和黏粒的體積分數(shù),采用美國制標準,研究區(qū)內(nèi)土壤質地包括粉壤土、砂壤土和壤土。 2016年4月20日種植播種,種植密度為9.75萬株/hm2,于9月5日成熟并收獲。生育期內(nèi)降雨量為111 mm。 在研究區(qū)中劃分30 m×30 m的均勻網(wǎng)格,布設91個取樣觀測點用于測定土壤特性、作物產(chǎn)量和高程[12]。2016年4月8日對農(nóng)田內(nèi)土壤進行樣品采集,在每個取樣點獲取深度為0~20、>20~40、>40~60 cm的土壤樣品,用來測定土壤粉粒、砂粒、黏粒、容重(Bulk Density,BD)、土壤含水率(Soil Water Content,SWC)、速效氮(Available Nitrogen,AN)、電導率(Electrical Conductivity,EC)、有機碳(Soil Organic Carbon, SOC)、全氮(Total Nitrogen,TN)和全磷(Total Phosphorus,TP),測量結果取各層平均值進行分析。土壤樣品分為3份:鮮土用來測定土壤含水率;樣品風干后過2 mm篩網(wǎng);風干后過0.25 mm篩網(wǎng)。土壤含水率使用烘干法測定;容重使用環(huán)刀法測定[13];速效氮用氯化鉀浸提(2mol/L KCl溶液)后用流動分析儀(Auto Analyzer-II,SEAL Analytical Gmbh,德國)測定[14];電導率采用質量比為1:5的土水比法用電導率儀(Seven Compact S230,Mettler Toledo,美國)測定[15];土壤砂粒、黏粒、粉粒體積含量使用激光顆粒分析儀(MaterSizer2000,Malvern Instruments Ltd.,英國)測定[16];土壤有機碳采用K2Cr2O7-H2SO4法測定[17];土壤全氮使用凱氏定氮法測定[18];土壤全磷使用鉬銻抗比色法測定[19]。研究區(qū)內(nèi)取樣點的位置和高程使用全球定位系統(tǒng)GPS(Trimble Recon,美國)獲得[12]。 作物成熟后(2016年9月5日)以各取樣點為中心劃定2 m×2 m的矩形范圍,選擇10株玉米,人工脫粒后在85 ℃條件下干燥至恒定質量并稱量,換算成單位面積產(chǎn)量作為該取樣點所代表的網(wǎng)格產(chǎn)量。 使用CCR法量化土壤因子對產(chǎn)量的影響并建立產(chǎn)量估算模型。其中,CCR的核心算法是將個相關成分進行線性組合代替原始的個因子對結果變量進行估算,其表達如下[11]: 式中α為截距,為標準化回歸系數(shù),X為自變量,成分S是自變量(X)的精確線性組合(S=11+22+…+βX)。該分析使用逐步下降的算法排除與結果變量相關性弱的成分,確定每個因子的標準權重和荷載,計算標準化系數(shù),最終得到CCR回歸模型。其中,第一成分(1)包含對結果變量起主導作用的影響因子,對結果變量產(chǎn)生直接影響;第二成分(2)以及隨后的相關成分與1相關,其中的變量對結果變量的作用與1中的變量相反,可以消除在1中的不相關變量的噪聲,進而提高模型估算精度。結果變量的估計值與實測值的決定系數(shù)(2)與標準差(S)是篩選相關成分數(shù)量的重要參數(shù),可得到相關成分矩陣方差為2/(1+S),當值最大且小于1時對應的相關成分數(shù)量即為最適合。利用XLSTATv2014(Addinsoft, 美國)軟件中CCR插件進行產(chǎn)量限制因子的確定與產(chǎn)量估算模型的建立。 農(nóng)田管理區(qū)是基于模糊聚類法,依據(jù)土壤因子空間分布規(guī)律分析得到[20]。綜合考慮高程、土壤粉粒、砂粒、含水率、速效氮、電導率等的空間異質性,應用主成分分析法得到3個主成分以及各取樣點的主成分得分,基于主成分得分應用模糊c均值聚類法,以模糊性能指數(shù)和歸一化分類熵作為最佳分區(qū)數(shù)的評判標準,最終得到3個管理分區(qū)分別為M1、M2和M3,其面積分別為2.3、1.8和2.7 hm2[12]。分區(qū)后,M1分區(qū)中土壤粉粒含量以及土壤養(yǎng)分指標在3 個分區(qū)中最高,砂粒含量和電導率最低,土壤環(huán)境適宜玉米生長,其產(chǎn)量也較高(7 244 kg/hm2);反之,在M3分區(qū)中,土壤含水率和土壤養(yǎng)分含量低,砂粒含量和電導率高,土壤環(huán)境對玉米生長有不利影響,其產(chǎn)量處于較低水平(5 502 kg/hm2);M2 分區(qū)內(nèi)各因子均值處于M1和M3之間,其產(chǎn)量為5 826 kg/hm2,處于中等水平。 表1為管理區(qū)內(nèi)土壤因子和產(chǎn)量的描述性統(tǒng)計分析結果。根據(jù)Warrick等[21]對變異級別的分類,未分區(qū)的情況下,除高程和土壤容重外的因子均呈中等變異性。分區(qū)后,3個管理區(qū)的產(chǎn)量和土壤容重、M1中的土壤粉粒、黏粒和M3中的土壤黏粒呈現(xiàn)弱變異性,其他因子均呈現(xiàn)中等變異性。分區(qū)后,除粉粒和高程外的土壤因子變異系數(shù)較分區(qū)前下降1.22%~63.43%,說明管理區(qū)的劃分使各因子的分布趨于均質化。使用方差分析比較管理區(qū)之間土壤屬性的差異性,可以發(fā)現(xiàn)管理區(qū)之間的土壤含水率、有機碳、全氮、全磷、速效氮以及玉米產(chǎn)量差異顯著(<0.01),大小順序為M1>M2>M3。 產(chǎn)量與管理區(qū)空間分布如圖1所示,產(chǎn)量的空間分布與管理區(qū)相似,即在M1中產(chǎn)量較高,M2次之,M3最低;根據(jù)土壤因子和產(chǎn)量的描述性統(tǒng)計分析結果(表1),分區(qū)后,產(chǎn)量的變異系數(shù)較未分區(qū)時下降11.33%~35.88 %;管理區(qū)之間產(chǎn)量由大到小順序為M1>M2>M3,并呈現(xiàn)出極顯著性的差異(<0.01)。 以實測高程、土壤砂粒、粉粒、黏粒、容重、土壤有機碳、全氮、全磷、土壤含水率、速效氮、電導率為自變量、產(chǎn)量為結果變量,應用CCR法分析,以相關成分矩陣方差最大為篩選條件,最終得到4個相關成分(CC1~CC4)和標準權重(表2)以及各因子對相關成分的標準荷載(表3)。在各管理區(qū)中,相關成分1(CC1)的權重均大于0.70。與此同時,在M1中相關成分2和3(CC2和CC3)的權重大于0.70。權重高(>0.70)的相關成分中荷載絕對值大于0.2的因子可視為主要的產(chǎn)量限制因子[11]。由表3可以看出,分區(qū)前,土壤粉粒、砂粒、SOC、SWC、AN和TN為產(chǎn)量的主要限制因子,這與分區(qū)后的結果有所不同:分區(qū)后,在管理區(qū)M1中,土壤粉粒、砂粒、黏粒、AN、EC、TN和TP為產(chǎn)量的主要限制因子;M2中產(chǎn)量的主要限制因子為土壤粉粒、砂粒和SWC;而在M3中產(chǎn)量的主要限制因子為高程、土壤砂粒、黏粒和EC。分區(qū)后各管理區(qū)的產(chǎn)量限制因子各不相同,說明實施分區(qū)管理是產(chǎn)量提升的關鍵措施,應針對不同管理區(qū)土壤質地與初始土壤屬性制定科學的管理策略。 表1 研究區(qū)不同管理分區(qū)內(nèi)土壤屬性均值和變異系數(shù) 圖1 研究區(qū)內(nèi)高程、管理區(qū)與實測玉米產(chǎn)量空間分布[12] 表2 相關成分回歸(CCR)中的各成分標準權重與矩陣方差 表3 使用CCR計算的各管理區(qū)內(nèi)不同因子對相關成分的標準荷載 基于各管理區(qū)內(nèi)不同產(chǎn)量限制因子對相關成分的荷載和相關成分的標準權重分析結果(表2和表3),應用CCR法建立產(chǎn)量估算回歸模型。用留一交叉檢驗法將總體數(shù)據(jù)集分為“建模集”和“驗證集”[22],用于建立CCR產(chǎn)量估算模型(表4和表5)。圖2a和圖2b分別為基于“建模集”和“驗證集”的實測產(chǎn)量與模擬產(chǎn)量的對比圖。 表4 基于CCR的玉米產(chǎn)量估算模型 注:為產(chǎn)量,kg·hm-2;其他變量含義見表1。 Note:is yield, kg·hm-2; Contents of the other variables are shown in Table 1. 表5 基于相關成分回歸(CCR)的產(chǎn)量估算模型建立與驗證 圖2 基于CCR回歸模型估算產(chǎn)量與實測產(chǎn)量對比 建模時,在未分區(qū)的情況下,CCR模型對產(chǎn)量的決定系數(shù)(2)為0.75,小于分區(qū)后M1、M2和M3的產(chǎn)量估算精度(R分別為0.91、0.84和0.75),且分區(qū)后模型的標準均方根誤差(Normalized Root Mean Square Error,nRMSE)較未分區(qū)時降低0.04~0.06;模型驗證時,未分區(qū)農(nóng)田的產(chǎn)量估算精度(2=0.70,nRMSE=0.21)依然低于各管理區(qū)(0.71<2<0.83,0.16< nRMSE<0.18)。說明對大面積農(nóng)田進行管理分區(qū)可以提高產(chǎn)量的估算精度,進而根據(jù)各分區(qū)的實際土壤質地及養(yǎng)分狀況提出差異化的管理措施。 分布式管理是實現(xiàn)大面積農(nóng)田產(chǎn)量提升和資源高效可持續(xù)利用的基礎,劃分管理分區(qū)并針對不同區(qū)域分析產(chǎn)量限制因子,從而實現(xiàn)分布式管理、提出因地制宜的產(chǎn)量提升途徑,是規(guī)?;r(nóng)場實現(xiàn)“精準管理”的關鍵步驟。土壤屬性的空間變異性是造成田間作物產(chǎn)量存在差異的主要因素[23-25]。Moharana 等[26]對農(nóng)田進行管理區(qū)劃分,以提升管理效率與經(jīng)濟收益。Peralta 等[27]用土壤表觀電導率進行管理區(qū)劃分,避免了土壤因子之間的共線性,但以單一因素解釋產(chǎn)量的空間變異性會丟失很多信息。Rossi 等[28]應用歸一化植被指數(shù)插值圖確定植被管理區(qū),其結果與模糊c均質聚類法得到的分區(qū)結果具有極大的相似性。眾多研究結果表明,管理區(qū)劃分可以很好地描述各區(qū)域的土壤因子變化規(guī)律和作物產(chǎn)量的分布。 劃分管理區(qū)后,分析不同管理區(qū)產(chǎn)量限制因子并制定各分區(qū)的產(chǎn)量提升策略,是目前很多研究所忽略的。在CCR分析結果中,若主控因子的標準化系數(shù)為正,表示其變化會造成產(chǎn)量的同步變化,即當該主要限制因子增大時產(chǎn)量隨之增長;反之當標準化系數(shù)為負,該主要限制因子增大則導致減產(chǎn)。因此依據(jù)CCR分析結果可以為各管理分區(qū)提出產(chǎn)量提升途徑:未分區(qū)情況下,產(chǎn)量限制因子為土壤粉粒、砂粒、SOC、SWC、AN和TN,因此土壤改良與施基肥是產(chǎn)量提升的關鍵;分區(qū)后,M1分區(qū)的產(chǎn)量限制因子為土壤粉粒、砂粒、黏粒、AN、EC、TN和TP,其產(chǎn)量提升途徑主要為增施有機肥和磷肥,調整土壤電導率以及改良土壤持水性能;M2分區(qū)的產(chǎn)量限制因子為土壤粉粒、砂粒和SWC,土壤持水性能是限制產(chǎn)量的主要因素,因此提升土壤保水、持水性能是增產(chǎn)的關鍵;M3分區(qū)的產(chǎn)量限制因子為高程、土壤砂粒、黏粒和EC,因此除了需要考慮平整土地、出苗水和有機肥的施用外,還需要實行有效的管理措施以降低土壤電導率,如在播前灌水以淋洗表層土壤鹽分。土壤結構在較短種植周期中較難改變,因此合理應用土壤改良劑可以有效提高土壤有效水含量、改善土壤電導率,進而提升水肥利用效率[29-31]。本研究中,在不同管理區(qū)內(nèi)提出的產(chǎn)量提升途徑均為定性分析,對產(chǎn)量限制因子的最優(yōu)調控閾值的確定尚需深入進行田間控制性試驗與定量分析,最終得到詳細的分布式管理技術參數(shù)。 土壤因子之間存在共線性,一定程度上會掩蓋自身變異性對結果變量(產(chǎn)量)的影響程度。所以,應用CCR回歸法可在考慮多重土壤因子對產(chǎn)量影響程度的前提下消除土壤因子間的多重共線性,既可消除估算誤差也盡可能保留土壤信息?;谕寥酪蜃拥腃CR回歸模型對產(chǎn)量的估算精度較高,且分區(qū)后估算精度較不分區(qū)時有所提升,說明該模型適于規(guī)?;r(nóng)場生產(chǎn)中的產(chǎn)量分區(qū)估算,在進一步研究中尚需探究多尺度下的環(huán)境、氣象、種植模式、作物品種、種植密度等因素對產(chǎn)量的影響,并建立估算模型、評價其精度。 基于土壤屬性的空間變異性,通過劃分管理區(qū)可以實現(xiàn)土壤屬性的相對均質化分布,以制定分布式管理措施,提升管理效率,實現(xiàn)產(chǎn)量提升。 綜合考慮高程等的空間異質性,將研究區(qū)分為3個管理區(qū)(M1、M2、M3)。依據(jù)相關成分回歸法(Correlated Component Regression,CCR)篩選玉米產(chǎn)量的限制因子:分區(qū)前,土壤粉粒、砂粒、有機碳、含水率、速效氮和全氮為產(chǎn)量限制因子;分區(qū)后,M1的限制因子為土壤粉粒、砂粒、黏粒、速效氮、電導率、全氮和全磷,M2為土壤粉粒、砂粒和含水率,而M3則為高程、土壤砂粒、黏粒和電導率。 基于土壤質地、初始土壤屬性建立的CCR產(chǎn)量估算模型的估算精度高(驗證集0.70<2<0.83),同時各管理區(qū)內(nèi)的估算精度高于分區(qū)前。依據(jù)管理分區(qū)的產(chǎn)量限制因子可以定性地制定分布式的管理措施,提升產(chǎn)量、水肥利用效率和農(nóng)田管理效率,達到規(guī)?;r(nóng)田精準管理的目的。 [1] Schepers A R, Shanahan J F, Liebig M K, et al. Appropriateness of management zones for characterzing spatial variability of soil properties and irrigated corn yields across years[J]. Agronomy Journal, 2004, 96: 195-203. [2] 金繼運. “精準農(nóng)業(yè)”及其在我國的應用前景[J]. 植物營養(yǎng)與肥料學報,1998,4(1):1-7. Jin Jiyun. Precision agriculture and its perspective in China[J]. Journal of Plant Nutrition and Fertilizer. 1998, 4(1): 1-7. (in Chinese with English abstract) [3] Cruz-Cárdenas G, Silva J T, Ochoa-Estrada S, et al.Delineation of environmental units by multivariate techniques in the duero river watershed, Michoacán, Mexico[J]. Environmental Modeling & Assessment, 2016, 22(3): 1-10. [4] Miao Y, Mulla D J, Robert P C. An integrated approach to site-specific management zone delineation[J]. Frontiers of Agricultural Science and Engineering, 2018, 5(4): 1-10. [5] Chen S C, Wang S F, Shukla M K, et al. Delineation of management zones and optimization of irrigation scheduling to improve irrigation water productivity and revenue in a farmland of Northwest China[J]. Precision Agriculture, 2020, 21(3): 655-677. [6] Li Yan, Shi Zhou, Li Feng, et al. Delineation of site-specific management zones using fuzzy clustering analysis in a coastal saline land[J]. Computers & Electronics in Agriculture, 2007, 56(2): 174-186. [7] Albornoz E M, Kemerer A C, Galarza R, et al. Development and evaluation of an automatic software for management zone delineation[J]. Precision Agriculture, 2017(2/3): 1-14. [8] 王改粉,趙玉國,楊金玲,等. 流域尺度土壤厚度的模糊聚類與預測制圖研究[J]. 土壤,2011,43(5):835-841. Wang Gaifen, Zhao Yuguo, Yang Jinling, et al. Prediction and mapping of soil depth at a watershed scale with fuzzy-c-means clustering method[J]. Soils, 2011, 43(5): 835-841. (in Chinese with English abstract) [9] 周浩,雷國平,楊雪昕,等. 基于AgentLA模型的農(nóng)田精準灌溉管理分區(qū)研究[J]. 水土保持學報,2018,32(1):274-279. Zhou Hao, Lei Guoping, Yang Xuexin, et al. Study on precision irrigation management zones in farmland according Agent-based model for optimal land allocation[J]. Journal of Soil and Water Conservation, 2018, 32(1): 274-279. (in Chinese with English abstract) [10] Stefanidis K, Panagopoulos Y, Mimikou M. Impact assessment of agricultural driven stressors on benthic macroinvertebrates using simulated data[J]. Science of The Total Environment, 2016(540): 32-42. [11] Magidson J. New Perspectives in Partial Least Squares and Related Methods [M]. New York, USA: Springer, 2013. [12] 陳世超,杜太生,王素芬. 基于模糊c均值聚類法的玉米農(nóng)田管理分區(qū)研究[J]. 農(nóng)業(yè)機械學報,2019,50(11):293-300. Chen Shichao, Du Taisheng, Wang Sufen. Delineating management zones in maize field based on fuzzy c-means algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery. 2019, 50(11): 293-300. (in Chinese with English abstract) [13] Blake G R. Methods of Soil Analysis. Part 1. Physical and Mineralogical Properties[M]. Madison, WI, USA: ASA and SSSA, 1965. [14] Baroni G, Ortuani B, Facchi A, et al. The role of vegetation and soil properties on the spatio-temporal variability of the surface soil moisture in a maize-cropped field[J]. Journal of Hydrology, 2013, 489(3): 148-159. [15] Slavich P G, Petterson G H, Slavich P G, et al. Estimating the electrical conductivity of saturated paste extracts from 1:5 soil, water suspensions and texture[J]. Australian Journal of Soil Research, 1993, 31(1): 73-81. [16] Ry?ak M, Bieganowski A. Methodological aspects of determining soil particle-size distribution using the laser diffraction method[J]. Journal of Plant Nutrition and Soil Science, 2011, 174(4): 624-633. [17] Rosero-Vlasova O A, Vlassova L, Perez-Cabello F, et al. Soil organic matter and texture estimation from visible-near infrared-shortwave infrared spectra in areas of land cover changes using correlated component regression[J]. Land Degradation & Development, 2019, 30: 544-560 [18] 鮑士旦. 土壤農(nóng)化分析[M]. 北京:中國農(nóng)業(yè)出版社,2000. [19] Page A L. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties[M]. Madison, Wisconsin, USA: American Society of Agronomy & Soil Science Society of America, 1982. [20] Fridgen J J, Kitchen N R, Sudduth K A, et al. Management zone analyst (MZA): Software for subfield management zone delineation[J]. Agronormy Journal, 2004, 96(1): 100-108. [21] Warrick A W, Nielsen D R. Spatial variability of soil physical properties in the field[J]. Applications of Soil Physics, 1980, 13: 319-344. [22] Kusumo B H, Hedley M J, Hedley C B, et al. Predicting pasture root density from soil spectral reflectance: Field measurement[J]. European Journal of Soil Science, 2010(61): 1-13. [23] Arshad M, Li N, Zhao D, et al. Comparing management zone maps to address infertility and sodicity in sugarcane fields[J]. Soil and Tillage Research, 2019, 193: 122-132 [24] Cicore P L, Franco M C, Peralta N R, et al. Relationship between soil apparent electrical conductivity and forage yield in temperate pastures according to nitrogen availability and growing season[J/OL]. Crop and Pasture Science, 2019. [2020-04-10] https://doi.org/10.1071/CP19224. [25] Zhao J, Yang X G. Distribution of high-yield and high-yield-stability zones for maize yield potential in the main growing regions in China[J]. Agricultural and Forest Meteorology, 2018, 248: 511-517. [26] Moharana P C, Jena R K, Pradhan U K, et al. Geostatistical and fuzzy clustering approach for delineation of site-specific management zones and yield-limiting factors in irrigated hot arid environment of India[J]. Precision Agriculture, 2020, 21(2): 426-448. [27] Peralta N R, Costa J L, Balzarini M, et al. Delineation of management zones to improve nitrogen management of wheat[J]. Computers and Electronics in Agriculture, 2015, 110: 103-113. [28] Rossi R, Pollice A, Bitella G, et al. Modelling the non-linear relationship between soil resistivity and alfalfa NDVI: A basis for management zone delineation[J]. Journal of Applied Geophysics, 2018, 159: 146-156. [29] 黃占斌,孫朋成,鐘建,等. 高分子保水劑在土壤水肥保持和污染治理中的應用進展[J]. 農(nóng)業(yè)工程學報,2016,32(1):125-131. Huang Zhanbin, Sun Pengcheng, Zhong Jian, et al. Application of super absorbent polymer in water and fertilizer conversation of soil and pollution management[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(1): 125-131. (in Chinese with English abstract) [30] 吳軍虎,任敏. 羥丙基甲基纖維素作土壤改良劑對土壤溶質運移的影響[J].農(nóng)業(yè)工程學報,2019,35(5):141-147. Wu Junhu, Ren Min. Effect of hydroxypropyl methyl cellulose as soil modifier on solute migration in soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(5): 141-147. (in Chinese with English abstract) [31] 邵玉翠,任順榮,楊軍,等. 有機無機-土壤改良劑對咸灌土壤理化環(huán)境調控及玉米產(chǎn)量影響[J]. 中國農(nóng)學通報,2012,28(18):111-116. Shao Yucui, Ren Shunrong, Yang Jun, et al. Effect of organic-inorganic soil amendments on physical and chemical conditions of saline water irrigation soil and maize yield [J]. Chinese Agricultural Science Bulletin, 2012, 28(18): 111-116. (in Chinese with English abstract) Evaluation of limiting factors and prediction of seed maize yield based on management zones Chen Shichao1,2, Du Taisheng1,2※, Wang Sufen1,2, Han Wanhai2, Dong Pingguo2, Tong Ling1,2, Hu Tiemin2 (1.100083; 2.733000) In order to improve the maize yield in different management zones and achieve precision agricultural management within a large-scale field, Correlated Component Regression (CCR) was used to screen limiting factors of maize yield from topographical attributes (elevation), soil physical factors (sand, silt, clay, bulk density), and initial soil properties (soil organic carbon, total nitrogen, total phosphorus, soil water content, available nitrogen, electrical conductivity). Yield estimation model was established based on yield-limiting factors in each management zone and the whole field. Management zones were delineated by using the Fuzzy c-means Clustering Algorithm (FCM) based on the spatial variation of soil properties. For soil properties, statistically significant differences in most cases were found among different management zones (M1, M2, M3), excepted elevation, silt, and clay. The decrease in the Coefficient of Variation (CV) of soil properties in the management zones indicated that the distribution of soil properties was more homogeneous than in the whole field. Spatial distribution of yield and management zones were similar, while the yield was significantly different in the three management zones (M1>M2>M3). The inhomogeneous spatial distribution of soil properties showed that the limiting factors of yield could be varied among management zones. Therefore, this study was to find out the yield-limiting factors, establish yield estimation models based on yield-limiting factors, and find ways to improve the yield in each management zone within a field. Four correlated components (CC1-CC4) were obtained in management zones and the whole field by CCR. The factors with largely standardized loadings (absolute value of standard loadings was greater than 0.2) on major correlated components (values of standardized weights were greater than 0.7) were identified as the main limiting factors of maize yield in zones. Yield in three management zones was measured and the limiting factors of yield in different zones were evaluated. The results showed that limiting factors for yield were silt, sand, Soil Organic Carbon (SOC), Soil Water Content (SWC), Available Nitrogen (AN), and Total Nitrogen (TN) in the whole field, which was different from management zones. The limiting factors of M1 were silt, sand, clay, AN, Electrical Conductivity (EC), TN, and Total P (TP). Limiting factors of M2 were silt, sand, SWC, while the limiting factors were elevation, sand, clay, and EC for M3. Different yield estimation models were established by using CCR in management zones and the whole field. The correlation between simulated and measured yield was high, with2of 0.75 and nRMSE of 0.20 in the whole field; in management zones, higher simulation accuracy was found: the2of yield estimation model was 0.91, 0.84, and 0.76, while nRMSE were 0.15, 0.14, and 0.16 in M1, M2, and M3, respectively. For model validation, the2values were 0.70, 0.83, 0.78, and 0.71, while nRMSE were 0.21, 0.16, 0.18, and 0.17 in the whole field, M1, M2, and M3, respectively. According to the results, different ways of improving yield were found. For the whole field, soil amelioration and fertilizer application before sowing were the keys to increase yield. The application of organic fertilizer and phosphorus fertilizer, reduction of soil EC, and the improvement of soil water holding capacity were conducive to the improvement of yield in M1. Because soil texture and SWC were the main factors limiting the yield, improving soil water holding characteristics was also the way to increase yield in M2. For M3, irrigation before sowing could decrease EC of surface soil and improve soil water storage, which was beneficial to the emergence and growth of maize. Organic fertilizer application should also be considered for yield improvement in M3. Distributed management should be adopted based on the limiting factors of maize yield in management zones. farmlands; zones; maize; limiting factors; yield estimation model; precision agriculture; correlated component regression 陳世超,杜太生,王素芬,等. 基于農(nóng)田管理分區(qū)的制種玉米產(chǎn)量估算與限制因子評價[J]. 農(nóng)業(yè)工程學報,2020,36(15):128-133.doi:10.11975/j.issn.1002-6819.2020.15.016 http://www.tcsae.org Chen Shichao, Du Taisheng, Wang Sufen, et al. Evaluation of limiting factors and prediction of seed maize yield based on management zones[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(15): 128-133. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.15.016 http://www.tcsae.org 2020-03-24 2020-07-10 國家自然科學基金項目(51725904、51861125103);農(nóng)業(yè)部公益性行業(yè)科研專項(201503125) 陳世超,博士生,主要從事節(jié)水灌溉理論與新技術研究。Email:chenshichaocsc@cau.edu.cn 杜太生,博士,教授,主要從事農(nóng)業(yè)節(jié)水與水資源高效利用研究。Email:dutaisheng@cau.edu.cn 10.11975/j.issn.1002-6819.2020.15.016 S278 A 1002-6819(2020)-15-0128-060 引 言
1 材料與方法
1.1 研究區(qū)概況
1.2 數(shù)據(jù)采集與分析
1.3 相關成分回歸法
1.4 管理區(qū)劃分
2 結果與分析
2.1 土壤及產(chǎn)量的描述性統(tǒng)計分析
2.2 產(chǎn)量限制因子分析
2.3 基于CCR的產(chǎn)量估算模型建立與驗證
3 討 論
4 結 論