張 蓬,楊克元,王延光,蒙艷松
(中國(guó)空間技術(shù)研究院西安分院,西安 710000)
全球?qū)Ш较到y(tǒng)(Global Navigation Satellite System,GNSS)設(shè)計(jì)之初主要針對(duì)地面用戶和低空用戶提供服務(wù)。由于GNSS在衛(wèi)星導(dǎo)航與定軌領(lǐng)域顯示出了明顯的優(yōu)勢(shì):極大的減輕了地面測(cè)控壓力,提升了自主性、實(shí)時(shí)性與導(dǎo)航定軌精度,針對(duì)高軌衛(wèi)星應(yīng)用的特種GNSS接收機(jī)研究逐漸成為了熱點(diǎn)。2016年,國(guó)際GNSS組織工作組B(ICG WG-B)在ICG工作會(huì)上達(dá)成了GNSS提供空間服務(wù)(Space Volume Service,SSV)的共識(shí),明確規(guī)定了在GEO軌道的系統(tǒng)指標(biāo)[1]。美國(guó)哥達(dá)德航天中心研制的高軌GNSS接收機(jī)Navigator,于2015年在MMS(Magnetospheric Multiscale)任務(wù)中成功服役,其上搭載的GEONS導(dǎo)航濾波器在Phase 1階段中12倍地球半徑的遠(yuǎn)地點(diǎn)可達(dá)到12米的導(dǎo)航精度[2]。美國(guó)的地球同步軌道(GEO)氣象衛(wèi)星GOCE-R上搭載了另一款高軌接收機(jī)Viceroy,其在仿真條件下在GEO軌道的導(dǎo)航精度達(dá)到了18米[3]。國(guó)內(nèi)對(duì)高軌GNSS接收機(jī)的研究起步較晚,文獻(xiàn)[4]、[5]分別針對(duì)GEO軌道和60000公里以下的地月轉(zhuǎn)移軌道進(jìn)行了基于GNSS的自主導(dǎo)航算法設(shè)計(jì),達(dá)到了優(yōu)于50米和100米的位置精度。
在高軌場(chǎng)景下基于GNSS的自主導(dǎo)航,由GNSS廣播星歷引入的用戶測(cè)距誤差(User Range Error,URE)會(huì)引起比低軌場(chǎng)景更加嚴(yán)重的位置精度損失。廣播星歷引入的GNSS衛(wèi)星軌道誤差和時(shí)鐘誤差不是隨機(jī)分布的白噪聲序列,在同一廣播星歷齡期內(nèi)一般發(fā)生緩慢連續(xù)的變化。經(jīng)典的擴(kuò)展卡爾曼濾波器(Extended Kalman Filter,EKF)只有在觀測(cè)噪聲滿足白噪聲的假設(shè)條件時(shí)才能達(dá)到最優(yōu)估計(jì)6]。因此,基于EKF的導(dǎo)航濾波器難以削弱廣播星歷引入的誤差,該誤差會(huì)直接由幾何分布因子放大后反映在最終的定位結(jié)果中,造成數(shù)十米的位置誤差。文章提出的自主導(dǎo)航濾波算法,使用增強(qiáng)擴(kuò)展卡爾曼濾波器(Augmented Extended Kalman Filter,AEKF)對(duì)GNSS觀測(cè)和軌道動(dòng)力學(xué)模型進(jìn)行緊耦合,同步估計(jì)高軌衛(wèi)星的運(yùn)動(dòng)狀態(tài)和廣播星歷的緩變誤差,以期從GNSS原始觀測(cè)中削弱和消除GNSS廣播星歷不準(zhǔn)確的影響。文章使用STK 11.0軟件和Spirent GNSS GSS9000信號(hào)模擬器共同搭造算法仿真平臺(tái),對(duì)GEO衛(wèi)星星載GNSS接收機(jī)的標(biāo)準(zhǔn)最小二乘方法、基于經(jīng)典EKF的導(dǎo)航濾波方法以及本文提出的基于AEKF的導(dǎo)航濾波方法的性能進(jìn)行了比對(duì),驗(yàn)證了本文算法的有效性。
使用STK11.0軟件中的高精度軌道遞推器(HPOP)生成高軌衛(wèi)星的高保真動(dòng)力學(xué)軌道,將此衛(wèi)星軌道數(shù)據(jù)作為接收機(jī)運(yùn)動(dòng)軌跡導(dǎo)入Spirent信號(hào)模擬器。在Spirent模擬器中設(shè)置GNSS星座參數(shù)和接收機(jī)天線參數(shù)后進(jìn)行共24小時(shí)場(chǎng)景仿真,生成GNSS衛(wèi)星、接收機(jī)的位置/速度以及信號(hào)接收功率信息。之后根據(jù)GNSS衛(wèi)星和高軌衛(wèi)星的相對(duì)位置和速度精準(zhǔn)計(jì)算真實(shí)距離及距離變化率,在其上疊加模擬的偽距誤差和偽速誤差即可得到偽距和偽速模擬量。最后,可使用生成的GNSS模擬觀測(cè)量在Matlab中進(jìn)行導(dǎo)航濾波算法仿真驗(yàn)證。
高軌衛(wèi)星設(shè)置為地球同步軌道(GEO)衛(wèi)星,初始軌道6根數(shù)設(shè)置如表 1 所示,該GEO衛(wèi)星的軌道示意圖如圖1所示。
在本文的研究中,使用單GPS星座,從CelesTrak官網(wǎng)(www.celestrak.com)獲取2018年年積日125天GPS星座的歷書(shū),并導(dǎo)入Spirent信號(hào)模擬器進(jìn)行GPS星座模擬,共包含31顆有效GPS衛(wèi)星。使用的信號(hào)為民用信號(hào)GPS L1 C/A。該信號(hào)的落地功率按照ICD文件[7]設(shè)置為-128.5dBm。對(duì)于高軌應(yīng)用場(chǎng)景, GNSS衛(wèi)星發(fā)射天線的旁瓣輻射性能至關(guān)重要。GPS IIM、IIR系列衛(wèi)星的天線方向圖使用洛克希德馬丁公司的公開(kāi)數(shù)據(jù)[8],對(duì)于IIF系列衛(wèi)星,由于缺乏公開(kāi)數(shù)據(jù),可使用其他系列衛(wèi)星方向圖數(shù)據(jù)的平均值進(jìn)行代替[9],如圖2所示。
圖2 GPS IIF系列衛(wèi)星發(fā)射天線L1頻段增益方向圖[9]Fig.2 Transmission Antenna pattern at L1 frequency band of GPS IIF satellites[9]
使用類似文獻(xiàn)[10]中設(shè)計(jì)的高軌高靈敏度GPS接收機(jī)。捕獲靈敏度門(mén)限設(shè)定為-149dBm,跟蹤靈敏度設(shè)定為-151dBm,具體參數(shù)見(jiàn)表2。
表2 高軌GNSS接收機(jī)參數(shù)Tab.2 HEO GNSS receiver parameters
高增益指向型接收天線會(huì)帶來(lái)天線尺寸和重量的增加,會(huì)給高軌衛(wèi)星平臺(tái)提出更苛刻的要求。故在GPS可用性足夠的條件下使用普通增益的接收天線,其幅度方向圖如圖3所示。
圖3 高軌GPS接收機(jī)L1頻段接收天線增益方向圖Fig.3 Reception Antenna pattern at L1 frequency band of HEO GPS receiver
偽距模擬通過(guò)計(jì)算GNSS衛(wèi)星和接收機(jī)間的真實(shí)距離ρ以及各種誤差模擬量完成,公式如式(1)所示:
P=ρ-cδts+cδtr+δρbrdc+δρion+δρtrop+δρmul+εP
(1)
其中,cδts代表衛(wèi)星時(shí)鐘偏差,按照2018年年積日125天的歷書(shū)中星鐘參數(shù)進(jìn)行模擬;cδts代表接收機(jī)時(shí)間偏差,使用一階斜升模型機(jī)型模擬;δρbrdc代表由廣播星歷誤差引入的距離誤差,使用2018年年積日125天的GPS廣播星歷和國(guó)際GNSS服務(wù)組織IGS提供的GPS最終精密星歷,以最終精密星歷作為真值,獲取GPS系統(tǒng)段軌道誤差和時(shí)鐘誤差,并將其投影至GNSS衛(wèi)星和接收機(jī)連線進(jìn)行模擬。需要說(shuō)明的是,廣播軌道是以GNSS發(fā)射天線相位中心為參考點(diǎn),而精密軌道則以衛(wèi)星質(zhì)心為參考點(diǎn),需要在精密軌道上進(jìn)行GNSS發(fā)射天線相位中心偏差(Phase Center Offsite,PCO)修正才可和廣播軌道進(jìn)行比對(duì)。由廣播星歷引入的距離誤差見(jiàn)圖 4,可明顯看到其成緩慢變化的系統(tǒng)偏差特征;δρion表示由電離層引入的測(cè)距誤差,δρtrop表示由對(duì)流層引入的測(cè)距誤差,根據(jù)文獻(xiàn)[11]的分析,高軌場(chǎng)景下直接丟棄穿過(guò)電離層的觀測(cè)數(shù)據(jù)比使用電離層消除組合可以帶來(lái)更加優(yōu)異的定位性能,因此,本文的導(dǎo)航濾波方法采取只使用沒(méi)有經(jīng)過(guò)電離層的觀測(cè)數(shù)據(jù),δρion和δρtrop可建模為0;δρmul表示多徑誤差,建立為0.2m的隨機(jī)誤差[12];εP表示熱噪聲誤差,由信號(hào)接收功率和接收機(jī)的環(huán)路參數(shù)決定,利用文獻(xiàn)[12]中介紹的碼環(huán)跟蹤熱噪聲經(jīng)驗(yàn)公式進(jìn)行計(jì)算。還有一些可以被模型精確改正的誤差(例如相對(duì)論誤差、接收天線PCO誤差和硬件延遲誤差等)未進(jìn)行模擬。
圖4 GPS 2018年年積日125天廣播星歷引起的偽距誤差Fig.4 User range error caused by GPS broadcast ephemeris on 2018 doy 125
偽速模擬通過(guò)計(jì)算GNSS衛(wèi)星和接收機(jī)間的真實(shí)距離變化率以及熱噪聲誤差模擬量完成,如式(2)所示:
(2)
其中,εD表示熱噪聲誤差,由信號(hào)接收功率和接收機(jī)的環(huán)路參數(shù)決定,利用文獻(xiàn)[12]中介紹的載波環(huán)跟蹤熱噪聲經(jīng)驗(yàn)公式進(jìn)行計(jì)算。
在建立的Spirent仿真場(chǎng)景下收集生成的仿真數(shù)據(jù):接收GNSS信號(hào)功率、GNSS衛(wèi)星位置/速度、接收機(jī)位置/速度等。首先根據(jù)接收機(jī)的捕獲時(shí)間、捕獲靈敏度、跟蹤靈敏度等參數(shù)篩選可見(jiàn)GNSS衛(wèi)星;然后根據(jù)GNSS衛(wèi)星和接收機(jī)的位置進(jìn)行過(guò)電離層檢測(cè)并予以剔除,得到最終可用GNSS星表,如圖5所示。不考慮電離層影響的可用星數(shù)均值約為8.40顆,刪除過(guò)電離層衛(wèi)星后可用星數(shù)約8.11顆,如文獻(xiàn)[11]所分析,可用性并不會(huì)明顯改變。
圖5 GEO軌道 GPS可見(jiàn)星數(shù)示意圖Fig.5 Visible GPS PRN numbers in GEO orbit
使用剔除電離層后的GNSS衛(wèi)星和接收機(jī)位置計(jì)算GNSS幾何分布因子,計(jì)算方法見(jiàn)文獻(xiàn)[12]。結(jié)果如圖6所示??梢钥吹剑珿EO場(chǎng)景下,高靈敏度GPS接收機(jī)的GDOP均值約為19.1(剔除過(guò)電離層的GNSS數(shù)據(jù)后),在幾何構(gòu)型較差時(shí)可出現(xiàn)大于100的峰值。
圖6 GEO軌道GPS衛(wèi)星幾何分布因子示意圖Fig.6 GDOP values of GPS in GEO orbit
表3 經(jīng)典EKF計(jì)算流程Tab.3 Calculation procedures of classical EKF
經(jīng)典EKF的推導(dǎo)過(guò)程建立在系統(tǒng)噪聲Q和觀測(cè)噪聲R為高斯白噪聲的前提下。當(dāng)Q或R呈現(xiàn)某種系統(tǒng)性的偏差特性時(shí)時(shí),EKF無(wú)法達(dá)到最優(yōu)估計(jì)。AEKF在系統(tǒng)狀態(tài)向量中加入增強(qiáng)狀態(tài)xaug,表示緩變誤差分量,與原系統(tǒng)狀態(tài)組成新的系統(tǒng)狀態(tài)x′=[xxaug],在濾波過(guò)程中使xaug吸收非白噪聲誤差以優(yōu)化估計(jì)結(jié)果。
增強(qiáng)擴(kuò)展卡爾曼濾波器AEKF;
軌道動(dòng)力學(xué)模型;
GNSS系統(tǒng)偏差估計(jì)量編輯;
圖7 AEKF導(dǎo)航濾波算法框圖Fig.7 Diagram of AEKF based navigation filtering algorithm
AEKF對(duì)GNSS觀測(cè)量和軌道動(dòng)力學(xué)模型進(jìn)行距離域耦合,AEKF的系統(tǒng)狀態(tài)x由接收機(jī)狀態(tài)xrecv和增強(qiáng)狀態(tài)xaug組成:
x=[xrecv,xaug]N+8
xaug=[δ1,δ2,δ3…δN]N
(3)
(4)
其中,f(xrecv,t)接收機(jī)狀態(tài)的系統(tǒng)函數(shù),表示在t時(shí)刻狀態(tài)xrecv對(duì)時(shí)間的導(dǎo)數(shù),含義如下:
(5)
式(5)中,ax,ay,az表示接收機(jī)的加速度,由軌道動(dòng)力學(xué)模型計(jì)算得到。
轉(zhuǎn)移矩陣求解:
Φaug,k-1=IN×N
其中,Φrecv,k-1為接收機(jī)狀態(tài)的轉(zhuǎn)移矩陣,通過(guò)Frecv,k-1近似計(jì)算(Frecv,k-1通過(guò)f(xrecv,t)線性化展開(kāi)求得),τs為狀態(tài)推的時(shí)間間隔。增強(qiáng)狀態(tài)的轉(zhuǎn)移矩陣Φaug,k-1為單位陣I(N×N)。
觀測(cè)矩陣計(jì)算:
Hk=[HrecvHaug]2N×(N+8)
(6)
Haug=I
02N×N
其中,[-uia1,x-uia1,y-uia1,z]表示第一顆GNSS衛(wèi)星和接收機(jī)間的視線矢量。
針對(duì)高軌衛(wèi)星的軌道力學(xué)特性,為了簡(jiǎn)化在軌運(yùn)算負(fù)荷,只考慮主要的軌道攝動(dòng)因素。軌道力學(xué)模型主要包括地球低階引力場(chǎng)(6×6階),月球和太陽(yáng)的三體引力,太陽(yáng)輻射壓力等。
根據(jù)GNSS衛(wèi)星跟蹤列表和廣播星歷狀態(tài)對(duì)增強(qiáng)狀態(tài)xaug、增強(qiáng)狀態(tài)的協(xié)方差矩陣Paug的維數(shù)和數(shù)值進(jìn)行調(diào)整:
當(dāng)前歷元若有新的GNSS衛(wèi)星出現(xiàn),則將增強(qiáng)狀態(tài)xaug從N維增加至N+1維,并將對(duì)應(yīng)于新GNSS衛(wèi)星的廣播星歷偏差初始化為0;將增強(qiáng)狀態(tài)的協(xié)方差矩陣Paug從N×N維增加至(N+1)×(N+1)維,并將新加入的行和列初始化(除對(duì)角線置零,對(duì)角線元素置初始方差值);
當(dāng)前歷元相比上個(gè)歷元若有GNSS衛(wèi)星停止跟蹤,則將增強(qiáng)狀態(tài)xaug從N維減少至N-1維,刪除停止跟蹤的GNSS衛(wèi)星的廣播星歷偏差;將增強(qiáng)狀態(tài)的協(xié)方差矩陣Paug從N×N維減少至(N-1)×(N-1)維,刪除停止跟蹤的GNSS衛(wèi)星的廣播星歷偏差對(duì)應(yīng)的行和列;
當(dāng)前歷元若有某顆GNSS衛(wèi)星的廣播星歷發(fā)生了更新,則將增強(qiáng)狀態(tài)xaug中對(duì)應(yīng)的元素初始化為0;將增強(qiáng)狀態(tài)的協(xié)方差矩陣Paug對(duì)應(yīng)的行和列初始化。
分別采用最小二乘方法,經(jīng)典的EKF導(dǎo)航濾波方法以及本文提出的AEKF導(dǎo)航濾波方法對(duì)GEO衛(wèi)星進(jìn)行自主導(dǎo)航仿真,結(jié)果如圖 8及表 4所示??梢钥吹剑词故褂酶哽`敏度接收機(jī),最小二乘方法的3D RMS位置誤差也達(dá)到了31.517米,使用經(jīng)典的EKF導(dǎo)航濾波法可以將位置精度提升至13.676米,若使用本文提出的AEKF方法,則可進(jìn)一步提升至8.874米,相對(duì)于經(jīng)典EKF方法,提升幅度約33.3%,相對(duì)于最小二乘方法,提升了70.9%;使用最小二乘方法時(shí),在幾何分布因子較差時(shí)可達(dá)到726.124米的3D最大位置誤差,但若使用濾波方法,則可借助于動(dòng)力學(xué)軌道遞推精度高的特點(diǎn),使導(dǎo)航定位結(jié)果不出現(xiàn)大的跳變,因此,EKF方法和AEKF方法的3D最大位置誤差僅分別為45.978米和32.707米,AEKF方法相對(duì)于EKF方法,性能提升約28.8%,相對(duì)于最小二乘方法,提升了約95.5%;表5給出了3種方法的1D位置誤差,觀察可發(fā)現(xiàn),徑向誤差相對(duì)于切向和法向誤差大了一個(gè)量級(jí),這是因?yàn)樵诟哕増?chǎng)景下,GNSS衛(wèi)星集中分布在天頂區(qū)域,造成徑向距離和接收機(jī)鐘差高度相關(guān),難以解耦,導(dǎo)致徑向誤差變大。AEKF方法和EKF方法的性能差別也主要體現(xiàn)在徑向誤差,AEKF方法相對(duì)于EKF方法有約35.1%的性能提升,相對(duì)于最小二乘方法有約71.8%的性能提升。
圖8 GEO軌道自主導(dǎo)航定位性能示意圖Fig.8 Autonomous navigation result in GEO orbit
表4 GEO軌道自主導(dǎo)航定位3D位置精度Tab. 4 3D position accuracy of autonomous navigation in GEO orbit
表5 GEO軌道自主導(dǎo)航定位1D位置精度Tab.5 1D position accuracy of autonomous navigation in GEO orbit
本文提出了一種基于GNSS接收機(jī)的高軌衛(wèi)星自主導(dǎo)航濾波算法,針對(duì)高軌場(chǎng)景下GNSS幾何分布因子差、用戶等效測(cè)距誤差大且包含GNSS廣播星歷引入的緩變誤差等特點(diǎn),利用AEKF在非白噪聲環(huán)境下更加突出的性能,融合星載GNSS數(shù)據(jù)與軌道動(dòng)力學(xué)模型,估計(jì)并削弱了GNSS廣播星歷誤差影響,提升了高軌衛(wèi)星自主導(dǎo)航定位精度。并通過(guò)STK11.0和Spirent GSS9000模擬器搭造仿真平臺(tái)進(jìn)行了算法的有效性驗(yàn)證。仿真結(jié)果顯示,AEKF方法在GEO軌道進(jìn)行自主導(dǎo)航可以達(dá)到約9.32米的3D RMS 位置精度;相對(duì)于經(jīng)典EKF濾波方法,3D RMS位置誤差提升了約33.3%,3D最大位置誤差提升了約28.8%,相對(duì)于最小二乘方法,3D RMS位置誤差提升了約70.9%,3D最大位置誤差提升了約95.5%。