屈馳飛,鄧四二,姜維,謝鵬飛
(1.河南科技大學(xué),機(jī)電工程學(xué)院,洛陽 471003;2.洛陽軸承研究所有限公司,洛陽 471039;)
1.1.1 鋼球與保持架的作用力
鋼球與保持架兜孔的法向作用力如公式(1)所示[1-2]。
式中:
由理論分析可知,鋼球和保持架間作用力與接觸變形量和兜孔間隙等參數(shù)有關(guān)。
1.1.2 引導(dǎo)套圈和保持架的作用力
由于流體動壓效應(yīng)的存在,如圖1 所示,將保持架定心表面與套圈引導(dǎo)表面看成是有限短的厚膜作用軸頸軸承的一個特例。
式中:
1R 為保持架定心表面半徑; 0η 為潤滑油的動力黏度;1C 為保持架引導(dǎo)間隙;L為保持架定心表面寬度;e 如圖1中標(biāo)注;1u 為潤滑油拖動速度;ε 為保持架中心相對軸承中心偏移量;cω 為保持架角速度;1V 為兩表面相對滑動速度;為軸承外(內(nèi))圈角速度。
圖1 保持架與引導(dǎo)套圈的幾何接觸關(guān)系
在建立保持架平衡方程時,需將保持架局部坐標(biāo)系 Sc中的力及力矩投影到軸承靜坐標(biāo)系中,如公式(5)所示。
式中:
由此可知,保持架與引導(dǎo)擋邊間的作用力與保持架外徑、寬度、引導(dǎo)間隙、潤滑油黏度和拖動速度等參數(shù)均有關(guān)。
通過ADAMS 軟件系統(tǒng)中的CMD 語言,開發(fā)了參數(shù)化變轉(zhuǎn)速球軸承保持架動態(tài)仿真分析模型[3-5],并建立軸承各個零件間的相互接觸數(shù)學(xué)模型,用FORTRAN 語言編寫保持架作用力子程序。通過FORTRAN 中的子程序SYSARY讀取ADAMS 軟件中每個步長的系統(tǒng)狀態(tài)值,計算出該步長相應(yīng)的解,再通過RESULT 傳遞給ADAMS 軟件的求解器,完成積分求解,如圖2 所示。
圖2 動態(tài)仿真分析求解過程
電機(jī)所使用的某型號軸承主要結(jié)構(gòu)參數(shù)見表1,利用軸承仿真模型對變速運轉(zhuǎn)軸承保持架在不同間隙下的動態(tài)特性進(jìn)行仿真分析。軸承轉(zhuǎn)速曲線如圖 3 所示,保持架間隙方案見表2。
表 1 軸承參數(shù)表
圖 3 變速運轉(zhuǎn)軸承轉(zhuǎn)速曲線
表2 保持架間隙方案(單位:mm)
分析軸承在過零瞬間5s 內(nèi)的動態(tài)性能,在仿真開始時給鋼球和保持架的速度設(shè)定一個初始值,在仿真計算約0.1s后,保持架和鋼球的轉(zhuǎn)速趨于穩(wěn)定。
假定軸承軸向載荷為57.5 N,徑向載荷為16.5 N,變速運轉(zhuǎn)軸承轉(zhuǎn)速曲線如圖4 所示,將轉(zhuǎn)速變化區(qū)間設(shè)置為+1 000 r/min →0 r/min →-1 000 r/min,圖5 為軸承轉(zhuǎn)速過零瞬間,不同保持架兜孔間隙和保持架引導(dǎo)間隙組合中,保持架與引導(dǎo)套圈間的最大作用力曲線。
圖4 不同間隙下的保持架受力變化曲線
由圖4 可以看出,在變速運轉(zhuǎn)軸承的應(yīng)用過程中,當(dāng)保持架兜孔間隙一定時,隨著保持架引導(dǎo)間隙的增加,保持架與引導(dǎo)套圈間作用力先減小后增加。在這個工況中,存在一個最佳的引導(dǎo)間隙,可以使保持架和引導(dǎo)套圈之間的作用力最小。保持架與引導(dǎo)套圈間作用力較小的四種方案編號分別是:6、7、9 和10,其中方案10 的保持架與引導(dǎo)面間的作用力最小。
軸承保持架打滑率如公式(6)所示。
式中:
ncl為保持架理論轉(zhuǎn)速;n 為保持架實際轉(zhuǎn)速。
保持架打滑率反映了保持架實際轉(zhuǎn)速與理論轉(zhuǎn)速的差值。保持架打滑率越低,鋼球與溝道之間的滑動成分越少,滾動成分越多,保持架實際轉(zhuǎn)速與理論轉(zhuǎn)速越接近,則越有利于保持架的運轉(zhuǎn)穩(wěn)定,由滑動引起摩擦與磨損越?。幌喾?,保持架打滑率越高,越不利于保持架的運轉(zhuǎn)穩(wěn)定性。
保持架不同兜孔間隙和不同引導(dǎo)間隙組合下的軸承轉(zhuǎn)速過零瞬間保持架最大打滑率曲線如圖5 所示。
圖5 保持架最大打滑率變化曲線
由圖5 可以看出,在變速運轉(zhuǎn)軸承的應(yīng)用過程中,當(dāng)保持架兜孔間隙一定時,隨著保持架引導(dǎo)間隙的增加,保持架最大打滑率先降低后升高;當(dāng)保持架兜孔間隙一定時,存在一個最佳的保持架引導(dǎo)間隙使得保持架最大打滑率最低;在軸承轉(zhuǎn)速過零瞬間,保持架的最大打滑率均在20%以上,說明此時鋼球在溝道內(nèi)的滑動較大;保持架最大打滑率較低的四種方案編號分別是:6、7、9 和10,其中方案10 的保持架最大打滑率最低;保持架與引導(dǎo)套圈間作用力以及保持架最大打滑率隨保持架外徑尺寸的變化規(guī)律基本一致,說明保持架與引導(dǎo)面間的作用力對保持架最大打滑率有直接影響。
根據(jù)上述分析結(jié)論,對方案6、7、9 和10 的保持架質(zhì)心運動軌跡進(jìn)行重點對比分析,如圖6 所示。
圖6 保持架質(zhì)心軌跡對比
由圖6 可以看出,在軸承過零變速過程中,保持架出現(xiàn)了類似菱形的質(zhì)心軌跡,質(zhì)心軌跡比較紊亂且有較大的斜向位移,這說明過零變向過程中保持架受到了較大的沖擊力,導(dǎo)致保持架質(zhì)心位置突然發(fā)生改變;經(jīng)過分析對比,方案6、10 的質(zhì)心運動軌跡較為平滑,方案7、9 保持架質(zhì)心運動軌跡相對較為混亂,保持架質(zhì)心的菱形軌跡較多。
根據(jù)仿真結(jié)果,制定了四組試驗方案??紤]到試驗的可操作性,在選配保持架間隙時將公差控制在±0.005 mm,軸承預(yù)載荷的公差控制在±1 N;具體試驗參數(shù)如表3 所示。
表3 保持架及預(yù)載實測值
試驗步驟如下。首先,電機(jī)在1 000 r/min 條件下運轉(zhuǎn)20 小時,待電機(jī)運轉(zhuǎn)電流穩(wěn)定后,按圖3 所示的轉(zhuǎn)速曲線進(jìn)行余弦運轉(zhuǎn)過零試驗,周期10 s,每個周期過零2 次。具體試驗流程如圖7 所示,電機(jī)總運轉(zhuǎn)時間200 小時后試驗結(jié)束,整個試驗過程中電機(jī)轉(zhuǎn)速過零115 200 次。
圖7 試驗流程
變轉(zhuǎn)速試驗結(jié)束后將電機(jī)分解,首先對軸承單元的軸向預(yù)載荷進(jìn)行了復(fù)測。經(jīng)測試,四種方案軸承的預(yù)載荷在試驗后均未發(fā)生變化,說明軸承未出現(xiàn)異常磨損。
對軸承進(jìn)行分解,對比四種試驗方案保持架的接觸情況,拆解后保持架如圖 8 所示。對保持架引導(dǎo)外徑、兜孔的表面接觸磨損情況進(jìn)行分析。接觸痕跡越淺,說明磨損越輕微,軸承運轉(zhuǎn)穩(wěn)定性越好;相反,接觸痕跡越深,說明磨損越嚴(yán)重,則軸承運轉(zhuǎn)穩(wěn)定性越差。
圖8 四種試驗方案保持架的接觸情況
利用仿真分析模型,對變速軸承保持架不同間隙條件下軸承保持架與引導(dǎo)套圈的作用力、打滑率以及質(zhì)心運動軌跡進(jìn)行分析,得出如下結(jié)論。
(1)在變速運轉(zhuǎn)軸承應(yīng)用過程中,當(dāng)保持架兜孔間隙一定時,隨著保持架引導(dǎo)間隙的增加,保持架與引導(dǎo)套圈間作用力和保持架最大打滑率先降低后升高。
(2)保持架兜孔間隙和引導(dǎo)間隙存在一個最佳的匹配關(guān)系,使得保持架與引導(dǎo)套圈間作用力最?。煌瑫r存在一個最佳匹配關(guān)系使得保持架最大打滑率最小。
(3)試驗驗證,保持架與引導(dǎo)套圈間作用力、打滑率越高,保持架質(zhì)心軌跡越不穩(wěn)定,運轉(zhuǎn)后的保持架磨痕越深,電機(jī)工作越不穩(wěn)定。