賈慧敏,胡秋嘉,毛建偉,毛崇昊,劉春春,張 慶,劉昌平
高階煤煤層氣井產(chǎn)量遞減規(guī)律及影響因素
賈慧敏,胡秋嘉,毛建偉,毛崇昊,劉春春,張 慶,劉昌平
(中國石油華北油田公司,山西 長治 046000)
為揭示高階煤煤層氣井產(chǎn)量遞減規(guī)律,基于沁水盆地南部樊莊區(qū)塊10余年的開發(fā)數(shù)據(jù),通過數(shù)值模擬、統(tǒng)計(jì)分析等方法,對(duì)現(xiàn)有開發(fā)技術(shù)條件下高階煤煤層氣井產(chǎn)量遞減點(diǎn)(即煤層氣井產(chǎn)量開始遞減時(shí)的煤層氣采出程度)、遞減類型及影響因素進(jìn)行分析。結(jié)果表明:樊莊區(qū)塊煤層氣井產(chǎn)量遞減點(diǎn)平均為25%,單井平均遞減點(diǎn)為21%,大部分井在排采4 a后開始遞減;煤層氣井遞減點(diǎn)由基質(zhì)滲透率和裂縫半長決定,基質(zhì)滲透率和裂縫半長越大,單井有效控制半徑越大、有效控制儲(chǔ)量越多,遞減點(diǎn)越大;基質(zhì)滲透率越高,裂縫半長增加引起的遞減點(diǎn)增幅越大。由此可知,滲透率是煤層氣井遞減類型的主控因素,滲透率越高,遞減指數(shù)越小,遞減速度越慢。隨著滲透率增加,遞減類型依次為線性遞減、指數(shù)遞減和雙曲遞減。綜合分析認(rèn)為,儲(chǔ)層平均孔隙半徑越大,煤的應(yīng)力敏感性越弱,煤基質(zhì)收縮對(duì)滲透率的改善程度越大,導(dǎo)致儲(chǔ)層動(dòng)態(tài)滲透率越高,遞減速度越慢。該研究為合理控制高階煤煤層氣井產(chǎn)量遞減具有指導(dǎo)意義。
高階煤;煤層氣產(chǎn)量;遞減規(guī)律;遞減點(diǎn);主控因素;樊莊區(qū)塊;沁水盆地
我國煤層氣儲(chǔ)層滲透率低、孔隙率低和含氣飽和度低,煤層氣井存在單井產(chǎn)量低、井間產(chǎn)量差異大的問題[1]。煤層氣井遞減規(guī)律研究對(duì)預(yù)測(cè)煤層氣井產(chǎn)量變化和最終采出程度具有重要作用,Arps產(chǎn)量遞減分析方法仍然是重要的分析方法[2],C. L. Jordan等[3]認(rèn)為Arps產(chǎn)量遞減分析方法需要數(shù)據(jù)量少、現(xiàn)場(chǎng)適用性強(qiáng),應(yīng)該充分利用。部分學(xué)者采用傳統(tǒng)的Arps產(chǎn)量遞減分析方法對(duì)煤層氣井遞減規(guī)律進(jìn)行了研究,苗耀等[4]采用Arps產(chǎn)量遞減分析方法對(duì)樊莊區(qū)塊煤層氣高產(chǎn)井遞減類型及遞減率分布規(guī)律進(jìn)行研究,認(rèn)為該區(qū)塊遞減符合指數(shù)遞減規(guī)律;劉剛[5]研究了樊莊區(qū)塊高階煤煤層氣井生產(chǎn)規(guī)律,重點(diǎn)就該區(qū)塊煤層氣井遞減率和遞減類型進(jìn)行分析,認(rèn)為煤層氣井初期遞減速度相對(duì)較快,呈指數(shù)遞減,后期遞減速度減緩,表現(xiàn)雙曲遞減特征;王彩鳳等[6]對(duì)晉城、韓城區(qū)塊煤層氣井產(chǎn)量遞減類型及影響因素進(jìn)行了研究,認(rèn)為研究區(qū)煤層氣井產(chǎn)量具有5種遞減類型,并對(duì)其影響因素進(jìn)行了研究;K. E. Okuszko等[7]認(rèn)為煤層氣井遞減一般遵循雙曲遞減,遞減指數(shù)為0~0.5;K. Morad等[8]研究認(rèn)為儲(chǔ)層壓力下降、煤基質(zhì)壓縮和煤粉運(yùn)移導(dǎo)致滲透率下降是導(dǎo)致煤層氣產(chǎn)量遞減的主要因素;K. Aminian等[9]通過數(shù)值模擬調(diào)研了氣藏關(guān)鍵參數(shù)對(duì)煤層氣井產(chǎn)量遞減的影響,認(rèn)為裂縫孔滲特征、吸附時(shí)間、表皮因子、含氣量等因素對(duì)煤層氣井遞減規(guī)律具有影響。少數(shù)學(xué)者引進(jìn)現(xiàn)代產(chǎn)量遞減分析方法對(duì)儲(chǔ)層參數(shù)進(jìn)行了評(píng)價(jià),肖翠[10]、王江順等[11]應(yīng)用現(xiàn)代產(chǎn)量遞減分析圖版定量評(píng)價(jià)了儲(chǔ)層滲透率、有效裂縫半長和泄流半徑,分析了滲透率和壓裂參數(shù)對(duì)煤層氣井產(chǎn)量遞減的影響?;谇叭说难芯糠治稣J(rèn)為,目前針對(duì)煤層氣井產(chǎn)量遞減類型分析研究較多,但對(duì)于開始遞減時(shí)煤層氣采出程度(遞減點(diǎn))和影響因素,及遞減類型的影響因素等研究較少,筆者基于沁水盆地南部樊莊區(qū)塊10余年的開發(fā)實(shí)踐數(shù)據(jù),重點(diǎn)就煤層氣井遞減點(diǎn)和遞減類型及其影響因素進(jìn)行統(tǒng)計(jì)分析和數(shù)值模擬,以期更深入地認(rèn)識(shí)煤層氣井遞減規(guī)律。
沁水盆地位于山西省東南部,為一近SN向的大型復(fù)式向斜,盆地內(nèi)次級(jí)褶曲發(fā)育(圖1),斷層以NE、NNE向高角度正斷層為主[12]。樊莊區(qū)塊位于沁水盆地東南部,其含煤層系經(jīng)歷了海西期、印支期、燕山期和喜馬拉雅期4期構(gòu)造演化[13]。二疊系山西組3號(hào)煤層和石炭–二疊系太原組15號(hào)煤層是該區(qū)塊煤層氣開發(fā)主力煤層。區(qū)塊3號(hào)煤層埋深整體由SE向NW逐漸增加,15號(hào)煤層與3號(hào)煤層具有相似的構(gòu)造形態(tài)。3號(hào)煤層埋深一般為370~800 m,埋深整體相對(duì)較淺;3號(hào)煤層全區(qū)穩(wěn)定發(fā)育,厚度為5~7 m,底部常見一層厚度約0.5 m的夾矸[14];3號(hào)煤層鏡質(zhì)體最大反射率(max)為3.3%~4.1%,為高階煤煤層氣儲(chǔ)層;含氣量相對(duì)較高,為11~25 m3/t,含氣飽和度為76%~93%,屬于欠飽和儲(chǔ)層;試井測(cè)試滲透率為(0.01~1.92)×10–3μm2,滲透率差異較大;煤體結(jié)構(gòu)一般以原生結(jié)構(gòu)煤為主,碎粒煤和糜棱煤主要發(fā)育在煤層頂?shù)装搴蛫A矸附近;煤層彈性模量一般為0.6~2.5 GPa,最大水平主應(yīng)力為NE向,最大、最小水平主應(yīng)力分別為13~42 MPa和9~26 MPa[15]。
圖1 樊莊區(qū)塊3號(hào)煤層頂面構(gòu)造及井位
樊莊區(qū)塊從2006年開始規(guī)模建產(chǎn),陸續(xù)投產(chǎn)1 000余口井,動(dòng)用儲(chǔ)量100億m3,開發(fā)時(shí)間較長,部分井已經(jīng)具備煤層氣井全生命周期的開發(fā)特征,具備研究煤層氣井遞減規(guī)律的研究基礎(chǔ)。
煤層氣井產(chǎn)量遞減點(diǎn)即煤層氣井產(chǎn)量開始遞減時(shí)的煤層氣采出程度,遞減點(diǎn)表征了煤層氣井產(chǎn)量開始遞減的時(shí)機(jī)。
以樊莊區(qū)塊1 000余口煤層氣生產(chǎn)老井為例,其日產(chǎn)氣量從2014年開始出現(xiàn)遞減,遞減時(shí)整個(gè)區(qū)塊累計(jì)產(chǎn)氣量為25億m3,遞減時(shí)煤層氣采出程度為25%(圖2)。
從單井來看,部分單井從2009年開始出現(xiàn)遞減,不同井出現(xiàn)遞減時(shí)各參數(shù)間差異較大,總體具有幾個(gè)特征:① 遞減點(diǎn)差異大,遞減井的遞減點(diǎn)分布在5%~65%,平均21%,相鄰井的遞減點(diǎn)也存在較大差異(圖3a);②開始遞減時(shí)累計(jì)排采時(shí)間差異大,為227~3 034 d,平均1 282 d,大部分井在排采4 a以后開始遞減(圖3b);③各井開始遞減時(shí)累計(jì)產(chǎn)氣量、產(chǎn)水量差異大,遞減時(shí)累計(jì)產(chǎn)氣量分布在75~3 800萬m3,平均430萬m3(圖3c),某直井最高日產(chǎn)氣量達(dá)到1.6萬m3,遞減時(shí)累計(jì)產(chǎn)氣量達(dá)到3 800萬m3,遠(yuǎn)遠(yuǎn)超過其他直井,遞減時(shí)累計(jì)產(chǎn)水量為159~6 973 m3,平均1 646 m3(圖3d);④各井遞減時(shí)日產(chǎn)氣量、日產(chǎn)水量差異大,但日產(chǎn)氣量總體較高,日產(chǎn)水量相對(duì)較低。該區(qū)塊遞減井遞減時(shí)日產(chǎn)氣量為600~16 500 m3,平均5 000 m3(圖3e),日產(chǎn)水量為0~3 m3,平均0.3 m3(圖3f)。
圖2 樊莊區(qū)塊日產(chǎn)氣量與累計(jì)產(chǎn)氣量曲線
圖3 煤層氣井開始遞減時(shí)主要參數(shù)分布
2.2.1 含氣量
將樊莊區(qū)塊遞減井的含氣量與遞減點(diǎn)作散點(diǎn)圖(圖4),由圖4可知,含氣量與遞減點(diǎn)離散度非常高,表明在含氣量整體較高的樊莊區(qū)塊,含氣量并非遞減點(diǎn)的主控因素,含氣量高低對(duì)遞減點(diǎn)大小沒有必然影響。這主要是由于煤層氣富集主控因素與高產(chǎn)主控因素不同,煤層氣井產(chǎn)量受控于含氣量、儲(chǔ)層物性等地質(zhì)條件的好壞及儲(chǔ)層改造工藝與其是否匹配等因素。
2.2.2 儲(chǔ)層滲透率
由圖5可知,遞減點(diǎn)隨著儲(chǔ)層滲透率的增加而增加,二者成冪指數(shù)關(guān)系,且二者相關(guān)性較好,表明儲(chǔ)層滲透率對(duì)遞減點(diǎn)有重要影響。當(dāng)滲透率小于0.1×10–3μm2時(shí),遞減井遞減點(diǎn)小于25%,遞減時(shí)采出程度較低;當(dāng)滲透率在1.0×10–3μm2左右時(shí),遞減點(diǎn)為30%~70%,遞減時(shí)采出程度較高。分析認(rèn)為,儲(chǔ)層滲透率越高,滲流半徑越大,單井有效控制儲(chǔ)量越多,遞減時(shí)煤層氣采出程度越高。該區(qū)域單井壓裂前試井結(jié)果表明,隨著滲透率增加,試井調(diào)查半徑增加(圖6),表明滲透率越高,儲(chǔ)層壓降擴(kuò)展范圍越大,單井控制半徑越大。
圖4 含氣量對(duì)遞減點(diǎn)的影響
圖5 儲(chǔ)層滲透率對(duì)遞減點(diǎn)影響
圖6 不同滲透率儲(chǔ)層試井邊界
2.2.3 裂縫半長
大多數(shù)煤層氣井必須經(jīng)過大規(guī)模壓裂改造才能產(chǎn)氣,因此,裂縫半長是影響單井有效控制范圍的另一個(gè)重要參數(shù)。通過四維向量對(duì)該區(qū)塊壓裂裂縫進(jìn)行監(jiān)測(cè),結(jié)果表明,該區(qū)塊裂縫半長主要分布在80~120 m。通過數(shù)值模擬方法模擬了不同基質(zhì)滲透率條件下,裂縫半長對(duì)遞減點(diǎn)的影響,結(jié)果如圖7所示。
圖7 不同滲透率儲(chǔ)層壓裂裂縫半長對(duì)遞減點(diǎn)影響
圖7表明,滲透率相同時(shí),裂縫半長越長,遞減點(diǎn)越大。滲透率越高,裂縫半長增加引起的遞減點(diǎn)增幅越大。如滲透率為0.01×10–3μm2時(shí),裂縫半長為80~120 m時(shí)對(duì)遞減點(diǎn)影響程度很小,裂縫半長為80 m時(shí)遞減點(diǎn)為6.5%,而裂縫半長為120 m時(shí)遞減點(diǎn)為9.7%,僅增加3.2%;而當(dāng)滲透率為1.0×10–3μm2時(shí),裂縫半長由80 m增加至120 m時(shí),遞減點(diǎn)由35.5%增加至52.5%,增量為17%,遠(yuǎn)大于滲透率為0.01×10–3μm2時(shí)對(duì)應(yīng)的增量。
Arps遞減分析法是目前常用的遞減分析方法,Arps提出產(chǎn)量與遞減率的關(guān)系式[16]:
式中:i為開始遞減時(shí)日產(chǎn)氣量;為遞減某時(shí)刻產(chǎn)氣量;為任意時(shí)刻遞減率;i為開始遞減時(shí)的瞬間遞減率;為遞減指數(shù),可確定遞減類型。
無載氧體時(shí),熱解揮發(fā)氣中H2含量較高,為51.1%,H2/CO相對(duì)較高,但氣體收率低,為1.16 Nm3/kgbiomass,生物質(zhì)碳轉(zhuǎn)化率僅為62.8%。Fe2O3引入的晶格氧促進(jìn)了生物質(zhì)氣化反應(yīng),當(dāng)Fe2O3/C為0.13時(shí),生物質(zhì)碳轉(zhuǎn)化率提高到 90.9%。進(jìn)一步提高 Fe2O3量到Fe2O3/C為0.5,可將生物質(zhì)完全氣化。帶入燃料反應(yīng)器的晶格氧量的增加,促進(jìn)了固體焦炭轉(zhuǎn)化為氣體成分,因此合成氣收率和 CO含量提高,這也降低了H2/CO比,約為0.83。合成氣收率和合成氣的H2及CO收率為1.48 Nm3/kgbiomass和1.16 Nm3/kgbiomass。
當(dāng)=0時(shí),為調(diào)和遞減;當(dāng)=1時(shí),為指數(shù)遞減;當(dāng)0<<1時(shí),為雙曲線遞減,越大遞減越快[17]。陳元千等[18]在Arps遞減基礎(chǔ)上提出線性遞減概念,認(rèn)為=2時(shí)為線性遞減。
對(duì)樊莊區(qū)塊遞減井生產(chǎn)曲線分析表明,該區(qū)塊遞減類型以線性遞減、指數(shù)遞減和雙曲線遞減為主,如圖8所示。
圖8 樊莊區(qū)塊煤層氣井產(chǎn)量遞減類型典型曲線
生產(chǎn)實(shí)踐表明,不同滲透率條件下,遞減類型存在差異,隨滲透率增加,遞減類型依次為線性遞減、指數(shù)遞減和雙曲遞減。當(dāng)滲透率小于0.1×10–3μm2時(shí),遞減類型以線性遞減、指數(shù)遞減為主,雙曲遞減較少;當(dāng)滲透率為(0.1~1.0)×10–3μm2時(shí),遞減類型為指數(shù)遞減為主;當(dāng)滲透率大于1.0×10–3μm2時(shí),遞減類型以雙曲線遞減為主,指數(shù)遞減較少。3種遞減類型的遞減指數(shù)和遞減速度由大到小依次為線性遞減、指數(shù)遞減和雙曲遞減(表1)表明,對(duì)于整體低滲的煤層氣儲(chǔ)層,滲透率越高,遞減指數(shù)越小,遞減速度越慢。
表1 3種遞減類型煤層氣井關(guān)鍵參數(shù)對(duì)比
3.2.1 不同滲透率煤孔隙結(jié)構(gòu)分布
大量統(tǒng)計(jì)結(jié)果也表明,具有相當(dāng)多厚度與含氣量大的低滲透煤儲(chǔ)層,其產(chǎn)量卻很低,而厚度和含氣量較小、滲透率較高的煤儲(chǔ)層,產(chǎn)量卻較高[19]。可見,煤儲(chǔ)層滲透率對(duì)產(chǎn)量大小和產(chǎn)量遞減類型起著決定性作用。選取樊莊區(qū)塊不同滲透率(0.01×10–3、0.5×10–3、2.0×10–3μm2)的天然煤樣,在室溫20℃條件下開展高壓壓汞實(shí)驗(yàn),得到不同滲透率條件下煤樣孔隙半徑分布圖(圖9)。
圖9表明,當(dāng)煤體滲透率為0.01×10–3μm2時(shí),煤中主要發(fā)育小于10 nm的小孔,比例高達(dá)40%;當(dāng)煤體滲透率為0.5×10–3μm2時(shí),主要發(fā)育小于90~ 500 nm的中孔,比例高達(dá)70%以上;當(dāng)煤體滲透率為2.0×10–3μm2時(shí),主要發(fā)育大于1 000 nm的大孔和微裂隙,比例高達(dá)50%以上。因此,儲(chǔ)層滲透率越高,孔隙半徑越大。
圖9 樊莊區(qū)塊不同滲透率煤層孔隙半徑分布
3.2.2 儲(chǔ)層原始滲透率對(duì)動(dòng)態(tài)滲透率影響
煤層氣井排水降壓過程中,儲(chǔ)層中流體壓力、有效應(yīng)力不斷變化,導(dǎo)致煤儲(chǔ)層滲透率不斷變化[20]。煤層氣產(chǎn)量遞減階段,有效應(yīng)力持續(xù)增加導(dǎo)致滲透率持續(xù)下降,吸附態(tài)甲烷持續(xù)解吸引起基質(zhì)收縮導(dǎo)致煤層滲透率持續(xù)增加,因此,煤層應(yīng)力敏感性與基質(zhì)收縮耦合控制滲透率動(dòng)態(tài)變化。
圖10中,煤樣1—煤樣3滲透率為(0.01~0.03)× 10–3μm2,煤樣4—煤樣6滲透率為(0.5~5.0)×10–3μm2。有效應(yīng)力低于2 MPa時(shí),高滲煤樣應(yīng)力敏感性強(qiáng),滲透率降低幅度較大,低滲煤樣應(yīng)力敏感性較弱,滲透率下降幅度較小,說明排采初期,高滲煤層應(yīng)力敏感性強(qiáng)。有效應(yīng)力大于2 MPa后,高滲煤樣的滲透率基本不變,應(yīng)力敏感性遠(yuǎn)遠(yuǎn)小于低滲煤樣,這表明在排采后期,儲(chǔ)層滲透率較低的煤層氣井的應(yīng)力敏感性較強(qiáng),對(duì)滲透率變化具有決定作用。分析可知,在遞減階段,煤的應(yīng)力敏感性隨煤體滲透率降低而逐漸增強(qiáng)。
圖10 不同滲透率煤應(yīng)力敏感性差異
3.2.3 儲(chǔ)層動(dòng)態(tài)滲透率對(duì)遞減類型的影響
對(duì)于低滲煤儲(chǔ)層(小于0.1×10–3μm2),應(yīng)力敏感性較強(qiáng),基質(zhì)收縮作用較小,壓降漏斗延展速度慢、范圍小,解吸氣量少,煤層氣井產(chǎn)量低,進(jìn)入遞減期后,壓降漏斗擴(kuò)展速度幾乎停止,產(chǎn)量下降速度快,以線性遞減和指數(shù)遞減為主。而在高滲透區(qū)域(大于1.0×10–3μm2),煤層應(yīng)力敏感性較弱,基質(zhì)收縮作用較強(qiáng),滲透率大幅恢復(fù),壓降漏斗快速穩(wěn)定向遠(yuǎn)處延展,供氣面積大,產(chǎn)氣量高,進(jìn)入遞減期后,壓降漏斗緩慢延伸,進(jìn)一步擴(kuò)大解吸范圍,且低壓條件下較多煤體積中煤層氣解吸產(chǎn)出,產(chǎn)量遞減速度緩慢,以雙曲線遞減類型為主。滲透率介于低滲和高滲之間時(shí),表現(xiàn)為應(yīng)力敏感性與基質(zhì)收縮作用的平衡,此時(shí)遞減率基本不變。
a. 煤層氣井遞減點(diǎn)是煤層氣井產(chǎn)量開始遞減時(shí)的采出程度,樊莊區(qū)塊煤層氣井產(chǎn)量遞減點(diǎn)平均為25%,大部分井在排采4 a后開始遞減,單井開始遞減時(shí)平均日產(chǎn)氣量為5 000 m3,平均累計(jì)產(chǎn)氣量為430萬m3。遞減點(diǎn)概念的提出完善了煤層氣井遞減評(píng)價(jià)指標(biāo),為判斷煤層氣井非自然遞減及增產(chǎn)措施的制定提供了依據(jù)。
b.煤層氣井遞減點(diǎn)主要受儲(chǔ)層滲透率和裂縫半長影響,儲(chǔ)層滲透率越高,單井有效控制半徑越大、有效控制儲(chǔ)量越多,遞減點(diǎn)越大;儲(chǔ)層滲透率相同時(shí),裂縫半長越長,遞減點(diǎn)越大;且儲(chǔ)層滲透率越高,裂縫半長增加引起的遞減點(diǎn)增幅越大。
c. 滲透率是煤層氣井遞減類型差異的主控因素,隨著滲透率增加,遞減類型依次為線性遞減、指數(shù)遞減和雙曲遞減。滲透率越高,遞減指數(shù)越小,遞減速度越慢。這主要是由于在遞減階段,儲(chǔ)層滲透率越低,煤體應(yīng)力敏感性越強(qiáng),煤基質(zhì)收縮引起的煤層滲透率增加程度越小,儲(chǔ)層動(dòng)態(tài)滲透率越低,遞減速度越快。儲(chǔ)層滲透率與遞減指數(shù)的對(duì)應(yīng)關(guān)系應(yīng)進(jìn)一步細(xì)化研究,為判斷非自然遞減提供明確的依據(jù)。
d. 煤基質(zhì)滲透率和壓裂裂縫滲透率對(duì)煤層氣井遞減點(diǎn)和遞減類型具有決定性影響,因此,煤層氣井排采過程中應(yīng)最大限度地保護(hù)和改善儲(chǔ)層滲透率,高效排采管控是遏制煤層氣井產(chǎn)量遞減的重要措施。
請(qǐng)聽作者語音介紹創(chuàng)新技術(shù)成果等信息,歡迎與作者進(jìn)行交流
[1] 趙賢正,朱慶忠,孫粉錦,等. 沁水盆地高階煤層氣勘探開發(fā)實(shí)踐與思考[J]. 煤炭學(xué)報(bào),2015,40(9):2131–2136. ZHAO Xianzheng,ZHU Qingzhong,SUN Fenjin,et al.Practice and thought of coalbed methane exploration and development in Qinshui basin[J]. Journal of China Coal Society,2015,40(9):2131–2136.
[2] FETKOVICHM J. Decline curve analysis using type curves[J]. Journal of Petroleum Technology,1980,32(6):1065–1077.
[3] JORDAN C L,JACKSON R A,SMITH C R. Making the most of conventional decline analysis[C]//SPE114953. Presented at the CIPC/SPE Gas Technology Symposium 2008 Joint Conference. Calgary,Alberta,Canada:2008-06-1.
[4] 苗耀,牛緒海,左銀卿. 沁水盆地樊莊區(qū)塊煤層氣高產(chǎn)井遞減特征及采收率預(yù)測(cè)[J]. 煤炭技術(shù),2014,33(9):318–320. MIAO Yao,NIU Xuhai,ZUO Yinqing. Production decline characteristics and recovery rate forcasting for coalbed methane well of high production in Fanzhuang block Qinshui basin[J]. Coal Technology,2014,33(9):318–320.
[5] 劉剛. 樊莊區(qū)塊煤層氣地質(zhì)特征及產(chǎn)能分析[D]. 徐州:中國礦業(yè)大學(xué),2017. LIU Gang. The geological characteristics and productivity analysis of CBM in Fanzhuang block[D]. Xuzhou:China University of Mining and Technology,2017.
[6] 王彩鳳,邵先杰,孫玉波,等. 中高煤階煤層氣井產(chǎn)量遞減類型及控制因素:以晉城和韓城礦區(qū)為例[J]. 煤田地質(zhì)與勘探,2013,41(3):23–28. WANG Caifeng,SHAO Xianjie,SUN Yubo,et al. Production decline types and their control factors in coalbed methane wells:A case from Jincheng and Hancheng mining areas[J]. Coal Geology & Exploration,2013,41(3):23–28.
[7] OKUSZKO K E,GAULT B W,MATTAR L . Production decline performance of CBM wells[J]. The Journal of Canadian Petroleum Technology,2008,47(7):57–61.
[8] MORAD K,TAVALLALI M. The benefits of reworking declining CBM wells[C]//SPE148952. Presented at the Canadian Unconventional Resources Conference. Calgary,Alberta,Canada:2011-15-17.
[9] AMINIAN K,AMERI S,SANCHEZ M,et al. Type curves for coalbed methane production prediction[C]//SPE 91482. Presented at SPE Eastern Regional Meeting. Charleston,W V,U S A:2004-15-17.
[10] 肖翠. 現(xiàn)代產(chǎn)量遞減分析法在鄂爾多斯盆地延川南煤層氣田中的應(yīng)用[J]. 天然氣工業(yè),2018,38(增刊1):102–106. XIAO Cui. Application of modern production decline analysis method in coal seam gas field of south Yanchuan,Ordos basin[J]. Natural Gas Industry,2018,38(S1):102–106.
[11] 王江順,張遠(yuǎn)凱. 基于現(xiàn)代產(chǎn)量遞減分析法的煤層氣井應(yīng)用研究[J]. 煤炭技術(shù),2018,37(9):64–66. WANG Jiangshun,ZHANG Yuankai. Research on application of CBM wells based on modern production decreasing analysis[J]. Coal Technology,2018,37(9):64–66.
[12] 賈慧敏,孫世軒,毛崇昊,等. 基于煤巖應(yīng)力敏感性的煤層氣井單相流產(chǎn)水規(guī)律研究[J]. 煤炭科學(xué)技術(shù),2017,45(12):189–193. JIA Huimin,SUN Shixuan,MAO Chonghao,et al.Study on single-phase flow water production law of coalbed methane well based on coal and rock stress sensitivity[J]. Coal Science and Technology,2017,45(12):189–193.
[13] 劉世奇,趙賢正,桑樹勛,等. 煤層氣井排采液面–套壓協(xié)同管控:以沁水盆地樊莊區(qū)塊為例[J]. 石油學(xué)報(bào),2015,36(增刊1):97–108. LIU Shiqi,ZHAO Xianzheng,SANG Shuxun,et al. Cooperative control of working fluid level and casing pressure for coalbed methane production:A case study of Fanzhuang block in Qinshui basin[J]. Acta Petrolei Sinica,2015,36(S1):97–108.
[14] 胡秋嘉,李夢(mèng)溪,賈慧敏,等. 沁水盆地南部高煤階煤層氣水平井地質(zhì)適應(yīng)性探討[J]. 煤炭學(xué)報(bào),2019,44(4):1178–1187. HU Qiujia,LI Mengxi,JIA Huimin,et al. Discussion of the geological adaptability of coal-bed methane horizontal wells of high-rank coal formation in southern Qinshui basin[J]. Journal of China Coal Society,2019,44(4):1178–1187.
[15] 胡秋嘉,賈慧敏,祁空軍,等. 高煤階煤層氣井單相流段流壓精細(xì)控制方法:以沁水盆地樊莊—鄭莊區(qū)塊為例[J]. 天然氣工業(yè),2018,38(9):76–81. HU Qiujia,JIA Huimin,QI Kongjun,et al. A fne control method of flowing pressure in single-phase flow section of high-rank CBM gas development wells:A case study from the Fanzhuang-Zhengzhuang block in the Qinshui basin[J]. Natural Gas Industry,2018,38(9):76–81.
[16] ARPS J J. Analysis of decline curves[R]. SPE 945228,1945.
[17] 陳元千,唐瑋. 廣義遞減模型的建立及應(yīng)用[J]. 石油學(xué)報(bào),2016,37(11):1410–1413. CHEN Yuanqian,TANG Wei. Establishment and application of generalized decline model[J]. Acta Petrolei Sinica,2016,37(11):1410–1413.
[18] 陳元千,周翠. 線性遞減類型的建立、對(duì)比與應(yīng)用[J]. 石油學(xué)報(bào),2015,36(8):983–987. CHEN Yuanqian,ZHOU Cui. Establishment,comparison and application of the linear decline type[J]. Acta Petrolei Sinica,2015,36(8):983–987.
[19] 賈慧敏,胡秋嘉,祁空軍,等. 高階煤煤層氣直井低產(chǎn)原因分析及增產(chǎn)措施[J]. 煤田地質(zhì)與勘探,2019,47(5):104–110.JIA Huimin,HU Qiujia,QI Kongjun,et al. Reasons of low yield and stimulation measures for vertical CBM wells in high-rank coal[J]. Coal Geology & Exploration,2019,47(5):104–110.
[20] 賈慧敏,胡秋嘉,祁空軍,等. 煤層氣流壓回升型不正常井儲(chǔ)層傷害機(jī)理與治理[J]. 煤田地質(zhì)與勘探,2019,47(4):69–75. JIA Huimin,HU Qiujia,QI Kongjun,et al. Damage mechanism and countermeasures of reservoir with abnormal pickup of CBM flow pressure in well[J]. Coal Geology & Exploration,2019,47(4):69–75.
Production decline law and influencing factors of high-rank coal CBM wells
JIA Huimin, HU Qiujia, MAO Jianwei, MAO Chonghao, LIU Chunchun, ZHANG Qing, LIU Changping
(PetroChina Huabei Oilfield Company, Changzhi 046000, China)
In order to reveal the production decline law of high-rank coal CBM wells, based on the development data of Fanzhuang block in southern Qinshui basin for more than 10 years, this paper studies the decline point, decline type and influencing factors of high-rank coal CBM wells by means of numerical simulation and statistical analysis. The results show that the decline point of the Fanzhuang block is 25% and the average decline point of the single well is 21%. Most wells begin to decline after drainage of 4 years. The decline point of CBM well is determined by matrix permeability and half length of fracture. The higher the matrix permeability is, the larger the effective control radius of single well is, the more effective control reserves are, and the larger the decline point is. The higher the matrix permeability, the greater the growth of decrease point caused by the increase of half length of fracture. Permeability is the main controlling factor of CBM well decline type. The higher the permeability is, the smaller the decline index is, and the slower the decline rate is. With the increase of permeability, the decline types are linear decline, exponential decline and hyperbolic decline successively. The reason is that for formation with high permeability, the average pore radius is large, which results in much weaker stress sensitivity and much greater permeability by shrinkage of the coal and rock, leading to much higher dynamic permeability and much slower decline rate.
high-rank coal; coalbed methane production; decline law; decline point; main controlling factors; Fanzhuang block; Qinshui basin
TE328
A
10.3969/j.issn.1001-1986.2020.03.009
1001-1986(2020)03-0059-06
2019-11-25;
2020-02-08
國家科技重大專項(xiàng)項(xiàng)目(2017ZX05064);中國石油天然氣股份有限公司重大科技專項(xiàng)項(xiàng)目(2017E-1405)
National Science and Technology Major Project(2017ZX05064);Science and Technology Major Project of PetroChina Company Limited(2017E-1405)
賈慧敏,1989年生,男,河北井陘人,碩士,工程師,從事煤層氣勘探開發(fā)及排采管理研究. E-mail:jiahuimin1108@sina.com
賈慧敏,胡秋嘉,毛建偉,等. 高階煤煤層氣井產(chǎn)量遞減規(guī)律及影響因素[J]. 煤田地質(zhì)與勘探,2020,48(3):59–64.
JIA Huimin,HU Qiujia,MAO Jianwei,et al. Production decline law and influencing factors of high-rank coal CBM wells[J]. Coal Geology & Exploration,2020,48(3):59–64.
(責(zé)任編輯 范章群)