李鳳麗 石素華 李愛芹 王興軍 趙術珍
摘要:CRISPR/Cas9(clustered regularly interspaced short palindromic repeats /CRISPR-associated protein 9)是近年發(fā)現(xiàn)的繼ZFNs和TALENs兩種基因編輯技術之后的一種新型基因組定點編輯技術。本研究分別從CRISPR/Cas9 系統(tǒng)的結構、類別、作用機制、相關應用以及存在問題等方面進行綜述,旨在為相關領域研究提供參考。
關鍵詞:基因組編輯;CRISPR/Cas9;sgRNA;研究進展
中圖分類號:S-1:Q78文獻標識號:A文章編號:1001-4942(2020)04-0164-09
Abstract The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/ CRISPR-associated protein 9) is a novel genomic editing technology discovered in recent years following the two gene editing technologies of ZFNs and TALENs. In this article, the structure, category, mechanism of action, application and present problems of the CRISPR/Cas9 system were summarized in order to provide references for relevant researches.
Keywords Genome editing; CRISPR/Cas9; sgRNA; Research progress
CRISPR/Cas9系統(tǒng)最初在細菌免疫系統(tǒng)中被發(fā)現(xiàn),經(jīng)過人為改造,可對真核細胞的基因組進行特異編輯。該系統(tǒng)通過特異性的單向導?RNA(single guide RNA, sgRNA)序列,引導?Cas9 蛋白特異結合到靶序列處行使?DNA 切割功能。然后利用細胞的修復機制對切割后的?DNA 進行插入、缺失或替換等修飾。相比于ZFNs和TALENs兩種傳統(tǒng)基因編輯技術,CRISPR/Cas9系統(tǒng)具有簡單、高效和低成本等優(yōu)勢,在植物、動物及人類中的應用日趨廣泛。因此,利用CRISPR/Cas9基因編輯技術探究植物基因功能等相關問題將成為推動植物學研究的一個重要方法。
1 CRISPR/Cas系統(tǒng)
1.1 CRISPR系統(tǒng)的發(fā)現(xiàn)
1987年,Ishino等[1]發(fā)現(xiàn)大腸桿菌中負責編碼堿性磷酸酶同工酶的iap基因存在特殊的重復間隔序列,但在當時并未引起廣泛關注。直到2000年,人們在細菌、古細菌及線粒體基因組中發(fā)現(xiàn)一系列規(guī)則間隔重復序列,并命名為規(guī)則的短間隔重復序列(short regularly spaced repeats,SRSRs)。2002年,Jansen等[2]在細菌與古細菌等原核生物基因組中發(fā)現(xiàn)一系列新的重復序列(長度為25~37 bp),根據(jù)其重復基因座家族的結構特性,命名為規(guī)律成簇的間隔短回文重復序列(clustered regularly interspaced short palindromic repeats,CRISPRs)。同年,Makarova等[3]通過對原核生物基因組中保守基因的系統(tǒng)性研究,預測CRISPRs與嗜熱細菌及古細菌的DNA修復系統(tǒng)有關。2005年,Bolotin等[4]發(fā)現(xiàn)在CRISPRs中,間隔區(qū)基因與噬菌體和質粒已知基因具有同源性,并提出CRISPRs結構的形成涉及cas基因介導的DNA片段化,鑒于其在細菌基因組中的穩(wěn)定性和廣泛性,推測它可能是細菌對抗外源DNA入侵的一種保護機制。隨后有研究[5]認為,CRISPR間隔區(qū)存在于已知的噬菌體和接合質粒序列、染色體或遺傳元件,且這些序列未能感染特定的間隔載體菌株,這意味著CRISPR與靶DNA的免疫有關。Makarova等[6]通過分析CRISPR和cas基因,提出CRISPR/Cas系統(tǒng)(CASS)是一種防御噬菌體和質粒入侵機制的假設,其功能類似于真核生物的RNA干擾(RNAi)系統(tǒng)。Barrangou等[7]揭示了CASS是原核生物的一種DNA修復機制,即在被病毒攻擊后,細菌可以整合來自噬菌體基因組序列的新間隔區(qū),通過去除或添加特定間隔區(qū)來改變細胞的噬菌體抗性。因此,細菌中CRISPR與相關cas基因共同通過間隔區(qū)(噬菌體序列)相似性確定抗性特異性,進而提供對噬菌體的抗性。2008年,Marraffini等[8]發(fā)現(xiàn)CASS干擾的靶標是DNA。2011年,Makarova等[9]通過對CRISPR/Cas系統(tǒng)的序列和結構進行比較,揭示Cas蛋白之間存在同源性,并首次披露CRISPR/Cas系統(tǒng)的分子機制。同年,Makarova等[10]進一步分析了CRISPR/Cas系統(tǒng)和Cas蛋白之間的進化關系,并將該系統(tǒng)分為三種主要類型。2013年,張鋒課題組通過設計兩種不同的Ⅱ型CRISPR/Cas系統(tǒng)來誘導人和小鼠細胞內源基因組位點的精確切割,將多個指導序列編碼成單個CRISPR陣列,同時編輯了哺乳動物基因組內的幾個位點,并證明RNA引導的基因編輯技術存在廣泛適用性[11]。Jiang等[12]利用與雙RNA復合CRISPR/Cas9,對肺炎鏈球菌和大腸桿菌的基因組進行精確編輯,表明該技術可應用于細菌基因組研究。
1.2 CRISPR/Cas結構基礎和作用原理
CRISPR/Cas系統(tǒng)是大多數(shù)細菌和古細菌中存在的一種獲得性免疫系統(tǒng)。Jansen等[13]比較了不同原核物種CRISPR基因座側翼的四種基因(cas1~cas4),表明該類CRISPR相關基因具有同源性;cas3基因含有超家族2的解旋酶特征基序,cas4基因存在RecB核酸外切酶家族基序,可參與DNA的代謝或表達;但沒有CRISPR的原核生物中不存在這些基因。因此,CRISPR和cas基因具有空間連貫性,這引起科研人員對該類基因起源及生物學功能的極大興趣。Pourcel等[14]在鼠疫耶爾森氏菌基因組三個不同位點處發(fā)現(xiàn)3個CRISPR元件,其中1個具有高度多態(tài)性;對109個與三種鼠疫桿菌CRISPR相關等位基因進行測序發(fā)現(xiàn),共存在29個新間隔區(qū),且大多數(shù)屬于一種株系;在9株假結核耶爾森氏菌(Yersinia pseudotuberculosis)中共發(fā)現(xiàn)132個間隔區(qū),僅有3個是鼠疫桿菌不同株系的共有區(qū)域。此外,他們在東方鼠疫桿菌中觀察到基序缺失,但插入基序現(xiàn)象更為普遍,其中基序缺失發(fā)生在三個不同位點,缺失后的間隔片段在基因組的另一基因座處存在同源物;而對間隔片段進一步研究發(fā)現(xiàn),它們可能是某些入侵遺傳元件在細菌內的殘留,可為細菌提供一種抵御外源DNA入侵的特異性免疫。該研究首次揭示了CRISPR元件中間隔片段的起源。Kunin等[15]對從195個微生物基因組中鑒定出的CRISPR重復序列進行分析發(fā)現(xiàn),它們可分成多個簇,一些簇呈現(xiàn)穩(wěn)定性,存在高度保守的RNA二級結構,而另一些則不具有保守結構域。Bhaya等[16]發(fā)現(xiàn)R環(huán)結構中的單DNA鏈是Cas3核酸酶活性的靶標,可以導致原型間隔區(qū)中的單鏈斷裂。其具體作用機制為,在完成第一條DNA鏈切割后,Cas3解旋酶可能取代cascade-crRNA復合物對第二條DNA鏈進行切割,而靶DNA的切割干擾了病毒復制和質粒功能。
1.3 CRISPR/Cas9系統(tǒng)的作用原理
Bhaya等[16]于2011年得出CRISPR/Cas系統(tǒng)作用機制,包括①CRISPR間隔區(qū)獲得:當外源基因侵入宿主時,激活CRISPR/Cas9系統(tǒng)并發(fā)揮免疫活性,靶向分解外源DNA序列并將原型間隔序列(protospacer)整合到宿主基因組CRISPR位點的5′端;②CRISPR表達:pre-CRISPR-derived RNA(pre-crRNA)從前導區(qū)轉錄,進一步切割成較小的crRNA,同時合成Cas9蛋白;③CRISPR干擾:crRNA和Cas9蛋白在tracrRNA的指導下形成核蛋白復合物,特異性識別外源基因并發(fā)揮核酸內切酶活性,分解外源遺傳物質,賦予宿主免疫力。
1.4 CRISPR/Cas系統(tǒng)分布與分類
根據(jù)Cas蛋白的不同,可將CRISPR/Cas系統(tǒng)分為三類。類型Ⅰ含6個Cas蛋白,數(shù)量最多,也最復雜,其中Cas3蛋白最具特征性,具有解旋酶和核酸酶雙重功能,在CRISPR干擾階段發(fā)揮主要作用。Sinkunas等[17]通過對嗜熱鏈球菌Cas3基因的克隆、表達、蛋白純化和體外功能分析,認為其具有單鏈DNA刺激的ATPase活性,可與DNA/DNA和RNA/DNA雙鏈體的解旋結構相結合,此外,Cas3的HD結構域還具有ATP非依賴性核酸酶活性,優(yōu)選單鏈DNA作為底物。因此,該課題組提出Cas3 ATPase/解旋酶結構域充當運動蛋白,有助于將核酸酶活性傳遞至cascade-crRNA復合物以靶向外源DNA。類型Ⅱ主要特征是包含一個標志蛋白,即Cas9蛋白,該蛋白參與crRNA的成熟以及對入侵DNA或外源質粒進行降解[18]。類型Ⅲ包含特征性的Cas10蛋白,其具有RNA酶活性和類似于類型Ⅰ的cascade功能[19],主要參與crRNA的成熟和剪切入侵的外源DNA。類型Ⅰ和類型Ⅲ在細菌和古細菌中均有發(fā)現(xiàn),類型Ⅱ僅存在于細菌。與Ⅰ、Ⅲ相比,類型Ⅱ僅需要Cas9蛋白對DNA雙鏈進行剪輯,Cas9蛋白則僅需要一個gRNA引導,而Ⅰ、Ⅲ依賴于復雜的蛋白質復合體及tracrRNA-crRNA的引導。
2 CRISPR/Cas9系統(tǒng)的應用
2.1 模式動物中的研究
CRISPR技術已成功應用于果蠅、線蟲和斑馬魚等物種的基因修飾。Gratz等[20]將同源定向修復(HDR)與雙鏈DNA(dsDNA)供體模板應用于果蠅的CRISPR/Cas9系統(tǒng),通過與目標DNA序列的精確結合來促進基因組編輯的順利進行,該過程中可以替換基因或產(chǎn)生條件等位基因,進而保證優(yōu)化效率和特異性,最終可獲得表達Cas9的轉基因果蠅;將dsDNA供體和gRNA編碼質粒注射到表達Cas9的果蠅中,可產(chǎn)生最高效率的HDR,并且可選擇靶位點以避免脫靶效應。該研究為復雜的基因組修飾打開了大門,并極大地擴大CRISPR技術在果蠅研究中的應用。Zheng等[21]對弓形蟲亮氨酸氨肽酶進行研究,證明其在調節(jié)游離氨基酸水平中發(fā)揮作用,可用作藥物靶標的篩選。Shen等[22]通過操縱RNA引導的CRISPR/Cas9在秀麗隱桿線蟲體細胞系中的表達,開發(fā)出條件性敲除方法,該技術可以在不同細胞的各個發(fā)育階段進行條件性敲除,優(yōu)于體細胞TALEN技術;而通過將該技術與活細胞成像相結合發(fā)現(xiàn),在秀麗隱桿線蟲的后胚胎神經(jīng)細胞遷移與神經(jīng)系統(tǒng)形成過程中存在與人類神經(jīng)功能障礙相關的胚胎基因,該基因可調節(jié)肌動蛋白組織和細胞形態(tài)。Ghorbal等[23]通過破壞染色體基因并高效地產(chǎn)生無標記的替代單核苷酸,證明CRISPR/Cas9系統(tǒng)可用于惡性瘧原蟲的基因編輯,并闡述了基因組編輯在瘧疾研究中的價值。Varshney等[24]使用CRISPR/Cas9技術,對斑馬魚的83個基因進行編輯,獲得99%的突變成功率,相比于TALENs和ZFNs,該技術編輯效率顯著提高,使得基因組的飽和誘變和大規(guī)模表型分析成為可能。
2.2 哺乳動物中的研究
CRISPR/Cas9系統(tǒng)在哺乳動物中的應用研究較多,也較為成熟。Fujii等[25]以哺乳動物受精卵為材料,利用CRISPR/Cas系統(tǒng)獲得基因組編輯動物。Zhou等[26]利用CRISPR/Cas9系統(tǒng),通過胚胎顯微注射Cas9 mRNA和靶向小鼠B2m、Il2rg、Prf1、Prkdc和Rag1的多種gRNA,成功對多個基因進行編輯,并得到不同遺傳修飾和種類的免疫缺陷小鼠模型。Mizuno等[27]設計并構建了Tyr基因的CRISPR/Cas9表達載體,通過EGxxFP系統(tǒng)證實px330-Tyr-M在Tyr基因靶位點處的DNA切割活性,還設計了用于同源定向修復基因編輯的ssDNA供體,該研究預期CRISPR/Cas9載體和任選的突變ssDNA組合,可有效地產(chǎn)生用于研究人類疾病的SNM誘導小鼠模型。Nakagawa等[28]構建了三種類型的CRISPR/Cas9載體,即gRNA和Cas9核酸酶、兩種gRNA和Cas9切口酶以及兩種gRNA和FokⅠ-dCas9,均靶向相同的基因組基因座,但不同載體對小鼠基因組的編輯具有不同特點:Cas9核酸酶導致突變率最高,出生率最低;而Cas9切口酶導致出生率最高,突變率最低;FokⅠ-dCas9導致突變率和出生率處于均衡。該研究所構建的針對兩個不同基因組位點的單一一體化FokⅠ-dCas9載體成功實現(xiàn)了高效同時定向編輯。盡管CRISPR/Cas系統(tǒng)已經(jīng)實現(xiàn)對小鼠基因進行編輯,但低成功率限制其應用。Aida等[29]通過Cas9蛋白復合物與雙RNA結合使編輯小鼠的產(chǎn)生效率高達50%,相比之下,通過Cas9 mRNA和gRNA方法敲入小鼠頻率僅為10%。Shi等[30]將CRISPR/Cas9靶向功能基因的外顯子,產(chǎn)生更高比例的無效突變,成功在小鼠急性髓細胞白血病細胞中篩選蛋白結構域,并揭示CRISPR/Cas9基因組編輯技術應用于篩選鑒定癌癥和其它疾病治療靶點的可行性。
Zhou等[31]應用Cas9/gRNA對豬胚胎成纖維細胞中的基因進行編輯,將突變細胞集落用作供體,通過對單輪體細胞進行核移植,實現(xiàn)單基因和雙基因的精確編輯,成功獲得15個酪氨酸酶雙等位基因突變純合豬以及20個PARK2和PINK1雙基因敲除純合豬。杜氏肌營養(yǎng)不良癥是一種隱性的X連鎖形式的肌營養(yǎng)不良癥,由肌營養(yǎng)不良蛋白基因控制,Chen等[32]利用CRISPR/Cas9技術靶向恒河猴肌營養(yǎng)不良蛋白基因,通過檢測編輯效率發(fā)現(xiàn),CRISPR/Cas9可使猴肌肉中87%的肌營養(yǎng)不良蛋白等位基因產(chǎn)生嵌合突變體。
2.3 人類細胞中的研究
β-地中海貧血是世界上最常見的遺傳性疾病之一,是由人類血紅蛋白β(HBB)基因突變引起的。Xie等[33]使用CRISPR/Cas9技術,結合piggyBac轉座子,在患者中利用誘導性多能干細胞(iPSCs)可有效地糾正HBB突變,且未在校正的iPSC中檢測到脫靶效應,細胞保持全能性并具有正常核型,這為干細胞基因治療單基因疾病提供可能。有研究表明,CDK11 mRNA參與調控骨肉瘤細胞生長和存活[34]。Feng等[35]利用CRISPR/Cas9沉默CDK11基因,可導致骨肉瘤細胞系死亡,表明CRISPR-Cas9系統(tǒng)是修飾內源性CDK11基因表達的有效方法,同時也說明,CRISPR/Cas9靶向CDK11敲除在治療骨肉瘤方面具有應用前景。
Nihongaki等[36]介紹了一種光活化的Cas9(paCas9),它在人胚腎293T細胞中表達過程中,通過對藍光照射的響應,利用非同源末端連接和同源定向修復途徑誘導靶向基因組序列修飾,可實現(xiàn)光控制CRISPR/Cas9在人類細胞中的基因編輯。Drost等[37]利用CRISPR/Cas9技術對人腸干細胞中四種最常見的結腸直腸癌基因(APC、p53、KRAS和SMAD4)進行編輯,異種植入小鼠后,四缺突變體鼠產(chǎn)生腫瘤,并認為APC和p53的雙重缺失可導致基因組出現(xiàn)廣泛的非整倍性,是腫瘤發(fā)生的標志。Merkle等[38]利用CRISPR/Cas9成功編輯hPSC細胞中的部分位點。Liang等[39]利用三核受精卵研究人細胞中CRISPR/Cas9介導的基因編輯,發(fā)現(xiàn)CRISPR/Cas9可以有效切割血紅蛋白β基因,但該基因的同源定向修復效率很低,并且編輯的胚胎是嵌合體,而這些胚胎中HBB基因的修復優(yōu)先以非交叉HDR途徑進行。該研究進一步突出了提高CRISPR/Cas9技術的保真度和特異性的迫切需要,這是CRSIPR/Cas9介導的基因編輯在臨床應用上的先決條件。Gifford等[40]利用CRISPR-Cas9技術,通過對小鼠中小兒先天性心臟病致病基因的編輯,發(fā)現(xiàn)只攜帶父本的MKL2和MYH7突變或只攜帶母親NKX2突變的小鼠并沒有表現(xiàn)出任何心臟病的跡象,而三個基因同時突變的小鼠卻能顯示出在患者中所觀察到的心臟缺陷,這揭示了小兒先天性心臟病的致病原因。
2.4 單子葉植物中的研究
目前,CRISPR技術在單子葉模式植物水稻中的應用較為廣泛。Yuan 等[41]利用CRISPR/cas9基因編輯技術,證實兩個母本和三個父本印記基因對種子發(fā)育產(chǎn)生影響,即母本印記基因突變產(chǎn)生小種子,父本印記基因突變導致植株敗育。Zhang等[42]研究表明,miR397能夠正向調控水稻產(chǎn)量,進一步研究發(fā)現(xiàn),miR408也能夠正調控水稻產(chǎn)量,而其靶基因OsUCL8的CRISPR敲除或RNAi植株可表現(xiàn)出與miR408過表達相一致的表型。水稻東格魯病毒?。≧TD)是由水稻東格魯桿狀病毒(RTBV)和水稻東格魯球狀病毒(RTSV)復合感染引起的病害,嚴重影響水稻產(chǎn)量。RTSV抗性是由真核翻譯起始因子4G (eIF4G)控制的隱性性狀,傳統(tǒng)水稻品種中的RTSV抗性可有效地降低RTD發(fā)病率。國際水稻研究所以RTSV 敏感品種IR64為材料,利用CRISPR/Cas9方法產(chǎn)生新的eIF4G基因突變體,在所獲得的系列突變體中,只有鄰近YVV的?SVLFPNLAGKS殘基發(fā)生移碼突變后才表現(xiàn)RTD抗性[43]。Ren等[44]將多個sgRNA克隆到載體中,并通過Gateway反應整合到二元載體,開發(fā)出在水稻基因組中進行CRISPR/Cas9編輯的有效位點。在水稻中,除了廣泛使用的NGG PAM外,Meng等研究發(fā)現(xiàn),SpCas9本身能夠識別NAG PAM,在NGA PAM中SpCas9的高效率可能是其蛋白高水平表達以及sgRNA的修飾所致,也可能由于水稻轉化過程中長時間組織培養(yǎng)的緣故,這還需要進一步驗證,而進一步研究NAG PAM位點的脫靶效應,將有助于提高CRISPR/Cas9系統(tǒng)的編輯效率[45]。獨腳金內酯是影響植株結構的關鍵激素,類胡蘿卜素裂解雙氧酶7(CCD7)是控制其生物合成的關鍵酶。Butt等[46]在水稻中利用CRISPR/Cas9對ccd7基因進行編輯,發(fā)現(xiàn)ccd7突變體分蘗數(shù)顯著增加且植株變矮,而獨腳金內酯的類似物GR24可以恢復這些表型。開花時間是影響水稻區(qū)域適應和產(chǎn)量的關鍵因素。OsPHL3是G2-like家族的轉錄因子,過表達OsPHL3的水稻開花時間延遲,利用CRISPR/Cas9對OsPHL3進行編輯的水稻則提前開花[47]。氨基酸轉運蛋白(AATs)在植物發(fā)育過程的營養(yǎng)分配中起著不可或缺的作用。Lu等[48]發(fā)現(xiàn)在過表達OsAAP3的轉基因水稻中,Lys、Arg、His、Asp、Ala、Gln、Gly、Thr和Tyr濃度顯著升高,芽生長和分蘗均被抑制;OsAAP3的RNAi轉基因植株中Arg、Lys、Asp和Thr的濃度降低,芽生長被促進,分蘗數(shù)和單株有效穗數(shù)顯著增加,而利用CRISPR技術在粳稻上敲除OsAAP3,可顯著提高籽粒產(chǎn)量。
小麥作為一種重要的糧食作物,通過科學技術提高產(chǎn)量、改善優(yōu)良性狀具有重要意義。Bhowmik等[49]將CRISPR/Cas9系統(tǒng)與小孢子培養(yǎng)技術相結合,研發(fā)出一種優(yōu)化的單倍體誘變系統(tǒng),用以誘導小麥基因組中的遺傳編輯,并利用多個Cas9和sgRNA構建載體,對外源DsRed基因和兩個內源小麥基因(TaLox2和TaUbiL1)進行精準編輯。TaGW2基因是小麥籽粒大小和千粒重的負調因子,但各成員對籽粒大小和千粒重貢獻尚未明確。Wang等[50]使用CRISPR-Cas9系統(tǒng)和TILLING(Targeting Induced Local Lesions IN Genomes)分別誘變Bobwhite和Paragon品種中TaGW2基因,證實不同基因型中單拷貝無效突變會不同程度地影響籽粒大小和千粒重。最初,植物核苷酸堿基編輯僅限于將胞嘧啶轉化為胸腺嘧啶,直到2018年有研究[51]報道了一種改進的編輯技術。它能使原生質體中A·T轉變?yōu)镚·C的效率達到7.5%,再生稻和小麥植株中的轉化率可達59.1%,通過引入功能進行突變可直接獲得抗除草劑水稻,并且可以精確編輯所有堿基對。
目前,雖然CRISPR系統(tǒng)的脫靶問題尚未得到徹底解決,但簡單、高效的優(yōu)勢使其在細菌、病毒、動物、植物中廣泛應用。相信隨著CRISPR系統(tǒng)的不斷改進,該技術在今后的生物學、農(nóng)學和醫(yī)學領域將具有更為廣闊的應用前景。
參 考 文 獻:
[1] Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. Journal of Bacteriology, 1987, 169:5429-5433.
[2] Jansen R, van Embden J D, Gaastra W, et al. Identification of a novel family of sequence repeats among prokaryotes[J]. OMICS, 2002,6: 23-33.
[3] Makarova K S, Aravind L, Grishin Nick V, et al. A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis[J].Nucleic Acids Research, 2002,30(2):482-496.
[4] Bolotin A, Quinquis B, Sorokin A, et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin[J]. Microbiology, 2005,151:2551-2561.
[5] Mojica F J M, Díez-Villaseor C, García-Martínez J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements[J]. Journal of Molecular Evolution, 2005,60:174-182.
[6] Makarova K S, Grishin N V, Shabalina S A, et al. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action[J]. Biology Direct, 2006, 1:7.
[7] Barrangou R,F(xiàn)remaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007,315(5819):1709-1712.
[8] Marraffini L A, Sontheimer E J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA[J]. Science, 2008,322(5909):1843-1845.
[9] Makarova K S, Aravind L, Wolf Y I, et al. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems[J]. Biol. Direct., 2011,6:38.
[10]Makarova K S, Haft D H, Barrangou R, et al. Evolution and classification of the CRISPR-Cas systems[J]. Nature Reviews Microbiology, 2011,9:467-477.
[11]Cong L, Ran F A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013,339:819-823.
[12]Jiang W Y, Bikard D, Cox D, et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems[J].Nature Biotechnology, 2013,31:233-239.
[13]Jansen R, van Embden J D A, Gaastra W, et al. Identification of genes that are associated with DNA repeats in prokaryotes[J]. Molecular Microbiology, 2002, 43(6):1565-1575.
[14]Pourcel C, Salvignol G,Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies[J]. Microbiology, 2005,151:653-663.
[15]Kunin V, Sorek R, Hugenholtz P. Evolutionary conservation of sequence and secondary structures in CRISPR repeats[J]. Genome Biology, 2007, 8(4): R61.
[16]Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation[J].Annual Review of Genetics, 2011,45:273-297.
[17]Sinkunas T, Gasiunas G, Fremaux C, et al. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system[J].The EMBO Journal, 2011,30:1335-1342.
[18]Garneau J E, Dupuis M , Villion M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA[J]. Nature, 2010, 468:67-71.
[19]Anantharaman V, Iyer L M, Aravind L, et al. Presence of a classical RRM-fold palm domain in Thg1-type 3′- 5′nucleic acid polymerases and the origin of the GGDEF and CRISPR polymerase domains[J]. Biol. Direct., 2010,5:43.
[20]Gratz S T, Ukken F P, Rubinstein C D, et al. Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in drosophila[J]. Genetics, 2014,196:961-971.
[21]Zheng J, Jia H L, Zheng Y H. Knockout of leucine aminopeptidase in Toxoplasma gondii using CRISPR/Cas9[J]. International Journal for Parasitology, 2015,45(2/3):141-148.
[22]Shen Z F, Zhang X L, Chai Y P, et al. Conditional knockouts generated by engineered CRISPR-Cas9 endonuclease reveal the roles of coronin in C. elegans neural development[J]. Developmental Cell, 2014,30(5):625-636.
[23]Ghorbal M, Gorman M, Macpherson C, et al. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system[J].Nature Biotechnology, 2014,32:819-821.
[24]Varshney G K,Pei W H, LaFave M C, et al. High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9[J]. Genome Research, 2015, 25:1030-1042.
[25]Fujii W, Onuma A, Sugiura K, et al. Efficient generation of genome-modified mice via offset-nicking by CRISPR/Cas system[J].Biochemical and Biophysical Research Communications, 2014,445(4):791-794.
[26]Zhou J K,Shen B, Zhang W S, et al. One-step generation of different immunodeficient mice with multiple gene modifications by CRISPR/Cas9 mediated genome engineering[J]. The International Journal of Biochemistry & Cell Biology, 2014,46:49-55.
[27]Mizuno S, Dinh T T H, Kato K, et al. Simple generation of albino C57BL/6J mice with G291T mutation in the tyrosinase gene by the CRISPR/Cas9 system[J]. Mammalian Genome, 2014,25:327-334.
[28]Nakagawa Y, Sakuma T, Sakamoto T, et al. Production of knockout mice by DNA microinjection of various CRISPR/Cas9 vectors into freeze-thawed fertilized oocytes[J]. BMC Biotechnology, 2015,15:33.
[29]Aida T, Chiyo K, Usami T, et al. Cloning-free CRISPR/Cas system facilitates functional cassette knock-in in mice[J]. Genome Biology, 2015,16: 87.
[30]Shi J W, Wang E, Milazzo J P, et al. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains[J]. Nature Biotechnology, 2015,33(6): 661-667.
[31]Zhou X Q, Xin J G, Fan N N, et al. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer[J]. Cellular and Molecular Life Sciences, 2014,72:1175-1184.
[32]Chen Y C, Zheng Y H, Kang Y, et al. Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9[J]. Human Molecular Genetics, 2015,24(13):3764-3774.
[33]Xie F,Ye L,Chang J C, et al. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac[J]. Genome Research,2014,24:1526-1533.
[34]Duan Z F, Zhang J M, Choy E , et al. Systematic kinome shRNA screening identifies CDK11 (PITSLRE) kinase expression is critical for osteosarcoma cell growth and proliferation[J]. Clinical Cancer Research, 2012, 18(17):4580-4588.
[35]Feng Y, Sassi S, Shen J K,et al. Targeting Cdk11 in osteosarcoma cells using the CRISPR-cas9 system[J]. Journal of Orthopaedic Research, 2014,33(2):199-207.
[36]Nihongaki Y, Kawano F, Nakajima T, et al. Photoactivatable CRISPR-Cas9 for optogenetic genome editing[J]. Nature Biotechnology, 2015,33:755-760.
[37]Drost J,van Jaarsveld R H, Ponsioen B, et al. Sequential cancer mutations in cultured human intestinal stem cells[J]. Nature,2015,521:43-47.
[38]Merkle F T, Neuhausser W M, Santos D, et al. Efficient CRISPR-Cas9-mediated generation of knockin human pluripotent stem cells lacking undesired mutations at the targeted locus[J]. Cell Reports,2015,11(6):875-883.
[39]Liang P P, Xu Y W, Zhang X Y, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes[J]. Protein & Cell, 2015, 6(5):363-372.
[40]Gifford Casey A, Ranade S S, Samarakoon R, et al. Oligogenic inheritance of a human heart disease involving a genetic modifier[J]. Science, 2019,364(6443):865-870.
[41]Yuan J, Chen S, Jiao W, et al. Both maternally and paternally imprinted genes regulate seed development in rice[J]. New Phytologist, 2017, 216(2):373-387.
[42]Zhang F, Zhang Y C, Zhang J P, et al. Rice UCL8, a plantacyanin gene targeted by miR408, regulates fertility by controlling pollen tube germination and growth[J]. Rice, 2018,11: 60.
[43]Macovei A, Sevilla N R, Cantos C, et al. Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus[J]. Plant Biotechnology Journal, 2018,16: 1918-1927.
[44]Ren B, Yan F, Kuang Y J, et al. A CRISPR/Cas9 toolkit for efficient targeted base editing to induce genetic variations in rice[J]. Science China Life Sciences,2017,60:516-519.
[45] Meng X B, Hu X X, Liu Q, et al. Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice[J].Science China Life Sciences,2017,61:122-125.
[46]Butt H, Jamil M, Wang J Y, et al. Engineering plant architecture via CRISPR/Cas9-mediated alteration of strigolactone biosynthesis[J]. BMC Plant Biology, 2018,18: 1.
[47]Zeng L P, Liu X, Zhou Z Z, et al. Identification of a G2-like transcription factor, OsPHL3, functions as a negative regulator of flowering in rice by co-expression and reverse genetic analysis[J]. BMC Plant Biology, 2018,18: 157.
[48]Lu K, Wu B W, Wang J, et al. Blocking amino acid transporter OsAAP3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice[J]. Plant Biotechnology Journal,2018,16(10):1710-1722.
[49]Bhowmik P, Ellison E, Polley B, et al. Targeted mutagenesis in wheat microspores using CRISPR/Cas9[J]. Scientific Reports, 2018,8(1): 6502.
[50]Wang W, Simmonds J, Pan Q, et al. Gene editing and mutagenesis reveal inter-cultivar differences and additivity in the contribution of TaGW2 homoeologues to grain size and weight in wheat[J]. Theoretical and Applied Genetics, 2018, 131:2463-2475.
[51]Li C, Zong Y, Wang Y P, et al. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion[J]. Genome Biology, 2018,19: 59.
[52]Li C X, Liu C L, Qi X T, et al. RNA-guided Cas9 as an in vivo desired-target mutator in maize[J]. Plant Biotechnology Journal, 2017,15(12):1566-1576.
[53]Feng C, Su H, Bai H, et al. High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize[J]. Plant Biotechnology J.,2018, 16(11):1848-1857.
[54]Li J, Zhang H, Si X M, et al. Generation of thermosensitive male-sterile maize by targeted knockout of the ZmTMS5 gene[J]. Journal of Genetics and Genomics, 2017, 44(9):465-468.
[55]Li J F, Norville J E, Aach G, et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9[J]. Nature Biotechnology, 2013,31:688-691.
[56]Jiang W Z, Yang B, Weeks D P. Efficient CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations[J]. PLoS ONE, 2014, 9(6): e99225.
[57]Feng Z Y, Mao Y F, Xu N F, et al. Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2014,111(12):4632-4637.
[58]Yu Z M, Chen Q Y, Chen W W, et al. Multigene editing via CRISPR/Cas9 guided by a single-sgRNA seed in Arabidopsis[J]. Journal of Integrative Plant Biology, 2018,60:376-381.
[59]Li C, Chen C, Chen H, et al. Verification of DNA motifs in Arabidopsis using CRISPR/Cas9-mediated mutagenesis[J]. Plant Biotechnology Journal, 2018,16(8):1446-1451.
[60]Su T, Wang P P, Li H J, et al. The Arabidopsis catalase triple mutant reveals important roles of catalases and peroxisome-derived signaling in plant development[J]. Journal of Integrative Plant Biology, 2018,60(7):591-607.
[61]Rottmann T, Fritz C, Sauer N, et al. Glucose uptake via STP transporters inhibits in vitro pollen tube growth in a HEXOKINASE1-dependent manner in Arabidopsis thaliana[J].The Plant Cell, 2018, 30(9): 2057-2081.
[62]Yang Y, Zhu K Y, Li H L, et al. Precise editing of CLAVATA genes in Brassica napus L. regulates multilocular silique development[J]. Plant Biotechnology Journal, 2018,16:1322-1335.
[63]Jiang L, Li D H, Lu J, et al. Histone lysine methyltransferases BnaSDG8.A and BnaSDG8.C are involved in the floral transition in Brassica napus[J]. The Plant Journal, 2018,95(4):672-685.
[64]Ito Y, Nishizawa-Yokoi A, Endo M, et al. Re-evaluation of the rin mutation and the role of RIN in the induction of tomato ripening[J]. Nature Plants, 2017,3:866-874.
[65]Chen L F, Yang D D, Zhang Y W, et al. Evidence for a specific and critical role of mitogen-activated protein kinase 20 in uni-to-binucleate transition of microgametogenesis in tomato[J]. New Phytologist, 2018,219:176-194.
[66]Li X, Wang Y, Chen S, et al. Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing[J]. Frontiers in Plant Science, 2018,9: 559.
[67]Wienert B, Wyman S K, Richardson C D, et al. Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq[J]. Science, 2019,364:286-289.
[68]Duan J, Lu G, Xie Z, et al. Genome-wide identification of CRISPR/Cas9 off-targets in human genome[J]. Cell Research, 2014, 24: 1009-1012.
[69]Fu Y F, Sander J D, Reyon D, et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs[J]. Nature Biotechnology, 2014, 32:279-284.