陸斯悅,及洪泉,徐 蕙,唐皓淞,張 祿,蘇 娟,董彥君,于海波,杜松懷
基于需求側(cè)調(diào)峰的農(nóng)村電采暖設(shè)備負(fù)荷優(yōu)化控制策略
陸斯悅1,及洪泉1,徐 蕙1,唐皓淞3,張 祿1,蘇 娟2※,董彥君2,于海波2,杜松懷2
(1. 國(guó)網(wǎng)北京市電力公司電力科學(xué)研究院,北京 100075;2. 中國(guó)農(nóng)業(yè)大學(xué)信息與電氣工程學(xué)院,北京 100083;3.國(guó)網(wǎng)北京市電力公司海淀供電公司,北京,100031)
隨著中國(guó)北方地區(qū)農(nóng)村清潔能源供暖項(xiàng)目的大力推廣,冬季燃煤取暖污染問(wèn)題得到了極大的改善。但是大規(guī)模煤改電設(shè)備的使用,對(duì)低壓配電網(wǎng)供電可靠性提出了新的挑戰(zhàn)。挖掘電采暖負(fù)荷的需求響應(yīng)潛力,激勵(lì)用戶主動(dòng)參與電網(wǎng)調(diào)峰,是實(shí)現(xiàn)資源優(yōu)化配置和提高配電網(wǎng)供電質(zhì)量的有效措施之一。該文為了激勵(lì)用戶主動(dòng)參與調(diào)峰,實(shí)現(xiàn)負(fù)荷削峰填谷,提出了基于需求側(cè)調(diào)峰的農(nóng)村電采暖設(shè)備負(fù)荷優(yōu)化控制策略,設(shè)計(jì)了第三方公司代理“煤改電”用戶參與調(diào)峰市場(chǎng)的市場(chǎng)交易模式,在此交易模式下建立了考慮調(diào)峰需求和用戶舒適度的負(fù)荷優(yōu)化控制模型,并在模型中引入用戶分類補(bǔ)償機(jī)制,提高用戶參與調(diào)峰的主動(dòng)性。以北京平谷區(qū)電采暖用戶負(fù)荷數(shù)據(jù)為例進(jìn)行仿真分析,結(jié)果表明,該文所提方法可以在滿足用戶室溫需求的情況下,實(shí)現(xiàn)負(fù)荷削峰填谷的作用,分類補(bǔ)償機(jī)制對(duì)用戶主動(dòng)參與調(diào)峰起到了激勵(lì)作用,使用戶和代理公司均獲得收益。
空氣源熱泵;電;采暖;需求響應(yīng);削峰填谷;優(yōu)化控制策略
為了治理環(huán)境污染,中國(guó)北方地區(qū)大力推廣清潔能源供暖工程。2018年7月底,清潔取暖試點(diǎn)城市申報(bào)范圍擴(kuò)展至京津冀及周邊地區(qū)大氣污染防治傳輸通道的“2+26”城市[1-2]。2018年底,北京城郊農(nóng)村地區(qū)的電采暖設(shè)備安裝已經(jīng)基本完成[3]。隨著煤改電用戶的快速增長(zhǎng),農(nóng)村低壓配電網(wǎng)基礎(chǔ)設(shè)施改造需求以及電力供需壓力急劇上升。為了緩解電力供需矛盾,鼓勵(lì)煤改電用戶積極參與需求響應(yīng),實(shí)現(xiàn)負(fù)荷削峰填谷,提高電網(wǎng)負(fù)荷率和運(yùn)行效率。單個(gè)電采暖用戶需求響應(yīng)容量較小,調(diào)峰效果較差,將區(qū)域電采暖用戶的需求響應(yīng)容量聚集起來(lái)參與調(diào)峰是一種有效解決方案。因此,可對(duì)區(qū)域電采暖設(shè)備進(jìn)行集中負(fù)荷控制,研究其參與電網(wǎng)調(diào)峰的需求響應(yīng)策略。
目前,需求側(cè)能量管理的相關(guān)研究中,直接負(fù)荷控制(Direct Load Control,DLC)方案[4]是研究的熱點(diǎn)。DLC是指在用戶允許的情況下,調(diào)度機(jī)構(gòu)依據(jù)電網(wǎng)需求,全權(quán)控制用戶的設(shè)備運(yùn)行,兼顧用戶的供電質(zhì)量和生活舒適度,并在實(shí)施后由代理公司對(duì)參與用戶提供經(jīng)濟(jì)補(bǔ)償[5-6]。
DLC控制策略以系統(tǒng)運(yùn)行成本最小化或代理公司利潤(rùn)最大化為目標(biāo)[7-10],并兼顧系統(tǒng)運(yùn)行成本、公司利潤(rùn)和用戶滿意程度[11-16],其求解方法從傳統(tǒng)優(yōu)化算法(例如線性規(guī)劃、多目標(biāo)線性規(guī)劃、動(dòng)態(tài)規(guī)劃[17-18]、模糊線性規(guī)劃[19-23]和模糊動(dòng)態(tài)規(guī)劃法等)發(fā)展到智能優(yōu)化算法(例如遺傳算法、多目標(biāo)進(jìn)化算法和蟻群算法等)。但是,已有溫控負(fù)荷的DLC研究大多針對(duì)制冷空調(diào),對(duì)于電采暖設(shè)備的研究較少。電采暖用戶參與調(diào)峰的優(yōu)化控制策略也鮮有報(bào)道。
為了緩解電采暖設(shè)備的大規(guī)模投入或改造給農(nóng)村電網(wǎng)帶來(lái)的供電能供給的壓力,本文基于考慮農(nóng)村地區(qū)的調(diào)峰需求,挖掘需求側(cè)可控負(fù)荷資源的響應(yīng)潛力,提出代理公司控制區(qū)域電采暖設(shè)備參與區(qū)域調(diào)峰的市場(chǎng)模式,建立代理公司對(duì)電采暖負(fù)荷的最優(yōu)控制模型,以最大程度滿足調(diào)峰需求和代理公司收益最大化為目標(biāo),并考慮電采暖用戶的溫度舒適度需求和用戶可控度差異化補(bǔ)償機(jī)制,并以北京平谷區(qū)電采暖用戶為例進(jìn)行仿真分析,驗(yàn)證所提方法的有效性。
電采暖負(fù)荷具有快速響應(yīng)能力,單個(gè)用戶的可控容量雖然有限,但隨著電采暖用戶的增加,區(qū)域電采暖將形成龐大的可控容量,可以對(duì)電采暖用戶進(jìn)行集中控制,參與調(diào)峰市場(chǎng)。
本文調(diào)峰市場(chǎng)模式為代理公司集中控制電采暖用戶設(shè)備,根據(jù)調(diào)峰市場(chǎng)投標(biāo)獲得的調(diào)峰量與相應(yīng)的價(jià)格,對(duì)合約用戶進(jìn)行設(shè)備集中控制,以滿足調(diào)峰需求和公司的收益,并通過(guò)經(jīng)濟(jì)補(bǔ)償激勵(lì)用戶參與調(diào)峰。其中代理公司可以是售電公司、負(fù)荷聚合商等第三方機(jī)構(gòu)。由于用戶數(shù)量較多,用電需求、舒適度需求、可控時(shí)段等均有差異,代理公司可對(duì)用戶進(jìn)行分類管理。為了激勵(lì)用戶主動(dòng)接受代理公司的優(yōu)化控制策略,參與調(diào)峰市場(chǎng),可采用考慮用戶可控度的差異化補(bǔ)償機(jī)制,即根據(jù)用戶可控的難易程度采用分類定價(jià)的方法給予用戶補(bǔ)償,進(jìn)一步激勵(lì)用戶參與調(diào)峰。代理公司控制電采暖設(shè)備參與調(diào)峰市場(chǎng)的模式如圖1所示。
圖1 區(qū)域電采暖設(shè)備參與調(diào)峰市場(chǎng)模式
在這種市場(chǎng)模式下,有一部分用戶可能不愿意接受調(diào)控。因此,為了激勵(lì)用戶主動(dòng)參與調(diào)峰,應(yīng)當(dāng)開(kāi)放控制權(quán)。本文提出了一種按照用戶可控程度的分類補(bǔ)償機(jī)制。以用戶自身用電行為,如室溫、允許受控時(shí)段和負(fù)荷響應(yīng)能力等指標(biāo)對(duì)用戶可控度進(jìn)行劃分。容易控制的用戶,優(yōu)先調(diào)度,且給予較高的補(bǔ)償價(jià)格。為了詳細(xì)闡述本文所提的負(fù)荷優(yōu)化控制策略,假設(shè)已根據(jù)可控度指標(biāo)將用戶劃分為3類,補(bǔ)償價(jià)格已知,忽略調(diào)峰市場(chǎng)的交易過(guò)程。
目前電采暖設(shè)備主要有空氣源熱泵、地源熱泵和蓄熱式采暖等[21-22]。北京郊區(qū)農(nóng)村的煤改電項(xiàng)目主要采用空氣源熱泵,因此本文針對(duì)空氣源熱泵提出直接負(fù)荷控制方法。
考慮調(diào)峰需求和代理公司收益,建立直接負(fù)荷控制的多目標(biāo)優(yōu)化模型。目標(biāo)函數(shù)包括峰時(shí)段電采暖負(fù)荷最小,即最大程度滿足調(diào)峰需求,根據(jù)目前實(shí)際運(yùn)行情況,可集中控制的用戶容量較小,可以滿足部分調(diào)峰需求,且忽略了調(diào)峰總量約束;代理公司效益最大,即支付的補(bǔ)償費(fèi)用最小。約束條件包括用戶峰時(shí)段功率約束;用戶室溫舒適度約束;用戶可控時(shí)段約束。
2.1.1 峰時(shí)段用電負(fù)荷最小
2.1.2代理公司效益最大
2.2.1 用戶峰時(shí)段功率約束
由于模型的設(shè)備初始運(yùn)行負(fù)荷是以設(shè)備額定功率為限,所以可能比實(shí)際運(yùn)行的負(fù)荷峰值還要大,為了避免這一異常現(xiàn)象,滿足電采暖設(shè)備實(shí)際運(yùn)行要求,需要考慮用戶設(shè)備的運(yùn)行約束,即電采暖設(shè)備在任意時(shí)刻的運(yùn)行負(fù)荷不超過(guò)歷史負(fù)荷峰值:
2.2.2 溫度約束
空氣源熱泵的溫控模型表征空氣源熱泵的運(yùn)行狀態(tài),如式(9)所示,需要考慮熱泵自身功率、環(huán)境溫度、房屋熱力學(xué)參數(shù)等[25]。
式中CR為房屋系數(shù)(與隔熱等級(jí),體積,墻壁表面積等相關(guān))。
2.2.3 用戶可控時(shí)段約束
用戶在與代理公司簽訂合同時(shí)提交可控時(shí)段條件。代理公司對(duì)每個(gè)用戶的優(yōu)化控制時(shí)段必須與該用戶簽訂的可控時(shí)段一致,即用戶實(shí)際受控時(shí)段在其允許受控時(shí)段范圍內(nèi)。可控時(shí)段約束如式(11)所示。
在代理公司集中控制電采暖負(fù)荷參與調(diào)峰市場(chǎng)模式下,代理公司對(duì)用戶的優(yōu)化控制主要包括4個(gè)步驟:
1)電采暖用戶申報(bào)控制條件
電采暖用戶向代理公司提供電采暖設(shè)備型號(hào)、容量、可控時(shí)段、溫度要求、地理位置等信息;
2)簽訂集中控制協(xié)議
根據(jù)用戶申報(bào)的可控條件,對(duì)用戶進(jìn)行分類,并制定分類補(bǔ)償價(jià)格;根據(jù)各用戶的溫度需求設(shè)定統(tǒng)一的舒適溫度。依據(jù)分類結(jié)果與用戶簽訂集中控制協(xié)議;
3)設(shè)置集中控制模型初始參數(shù)
根據(jù)與用戶簽訂的集中控制協(xié)議(內(nèi)容包括室溫需求、設(shè)備型號(hào)、設(shè)備允許受控時(shí)段等),以及用戶實(shí)際用電環(huán)境,設(shè)置用戶使用的空氣源熱泵額定功率、室內(nèi)舒適溫度和用戶房屋熱時(shí)間常數(shù)等初始參數(shù)。
4)生成最優(yōu)控制方案
本文采用遺傳算法[27-28]對(duì)集中控制模型求解,得到最優(yōu)負(fù)荷控制方案,對(duì)用戶實(shí)施相應(yīng)的控制手段,并根據(jù)最終結(jié)果給予用戶補(bǔ)償。
選取北京平谷區(qū)山東莊村20戶電采暖用戶進(jìn)行仿真分析。根據(jù)2019年2月18日的實(shí)際負(fù)荷及天氣等數(shù)據(jù),采用本文提出的區(qū)域電采暖設(shè)備負(fù)荷優(yōu)化控制策略對(duì)空氣源熱泵運(yùn)行時(shí)間進(jìn)行優(yōu)化控制仿真分析,并與用戶當(dāng)天實(shí)際運(yùn)行數(shù)據(jù)進(jìn)行對(duì)比,對(duì)優(yōu)化控制方案、用戶溫度和代理公司收益進(jìn)行分析,以驗(yàn)證本文方法的有效性。
將用戶按照用戶可控度不同分為3組,可控度依次降低,其對(duì)應(yīng)的負(fù)荷削減補(bǔ)償價(jià)格分別為0.15、0.13和0.10元/kWh。設(shè)置初始溫度18 ℃,溫升系數(shù)20 ℃,狀態(tài)改變閾值2 ℃,熱時(shí)間常數(shù)120 min,空氣源熱泵額定功率10 kW。將最小負(fù)荷控制間隔設(shè)定為15 min,一天24 h內(nèi)共有96個(gè)控制時(shí)段,設(shè)定用戶的舒適溫度為18 ℃。
表1 最優(yōu)控制方案下調(diào)控調(diào)控時(shí)段統(tǒng)計(jì)
注:每15 min為1個(gè)時(shí)段.
Note: Every 15 minutes is a period.
圖2為3組20個(gè)用戶在峰時(shí)段(10:00-21:00)采用本文控制策略集中控制的負(fù)荷仿真結(jié)果相對(duì)于當(dāng)日實(shí)際負(fù)荷的削減量。由圖2可知,各組用戶的負(fù)荷平均削減量分別為9.128、7.654和7.347 kWh,依次遞減。峰時(shí)段所有電采暖設(shè)備的總負(fù)荷削減量為159.773 kWh,且每戶的負(fù)荷削減量在平均削減量7.989 kWh附近波動(dòng),說(shuō)明模型對(duì)于各用戶的控制比較均衡,沒(méi)有出現(xiàn)過(guò)度控制某個(gè)用戶的情況,保證了用戶的正常取暖,同時(shí)能很好地實(shí)現(xiàn)用戶電采暖設(shè)備的有序錯(cuò)峰用電。
圖3為3組20個(gè)用戶執(zhí)行DLC后的總負(fù)荷仿真結(jié)果與實(shí)際未經(jīng)過(guò)DLC控制的總負(fù)荷結(jié)果曲線。可以看出,控制前后負(fù)荷曲線的峰谷時(shí)段發(fā)生了交換,這表明本文所提出的集中控制模型可以很好地實(shí)現(xiàn)電采暖設(shè)備的錯(cuò)峰用電,起到對(duì)電網(wǎng)削峰填谷的作用。
圖2 峰時(shí)段各組用戶的負(fù)荷削減量
圖3 集中控制前后的用電負(fù)荷曲線
根據(jù)最優(yōu)控制方案計(jì)算結(jié)果得到最優(yōu)調(diào)度時(shí)20個(gè)用戶的平均室溫變化曲線,如圖4所示。根據(jù)《北京市居民供熱采暖合同(按面積計(jì)費(fèi)版)》,當(dāng)室外日平均氣溫在-7 ℃以上時(shí),臥室、起居室溫度應(yīng)不低于18 ℃,故設(shè)置用戶舒適溫度為18 ℃,即圖4中虛線區(qū)域。
圖4 受控用戶的平均室內(nèi)溫度變化曲線
Fig4 Average indoor temperature change curve of controlled users
本文以代理公司收益最大化和調(diào)峰需求作為目標(biāo)函數(shù)進(jìn)行電采暖用戶的集中優(yōu)化控制。將本文方法與僅考慮調(diào)峰需求作為目標(biāo)函數(shù)的集中優(yōu)化控制模型進(jìn)行對(duì)比,得出代理公司在2種控制策略下應(yīng)支付的補(bǔ)償費(fèi)用,結(jié)果如表2所示。
由表2可知,不考慮效益目標(biāo)時(shí),代理公司每日支付的補(bǔ)償費(fèi)用均高于考慮經(jīng)濟(jì)效益的補(bǔ)償費(fèi)用。實(shí)施DLC控制后,代理公司應(yīng)支付給20個(gè)用戶的總補(bǔ)償費(fèi)用為63.514元,若不考慮代理公司經(jīng)濟(jì)效益目標(biāo)并進(jìn)行DLC模型控制,代理公司的補(bǔ)償支出應(yīng)為93.241元,考慮經(jīng)濟(jì)效益目標(biāo)后單日補(bǔ)償費(fèi)用可節(jié)省31.9%。因此,在實(shí)施DLC計(jì)劃前,考慮代理公司的效益因素對(duì)減少補(bǔ)償費(fèi)用支出是十分必要的。
表2 2種控制策略下的代理公司補(bǔ)償費(fèi)用對(duì)比
本文針對(duì)空氣源熱泵采暖設(shè)備,提出了區(qū)域電采暖設(shè)備參與調(diào)峰的用電負(fù)荷優(yōu)化控制策略,提出了代理公司集中控制電采暖用戶參與調(diào)峰市場(chǎng)模式以及在該模式下代理公司根據(jù)用戶可控度的分類補(bǔ)償機(jī)制。在此模式下,建立了考慮用戶舒適度的負(fù)荷集中優(yōu)化控制模型。
1)城鄉(xiāng)居民采暖設(shè)備進(jìn)行電代煤改造是京津冀地區(qū)藍(lán)天保衛(wèi)戰(zhàn)的措施之一。為了緩解大量電采暖負(fù)荷的增加帶來(lái)的電力供需壓力,可發(fā)揮電采暖負(fù)荷的快速響應(yīng)能力,引導(dǎo)區(qū)域電采暖負(fù)荷主動(dòng)調(diào)峰需求響應(yīng)。
2)以北京平谷區(qū)電采暖用戶負(fù)荷數(shù)據(jù)為例,進(jìn)行仿真分析。結(jié)果表明,用戶用電曲線的峰谷發(fā)生了變化,起到了削峰填谷的作用,可以緩解上級(jí)電網(wǎng)的峰荷時(shí)段壓力;用戶室內(nèi)溫度在(18±1)℃范圍波動(dòng),滿足冬季取暖的舒適溫度需求;考慮代理公司收益最大化,對(duì)20個(gè)用戶的單日補(bǔ)償費(fèi)用可節(jié)省31.9%;考慮用戶可控度的分類補(bǔ)償機(jī)制,使可控度最高的用戶獲得收益補(bǔ)償最多,可以起到激勵(lì)用戶主動(dòng)參與調(diào)峰需求響應(yīng)的作用。
[1] 蔣建云,章永潔,葉建東,等. 北京農(nóng)村地區(qū)燃煤供暖替代技術(shù)方案實(shí)效對(duì)比[J]. 暖通空調(diào),2016,46(9):51-55. Jiang Jianyun, Zhang Yongjie, Ye Jiandong, et al. Effectiveness comparision and analysis of alternative solutions to coal-fired heating in rural Beijing[J]. Heating Ventilating & Air Conditioning, 2016, 46(9): 51-55. (in Chinese with English abstract)
[2] 王紅霞. 燃煤鍋爐房清潔能源改造工程的技術(shù)探討[J]. 區(qū)域供熱,2013(1):43-47. Wang Hongxia. Technical discussion on clean energy reconstruction project of coal-fired boiler house[J]. District Heating, 2013(1): 43-47. (in Chinese with English abstract)
[3] 王青平. 農(nóng)村住宅空氣源熱泵供暖系統(tǒng)應(yīng)用與探討[J]. 制冷與空調(diào),2017(3):77-80. Wang Qingping. Application and discussion of air source heat pump heating system in rural residential buildings[J], Refrigeration and Air-Conditioning, 2017(3): 77-80. (in Chinese with English abstract)
[4] Strbac G, Kirschen D. Assessing the competitiveness of semand-side bidding[J]. IEEE Transactions on Power Systems, 1999, 14(1): 120-125.
[5] Le K D, Boyle R F, Hunter M D, et al. A procedure for coordinating direct-load-control strategies to minimize system production costs[J]. Power Apparatus & Systems IEEE Transactions on, 1983, 102(6): 1843-1849.
[6] Bhatnagar R, Rahman S. Dispatch of direct load control for fuel cost minimization[J]. IEEE Transactions on Power Systems, 1986, 1(4): 96-102.
[7] Yu Zuwei, Breipohl A M, Lee F N, et al. An analytical method for comparing natural diversity to DSM controlled diversity[J]. IEEE Transactions on Power Systems, 1996, 11(3): 1201-1208.
[8] 曹世光,李衛(wèi)東,柳焯,等. 計(jì)及直接負(fù)荷控制的動(dòng)態(tài)優(yōu)化調(diào)度模型[J].中國(guó)電機(jī)工程學(xué)報(bào),1998(3):160-162. Cao Shiguang, Li Weidong, Liu Zhuo, et al. Model of dynamic optimal dispatch considering direct load control[J], Proceedings of the CSEE, 1998(3):160-162. (in Chinese with English abstract)
[9] Kah Hoe Ng, Sheble G B. A profit-based load management using linear programming[J]. IEEE Transactions on Power Systems, 1998, 13(2): 688-694.
[10] Yang H T, Huang K Y. Direct load control using fuzzy dynamic programming[J]. IEEE Proceedings-Generation, Transmission and Distribution, 1999, 146(3): 294-300.
[11] Jorge H, Antunes C H, Martins A G. A multiple objective decision support model for the selection of remote load control strategies[J]. IEEE Transactions on Power Systems, 2002, 15(2): 865-872.
[12] Leehter Yao, Chang Wenchi, Yen Rongliang. An iterative deepening genetic algorithm for scheduling of direct load control[J]. IEEE Transactions on Power Systems, 2005, 20(3): 1414-1421.
[13] Karthik Sindhya, Ana Belen Ruiz, Kaisa Miettinen. A preference based interactive evolutionary algorithm for multi-objective optimization: PIE[J]. Springer Berlin Heidelberg, 2011, 6579: 212-225.
[14] Andreea Vescan, Crina Grosan. A hybrid evolutionary multiobjective approach for the component selection problem[J]. Springer Berlin Heidelberg, 2008, 5271: 164-171.
[15] 趙慶杞,黎明,張化光. 基于蟻群算法的靈敏負(fù)荷調(diào)度[J],中國(guó)電機(jī)工程學(xué)報(bào),2006,26(Z1):15-21. Zhao Qingqi, Li Ming, Zhang Huaguang. Dispatching strategy of responsive load using ant colony algotithm[J], Proceedings of the CSEE, 2006, 26(Z1): 15-21. (in Chinese with English abstract)
[16] Molina, Gabaldon A, Fuentes J A, et al. Implementation and assessment of physically based electrical load models: Application to direct load control residential programmes[J]. IEEE Proceedings-Generation, Transmission and Distribution, 2003, 150(1): 61-66.
[17] Leehter Yao, Hau Ren Lu. Optimization of two-way direct load control based on fuzzy linear programming[C]. Hongkong: IEEE International Conference on Fuzzy Systems, 2008: 1894-1901.
[18] Leehter Yao and Hau Ren Lu.A two-way direct control of central air-conditioning load via the internet[J]. IEEE Transactions on Power Delivery, 2009, 24(1): 240-248.
[19] 許道林,謝松. 基于模糊線性規(guī)劃的居民直接負(fù)荷控制[J],電力需求側(cè)管理,2007,9(1):15-18. Xu Daolin, Xie Song. Direct residential load control based on fuzzy linear programming[J]. Power Demand Side Management 2007, 9(1):15-18. (in Chinese with English abstract)
[20] 唐為民,王蓓蓓,施偉. 基于模糊動(dòng)態(tài)規(guī)劃的直接負(fù)荷控制策略研究[J].中國(guó)電力,2003,36(8):24-28. Tang Weimin,Wang Beibei,Shi Wei. The strategy researeh of direct load control based on fuzzy dynamic program[J], Electric Power, 2003,36(8):24-28. (in Chinese with English abstract)
[21] 王美芝,薛曉柳,劉繼軍等. 不同節(jié)能改造方式豬舍的供暖能耗和經(jīng)濟(jì)性比較[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(13):218-224. Wang Meizhi, Xue Xiaoliu, Liu Jijun, et al. Comparison of heating energy consumption and economy of pig house with different energy saving renovation measures[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(13): 218- 224. (in Chinese with English abstract)
[22] 王美芝,劉繼軍,吳中紅,等. 地源熱泵技術(shù)對(duì)規(guī)模化豬場(chǎng)節(jié)能減排的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(4):251-254. Wang Meizhi, Liu Jijun, Wu Zhonghong, et al. Effect of ground-source heat pump applied to piggery on energy saving and emission reduction[J]. Transactions of the CSAE, 2011, 27(4): 251-254. (in Chinese with English abstract)
[23] 叢宏斌,趙立欣,王久臣,姚宗路. 中國(guó)農(nóng)村能源生產(chǎn)消費(fèi)現(xiàn)狀與發(fā)展需求分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(17):224-231. Cong Hongbin, Zhao Lixin, Wang Jiuchen, et al. Current situation and development demand analysis of rural energy in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(17): 224-231. (in Chinese with English abstract)
[24] 鄧可蘊(yùn),王革華,賀亮. 農(nóng)村能源發(fā)展戰(zhàn)略重點(diǎn)與技術(shù)的選擇評(píng)價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào),1997(3):185-188. Deng Keyun, Wang Gehua, He Liang. Selection and evaluation of focal points and technologies on rural energy development strategy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1997(3):185-188. (in Chinese with English abstract)
[25] 叢宏斌,趙立欣,孟海波,等. 生物質(zhì)熱解多聯(lián)產(chǎn)在北方農(nóng)村清潔供暖中的適用性評(píng)價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(1):8-14. Cong Hongbin, Zhao Lixin, Meng Haibo, et al. Applicability evaluation of biomass pyrolytic poly-generation technology on clean heating in northern rural of China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(1): 8-14. (in Chinese with English abstract)
[26] Ucak C, Caglar R. The effects of load parameter dispersion and direct load control actions on aggregated load[J]. International Conference on Power System Technology Proceedings, 1998, 280-284
[27] 林龍成. 基于遺傳算法的改進(jìn)K-means算法[J/OL]. 電子技術(shù)與軟件工程,2020(1):111-112. Lin Longcheng. Improved K-means algorithm based on genetic algorithm[J/OL]. Electronic Technology & Software Engineering, 2020(1):111-112. (in Chinese with English abstract)
[28] 吉根林. 遺傳算法研究綜述[J]. 計(jì)算機(jī)應(yīng)用與軟件,2004,21(2). Ji Genlin. A review of research on genetic algorithms[J], Computer Applications anSoftware, 2004, 21(2). (in Chinese with English abstract)
Optimal load control strategy of rural electric heating equipments based on demand side peak load regulation
Lu Siyue1, Ji Hongquan1, Xu Hui1,Tang Haosong3, Zhang Lu1, Su Juan2※, Dong Yanjun2, Yu Haibo2, Du Songhuai2
(1.,,100075,; 2.,,100083,3.100031,)
With the implementation of clean energy heating project in rural areas of northern China, the pollution of coal-fired heating in winter has been greatly improved. However, the use of large-scale electric heating equipment put forward new challenges to the power supply reliability of low-voltage distribution network. Especially in rural power grid, the load is heavy in winter and low in other seasons. It is one of the effective measures to achieve optimal resource allocation and improve the power supply quality of the distribution grid to exploit the demand response potentialities of electric heating loads, and motivate electric heating loads to actively respond to demand response programs (DRP) for peak-load shifting. Therefore, a load optimal control strategy for rural electric heating equipments based on demand side peak load regulation was proposed in this paper. A market transaction model was designed for third-party agency companies to represent coal-to-electricity users in the peak shaving market. The agency company made the centrally control strategies of electric heating users’ equipment according to the peak shaving volume and corresponding price obtained from the peak shaving market bidding. The electric heating users were classified based on the controllability of each user by the agency company. Each kinds of users could get different compensation price to encourage them to participate in the demand response programs for peak-load shifting. In this market model, a multi-objective optimization model was established to control the users’ air source heat pump. The goals of the optimization model were to meet the user's temperature demands to the maximum extent and to maximize the benefit of the agent company. Meanwhile, user's comfort requirements for indoor temperature were considered in this model, and the user classification compensation mechanism was introduced to improve the user's initiative to participate in peak load regulation. Taking the load data of electric heating users in Pinggu District of Beijing as an example, the simulation analysis was carried out. The results show that the total load reduction of all electric heating equipment was 159.773 kWh, there was no over-control for anyone user, the load reduction of each user fluctuated around average reduction of 7.989 kWh, the peak valley of the user's power consumption curve was changed, the optimal control strategy proposed in this paper played the role of peak load reduction and valley filling, which can relieve the pressure of the upper power grid during peak load period. The indoor temperature of the users was (18±1) ℃, which meet the demand of comfortable temperature for heating in winter. Compared with the target of not considering the benefit, the one-day compensation cost of the agency company was saved 31.9%, and the users with the highest degree of control got the most compensation income, the peak load regulation strategy could encourage the users to participate in the peak load regulation actively.
air source heat pump; electricity; heating; demand response; peak-load shifting; optimal control strategy
陸斯悅,及洪泉,徐蕙,等. 基于需求側(cè)調(diào)峰的農(nóng)村電采暖設(shè)備負(fù)荷優(yōu)化控制策略[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(7):229-234. doi:10.11975/j.issn.1002-6819.2020.07.026 http://www.tcsae.org
Lu Siyue, Ji Hongquan, Xu Hui, et al. Optimal load control strategy of rural electric heating equipments based on demand side peak load regulation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(7): 229-234. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.07.026 http://www.tcsae.org
2019-11-04
2020-03-06
國(guó)家自然科學(xué)基金青年科學(xué)基金項(xiàng)目課題(51707197);“十三五”國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFB0900101)
陸斯悅,工程師,研究方向?yàn)殡娏Υ髷?shù)據(jù)分析。Email:lusiyue2006@126.com
蘇娟,博士,副教授,主要研究方向電力市場(chǎng)、電力需求側(cè)管理等。Email:sujuan@cau.edu.cn
10.11975/j.issn.1002-6819.2020.07.026
S147.2
A
1002-6819(2020)-07-0229-06