張新燕,王浩翔,牛文全,2
水氮供應(yīng)對溫室滴灌番茄水氮分布及利用效率的影響
張新燕1,王浩翔1,牛文全1,2
(1. 西北農(nóng)林科技大學水利與建筑工程學院,楊凌 712100;2. 西北農(nóng)林科技大學水土保持研究所,楊凌 712100)
為探討溫室番茄水肥一體化滴灌系統(tǒng)優(yōu)化模式,通過溫室番茄滴灌施肥試驗,研究田間滴灌管布置方式、灌水量、施氮肥量這3個因素對土壤含水率、土壤硝態(tài)氮含量及水肥利用效率的影響。3種布置方式包括1管1行(T1)、1管2行(T2)和1管3行(T3);基于Penman-Monteith修正公式計算的潛在蒸散量(Potential Evapotranspiration,ET0)設(shè)計灌水量,3種灌水量處理包括50%ET0(W1)、70%ET0(W2)和90%ET0(W3);3種施氮肥量處理包括120(N1)、180(N2)和240 kg/hm2(N3)。采用正交試驗設(shè)計,共9個處理。結(jié)果表明,不同管道布置方式土壤含水率分布趨勢基本相同,土壤表層0~20 cm含水率較低,>20~40 cm土層深度土壤含水率分布較高,40 cm土層深度以下土壤含水率減小,且T1和T2布置方式較T3土壤含水率分布均勻。土壤硝態(tài)氮(NO3-N)質(zhì)量分數(shù)隨土層深度的增加而減小,0~30 cm土層硝態(tài)氮質(zhì)量分數(shù)均值大于30~60 cm土層含量均值。T2布置方式土壤硝態(tài)氮含量均勻,深層淋失損失量小。灌水因素和施肥模式對番茄產(chǎn)量、水肥利用效率均有顯著影響,獲得番茄高產(chǎn)的滴灌施肥優(yōu)化模式為T2(1管2行)W2(70% ET0)N3(240 kg/hm2);從高效的灌溉水利用效率和肥料偏生產(chǎn)力考慮,其滴灌施肥最優(yōu)水平組合模式分別為T2(1管2行)W2(70% ET0)N2(180 kg/hm2)和T2(1管2行)W2(70% ET0)N1(120 kg/hm2)。結(jié)果可為溫室番茄滴灌施肥生產(chǎn)實踐提供一定的技術(shù)指導。
土壤含水率;施肥;溫室;硝態(tài)氮;滴灌;產(chǎn)量;水分利用效率;肥料偏生產(chǎn)力
水肥合理利用是提高作物產(chǎn)量、品質(zhì)和水肥利用率的關(guān)鍵因素。滴灌施肥技術(shù)通過滴頭將溶有肥料的灌溉水滴入作物根區(qū),是一種將灌溉有機結(jié)合施肥的先進技術(shù)。由于水肥的協(xié)調(diào)作用,采用滴灌施肥技術(shù)可為精確灌溉和施肥提供條件,顯著地提高灌溉、施肥效率,提高作物產(chǎn)量、品質(zhì),從而提高經(jīng)濟效益。國內(nèi)外學者針對棉花、椰子、柑橘、黃瓜、馬鈴薯等作物(果樹)滴灌施肥技術(shù)開展了廣泛研究,取得了大量研究成果[1-6]。番茄的營養(yǎng)價值很高,需求廣泛,其生長需要足夠的水和肥,肥料中的氮素是作物生長必需的營養(yǎng)元素之一,施氮量是影響番茄生長、產(chǎn)量和品質(zhì)的主要因素[7-10]。國內(nèi)外學者針對滴灌施肥條件下番茄的生長發(fā)育、產(chǎn)量品質(zhì)、水氮利用效率等方面做了相應(yīng)研究,Bar等[11-12]研究發(fā)現(xiàn)滴灌施肥可以同時節(jié)肥并提高番茄產(chǎn)量。Mahajan等[13]研究表明相較于常規(guī)灌溉,滴灌施肥可提高溫室番茄產(chǎn)量59.5%,節(jié)水48.1%。Zotarelli等[14-15]研究了施氮方式對番茄產(chǎn)量的影響,發(fā)現(xiàn)滴灌能顯著提高氮肥利用效率,膜下滴灌施肥和地下滴灌施肥比常規(guī)滴灌產(chǎn)量提高11%~80%,并且水氮處理對土壤溶質(zhì)的遷移無交互效應(yīng)。Li等[16]通過不同氮肥和灌水因素對番茄產(chǎn)量、品質(zhì)等進行研究,得出對番茄產(chǎn)量、品質(zhì)影響最大的是氮肥,其次是灌水。Wang等[17-18]研究發(fā)現(xiàn),灌水量減少會造成一定的番茄產(chǎn)量減少。張燕等[19-20]發(fā)現(xiàn)增加施肥量和適當上調(diào)灌水下限可以顯著提高番茄的光合速率、干物質(zhì)量和產(chǎn)量,滴灌施肥可節(jié)水25%和節(jié)肥25%。賀會強等[21-23]試驗表明增加施肥量可以顯著提高番茄株高、葉面積和產(chǎn)量,但過高的施肥量反而不利于其生長和產(chǎn)量的提高。邢英英等[24]認為灌水量和施肥量對番茄植株的影響因其施入方式的不同差異很大。與常規(guī)溝灌施肥相比,滴灌施肥產(chǎn)量與灌水量和施肥量正相關(guān),增加施肥量帶來的增產(chǎn)效應(yīng)大于灌水,且增加灌水量,降低施肥量,水分利用效率逐漸下降,肥料偏生產(chǎn)力逐漸上升。
滴灌施肥技術(shù)除了考慮灌水和施肥因素外,田間滴灌布置方式也有重要影響。田間滴灌管布置方式不僅影響滴灌系統(tǒng)的投入,而且影響水肥在土壤中的分布和作物的吸收利用,目前對綜合考慮土壤水分布、作物種植方式等的研究較少[25-29]。為此,本研究通過溫室番茄滴灌施肥技術(shù)試驗,研究田間滴灌管布置方式、灌水量、施肥量對番茄的影響,及水肥一體化滴灌系統(tǒng)優(yōu)化模式,以期為溫室番茄水肥一體化技術(shù)的推廣應(yīng)用提供技術(shù)支撐和理論指導。
試驗地位于陜西楊凌西北農(nóng)林科技大學北區(qū)旱作試驗溫室,位于109°06'E,36°18'N。室外年平均氣溫14 ℃,多年平均降水量650 mm,年均蒸發(fā)量1 500 mm。試驗溫室長度24.5 m、跨度6 m、高度2.5 m,內(nèi)均分為27個測坑(小區(qū)),測坑長2 m、寬1.5 m、深度2 m。測坑四周二四磚砌墻,水泥抹面,不透水;坑內(nèi)土壤為楊凌壤土,容重1.35~1.40 g/cm3,土壤基本理化性質(zhì)包括:pH值7.86,有機質(zhì)質(zhì)量分數(shù)1.152%,全氮0.123%,全磷0.078%,全鉀1.850%。
供試番茄品種為毛粉802,無限生長型的中晚熟品種,具有果實肉厚,不易裂果,品質(zhì)佳,坐果力強等特點。
滴灌施肥設(shè)備主要由水源、水表、液壓比例施肥泵、滴灌管和輸配水管道系統(tǒng)等組成。供試用比例施肥泵進出水口徑25 mm,流量20~2 500 L/h,水壓0.02~0.3 MPa。采用內(nèi)鑲式滴灌管,管徑16 mm,壁厚0.20 mm,工作壓力50~100 kPa,滴頭間距0.30 m,額定流量2.0 L/h。
設(shè)計3個試驗因素(毛管布置方式、灌量和施氮量),每個因素3個水平,試驗重復(fù)3次。毛管布置方式分別為:1管1行(T1)、1管2行(T2)和1管3行(T3),即1條滴灌管分別灌溉1行、2行和3行番茄;灌水量分別為50%ET0(W1)、70%ET0(W2)和90%ET0(W3),其中ET0為潛在蒸散量(Potential Evapotranspiration),根據(jù)王健等[30]日光溫室Penman-Monteith修正公式,估算結(jié)果為310 mm;施氮肥量的3個水平分別為120 kg/hm2(N1)、180 kg/hm2(N2)和240 kg/hm2(N3),參照番茄品種試驗的施肥管理進行。采用正交試驗設(shè)計[31],選用正交表L9(34),最終確定9個試驗因素組合,各3次重復(fù),共27個小區(qū),正交試驗方案如表1所示。
表1 溫室番茄正交試驗組合方案
注:ET0為潛在蒸散發(fā),mm。
ote: ET0is potential evapotranspiration, mm.
試驗前對棚室測坑土地進行翻耕、平整。首先按施用量20 010 kg/hm2施入有機底肥(有機質(zhì)質(zhì)量分數(shù)>40%,氮、磷、鉀配比為16:16:16),深翻。2018年6月15日定植,番茄幼苗移栽定植時,按照番茄植株行距50 cm、株距30 cm,種植密度6.6株/m2,南北行向進行種植,每個小區(qū)共3行。定植后所有處理均灌定植緩苗水30 mm。之后平均每隔約10 d灌1次水,在番茄生育期間(6月24日—9月25日)共灌水10次,試驗處理W1、W2、W3實際灌水總量分別為160、220、280 mm。灌水量通過水表計量控制。試驗用不同處理N肥各等分為10份,肥液通過液壓比例施肥泵隨灌溉水施入。田施P肥(120 kg/hm2,P2O543%)全部基施,在結(jié)果期的第一穗果膨大期和第二穗果膨大期追施K肥(150 kg/hm2,K2O 50%),其他管理遵照溫室番茄管理措施進行。
土壤含水率測定:測量位置分別設(shè)在測坑中心(測位M1)、垂直滴灌管距中心10 cm處(測位M2)、垂直滴灌管距中心25 cm處(測位M3),在相應(yīng)測位處埋置Trim管,測管埋深60 cm。用TDR水分測定儀測量土層10~60 cm深度土壤含水率,每間隔10 cm測定1次,土壤表層0~10 cm土壤水分采用取土烘干法測定。
土壤硝態(tài)氮NO3-N測定:測位位置布設(shè)與土壤含水率測位布置相同。在番茄收獲拉秧后,取回測位土樣,風干,磨細過篩,篩孔直徑5 mm,用流動分析儀(Auto Analyzer-Ⅲ,德國Bran +Luebbe公司)測定土壤硝態(tài)氮NO3-N質(zhì)量分數(shù)。
產(chǎn)量測定:在果實成熟期,采摘每個小區(qū)成熟果實,用電子天平稱質(zhì)量,通過換算獲得番茄單產(chǎn)(kg/hm2)。
水分利用效率(Water Use Efficiency,WUE)是評價作物生長適宜程度的綜合生理生態(tài)指標,反映了植物耗水與其干物質(zhì)生產(chǎn)之間的關(guān)系。
WUE=0.1/ET (1)
式中WUE為水分利用效率,kg/m3;為產(chǎn)量,kg/hm2;ET為耗水量,mm。根據(jù)水量平衡原理,結(jié)合溫室實際情況,不考慮天然降水和地下水補給以及地表徑流和深層滲漏損失,耗水量ET為
EI=-Δ(2)
式中為總灌水量,mm;Δ為試驗初期和末期0~60 cm土壤水分變化量,mm。張振華等[32-33]通過對1~4 L/h流量滴頭進行點源入滲特性研究得到,垂向入滲距離不超過50 cm,且由于番茄等淺根作物根系深度多不足40 cm,本研究水量平衡采用0~60 cm計算。
肥料偏生產(chǎn)力(Partial Nitrogen Productivity,PNP)是反映當?shù)赝寥阑A(chǔ)養(yǎng)分水平和化肥施用量綜合效應(yīng)的重要指標,用來表示肥料利用效率。
PNP=(3)
式中PNP為肥料偏生產(chǎn)力,kg/kg;為0~60 cm特定肥料純養(yǎng)分(N素等)的投入量,kg/hm2。
7月19日,灌水后48 h土壤含水率分布,如圖1所示。可以看出,灌水后水分經(jīng)過48 h的入滲擴散,不同毛管布置方式下土壤含水率分布趨勢基本相同。沿土層深度,0~20 cm表層土壤含水率較低,20~40 cm深度范圍土壤含水率分布較高,40 cm土層深度以下土壤含水率有所減小。土壤含水率最大值分布在20~30 cm土層深度,最小土壤含水率分布在50 cm土層深度以下。距滴頭越遠,水平方向土壤含水率越小,滴頭下方周圍土壤含水率最大。除地表附近(土層深度<10 cm),50 cm深度以上土壤含水率的總體分布趨勢為:T1和T3土壤含水率由大到小為測位M1>M2>M3,T2土壤含水率分布為測位M3>M2>M1。
不同毛管布置方式下,相同土層深度土壤含水率分布均勻度不同。在灌水量W2時,20 cm深土層測位M1、M2、M3土壤含水率平均值T1、T2、T3依次為23.44%、20.51%、20.36%,其最大含水率和最小含水率相差依次為4.35%、3.93%、6.26%。30 cm深土層測位M1、M2、M3土壤含水率平均值T1、T2、T3依次為23.56%、22.35%、19.57%,最大含水率和最小含水率相差為1.37%、3.63%、7.59%。在20~30 cm土層深度不同毛管布置方式土壤含水率均值基本相同,但最大含水率最小含水率差值明顯不同,T3布置方式差值最大,分布較散,其土壤含水率分布均勻性差,T1和T2布置方式差值較小,含水率分布比較集中均勻。這是因為灌水48 h后,T1和T2毛管布置方式濕潤鋒形成交匯,而T3布置方式滴灌管間距較大,在該時間段內(nèi)沒有形成濕潤鋒交匯,水分分布不均勻。其他灌水情況規(guī)律相同。
注:測位M1、M2、M3分別設(shè)在測坑中心、垂直滴灌管距中心10 cm處、垂直滴灌管距中心25 cm處,下同。
不同毛管布置方式,不同土層土壤含水率分布不同,如表2所示,W2灌水量下T1布置方式M1處耕層0~30 cm深度內(nèi)土壤含水率最大,達23.71%,T3處理M3處含水率最小,僅有15.99%。T1、T2、T3布置的測位均含水率依次減小,分別為22.19%、20.20%、18.86%。毛管布置方式對測位M1的土壤含水率有顯著影響,T1、T2處理的M2、M3處含水率均與T3差異顯著。經(jīng)過48 h水分擴散,T1、T2處理的土壤濕潤鋒出現(xiàn)交叉現(xiàn)象,而T3處理未出現(xiàn)土壤濕潤鋒交叉現(xiàn)象,測位M2、M3距離滴頭較遠,T3處理的M2、M3處含水率急劇減小,不同毛管布置方式處理之間的差異顯著。30~60 cm深度土壤含水率變化規(guī)律與30 cm類似,但由于土壤水分入滲較淺,40 cm深度以下土壤含水率均明顯減小,均小于0~30 cm深度土壤含水率值。測位M1、M2處含水率T1處理與T2、T3差異顯著,M3處T3處理與T1、T2差異顯著。灌水量W1、W3處理時土壤含水率分布基本相同。T1、T3處理的測位M1、M2處不同深度含水率均與T2差異顯著,而M3處含水率T1、T2處理與T3差異顯著。
表2 不同土層深度內(nèi)土壤含水率均值
注:表中±為標準差,同一水分處理同列不同字母表示處理間差異顯著(<0.05);下同。
Note: Symbol±shows standard deviation. Different letters in the same column for same water treatment indicate significant difference at<0.05; Same as below.
毛管布置方式不同,不同測位土壤最大含水率不同。灌水量W2時,測位M1處,T1處理的土壤含水率最大,達25.93%,其次為T3、T2;測位M2土壤含水率最大值由大到小的順序為T1、T2、T3,測位M3處的最大含水率依次為T2>T1>T3。可見,T3布置方式含水率均較小,而T1、T2在不同位置含水率分布互有優(yōu)勢。
圖2為番茄收獲拉秧后,不同處理土壤硝態(tài)氮(NO3-N)分布情況。不同滴灌施肥模式下,隨土層深度的增加,土壤硝態(tài)氮(NO3-N)質(zhì)量分數(shù)呈減小趨勢,0~30 cm土層硝態(tài)氮質(zhì)量分數(shù)均值均大于30~60 cm土層均值。0~30 cm土層硝態(tài)氮質(zhì)量分數(shù)均值最大為24.96 mg/kg(處理T3W1N3),30~60 cm土層硝態(tài)氮質(zhì)量分數(shù)均值最大為16.71 mg/kg(處理T1W3N3)。由于番茄等淺根作物根系深度多不足40 cm,所以該水肥分布有利于番茄對水分和肥分的吸收利用。
在同一土層深度,T1和T3毛管布置方式,滴灌毛管穿過植株行,硝態(tài)氮質(zhì)量分數(shù)由大到小分布與距滴頭距離負相關(guān),離滴頭越遠,硝態(tài)氮質(zhì)量分數(shù)越高,依次為測位M3>M2>M1。T2布置方式相同,其滴灌毛管布置在植株行中間,硝態(tài)氮質(zhì)量分數(shù)由大到小依次為測位M1>M2>M3。同時,由表3可以看出,T3管道布置時遠離滴灌帶的測位M3處不同深度的NO3-N質(zhì)量分數(shù)在不同施N水平間出現(xiàn)顯著差異(<0.05)??梢奛素隨水運移過程,積聚于濕潤體邊緣[34],從而與土壤含水率分布不同。從硝態(tài)氮分布上看,T1和T2管道布置方式灌溉時均已形成濕潤體交匯,土壤水分分布均勻,不論是水平向還是垂向深度上,均較T3管道布置方式硝態(tài)氮分布均勻。
由表3可得,同一N處理下,0~30 cm土層測位M1處的硝態(tài)氮質(zhì)量分數(shù)T2布置方式較T1和T3布置方式大,該測位位于作物根部,硝態(tài)氮含量越大越有利于根系對N的吸收利用。從變異系數(shù)CV看,T2布置方式的CV值在N2和N3處理下均小于T3布置,硝態(tài)氮分布較均勻。從硝態(tài)氮對根系的吸收利用情況和分布均勻性來看,相較于T1和T3這2種毛管布置方式,T2布置方式最優(yōu)。
分析灌水因素、施氮肥模式及滴灌毛管布置方式3種因素對番茄產(chǎn)量的影響,滴灌毛管布置方式對番茄產(chǎn)量產(chǎn)生極顯著影響(>0.05),灌水因素對番茄產(chǎn)量產(chǎn)生極顯著影響(<0.01),施氮肥模式對其產(chǎn)生顯著影響(<0.05),而水氮交互作用并不產(chǎn)生顯著影響(=0.74),故進行主效應(yīng)分析如表4所示。中、高水平灌水量W2、W3下番茄產(chǎn)量沒有顯著差異,和低灌水水平W1下番茄產(chǎn)量差異顯著,不同施N水平下番茄產(chǎn)量均有顯著差異。
表3 不同土層深度土壤硝態(tài)氮質(zhì)量分數(shù)均值
表4 番茄產(chǎn)量顯著性影響
不同滴灌施肥模式對番茄產(chǎn)量的影響如表5所示。由表可知,灌水量對應(yīng)極差最大,為18 237.2 kg/hm2,則它是對產(chǎn)量影響最大的因素。施氮量對產(chǎn)量的影響僅次于灌水量,且產(chǎn)量隨著施氮量增加而增加。從極差分析可知,處理T2W2N3的產(chǎn)量最高,為107 104 kg/hm2。
表5 不同處理番茄產(chǎn)量和水氮利用效率及其極差分析
柯布-道格拉斯(Cobb-Douglas)生產(chǎn)函數(shù)模型運用數(shù)學的方法來描述生產(chǎn)過程中變量與變量之間的依存關(guān)系,表達多種投入因素對產(chǎn)量的影響程度。研究中由于管道布置方式對番茄產(chǎn)量沒有顯著影響,因此以灌水量和施肥量為自變量,以蕃茄產(chǎn)量為因變量,采用柯布-道格拉斯模型進行回歸分析,擬合結(jié)果如式(4)所示:
由式(4)可知,在試驗條件下,灌水量的生產(chǎn)彈性大于施N肥量的生產(chǎn)彈性,即灌水量每增加1%,番茄產(chǎn)量增加約36.77%,施N肥量每增加1%,番茄產(chǎn)量增加約30%。極差分析和柯布-道格拉斯模型擬合結(jié)果均表明,灌水對產(chǎn)量的影響大于施肥。
不同滴灌施肥處理水氮利用效率如表5所示。WUE最高達到47.8 kg/m3,最低僅有29.6 kg/m3。由極差分析可知,對WUE影響最大的因素是灌水量,施氮肥因素影響次之,,滴灌毛管布置方式影響最小,處理T3W2N2的WUE最高。與反映植物耗水指標的WUE不同,PNP反映肥料投入量效應(yīng)。在所有處理中,PNP最優(yōu)的處理是T2W3N1,為244.22 kg/kg。對于PNP,施氮肥因素(極差94.3 kg/kg)影響最大,灌水水平其次,滴灌毛管布置方式影響最小,且PNP隨著施肥量的增加而減小。
番茄在中國可以四季生產(chǎn),其生長需要足夠的水和肥。張燕等[19]認為大水大肥的管理模式非但不能提高產(chǎn)量,還會導致蔬菜品質(zhì)下降、水肥利用率低、土壤鹽漬化等負面影響,而合理的水肥調(diào)控不僅可以促進植物生長,還有利于其品質(zhì)等的改善[35]。而在中國氮肥的利用率不足肥料投入的30%[36],較發(fā)達國家低20個百分點,其余多以硝態(tài)氮形式殘留于土壤中,極易通過揮發(fā)、淋溶和徑流等途徑損失[37-38],造成土壤肥力下降、農(nóng)作物產(chǎn)量品質(zhì)降低等,而通過滴灌施肥,可有效地調(diào)節(jié)施用肥料的數(shù)量和種類,并可將肥料施于根區(qū),保證根區(qū)養(yǎng)分的供應(yīng),減少養(yǎng)分的淋失,顯著地提高肥料養(yǎng)分的利用率。Lazcano等[39]發(fā)現(xiàn)在25 cm以上表土層土壤殘余硝酸鹽變化很大(30~200 kg/hm2),合理施N是提高氮肥利用率的重要措施。本研究發(fā)現(xiàn),控制合理的灌水量、施氮肥量以及滴灌毛管的布置方式,不僅可保證根區(qū)水分和養(yǎng)分的供應(yīng),提高水氮利用率,而且可提高作物產(chǎn)量。
滴灌施肥也并非減少硝酸鹽下滲的有效途徑,除非灌水和施氮措施合理可行。袁宇霞等[20]發(fā)現(xiàn)增加施肥量和適當上調(diào)灌水下限可以顯著提高番茄的光合速率、干物質(zhì)量和產(chǎn)量,過高反而不利于其生長和產(chǎn)量的提高。土壤中N分布取決于N源和施入量、作物溶移能力以及根區(qū)水分布情況。本研究得出,N素等溶質(zhì)隨水入滲運移其分布趨勢和土壤含水率分布基本一致。在土層深度30 cm范圍內(nèi)土壤含水率分布較高,土壤硝態(tài)氮(NO3-N)含量隨土層深度的增加有減小趨勢,0~30 cm土層硝態(tài)氮含量大于30~60 cm土層含量。Zhou等[40]在番茄非充分灌溉中也得到了相同結(jié)果,在番茄結(jié)果中后期,施氮量隨含水率增加而增加,水分利用效率達到最優(yōu)。另外,研究得出土壤硝態(tài)氮含量離滴頭越遠,含量越高,即驗證了N素隨水運移,易于積聚于濕潤體邊緣[34],因此通過灌溉措施控制根區(qū)濕潤體可以提高水氮利用率[41],同時減少N的淋失[42]。
田間滴灌管布置方式對根區(qū)水分和N素含量分布具有重要影響。研究發(fā)現(xiàn),在滴灌施肥方式下,土壤含水率在20~30 cm范圍內(nèi)最大,硝態(tài)氮含量在表層30 cm以上最大,30 cm以下隨深度減小。由于濕潤鋒運移不同,雖然同深度土壤含水率均值基本相同,但1管1行(T1)和1管2行(T2)布置方式不同測位土壤含水率差值較小,含水率在根區(qū)分布比較集中均勻,而1管3行(T3)布置方式差值較大,分布均勻性差。由于番茄這種淺根系作物其根系集中在土層深度40 cm以內(nèi),深層水分和養(yǎng)分不利于作物根系的吸收利用,使得T3布置方式30~60 cm的硝態(tài)氮累積殘余量最大。另外,增大滴管帶間距是減少滴灌系統(tǒng)投資的重要因素之一[43]。Satpute等[26]研究發(fā)現(xiàn)沙壤土種植番茄滴灌帶鋪設(shè)方式1管2行布置比1管1行布置可節(jié)省投資35%~41%。本研究中1管2行管道布置方式(T2)相較于T1布置方式毛管使用數(shù)量減少,投資相應(yīng)減少。總的來說,T2布置方式與T1和T3相比較,節(jié)省投資,土壤水分和土壤硝態(tài)氮質(zhì)量分數(shù)均勻,深層淋失損失量小,有利于提高番茄的水氮利用效率。
通過研究發(fā)現(xiàn),灌水量和施肥量對番茄產(chǎn)量均有顯著影響,且灌水因素大于施肥因素。水分利用效率和肥料偏生產(chǎn)力受灌水量和施N肥量作用影響顯著,體現(xiàn)了水肥間的互促互作。這與邢英英等[44]研究結(jié)果一致。同樣在其他作物和灌水技術(shù)上也有類似結(jié)論,谷曉博等[45]研究表明灌溉和施氮處理對冬油菜籽粒產(chǎn)量、耗水量、WUE和PNP影響作用均達顯著水平。向友珍等[46]通過甜椒試驗和模型驗證得到,甜椒經(jīng)濟產(chǎn)量和水分利用效率WUE隨灌水量增加呈先增加后減小的趨勢。水分脅迫可提高大棗的肥料貢獻率值,植株的氮肥利用率最高[47]。Daniel等[48]研究發(fā)現(xiàn)地下滴灌條件下,施氮因素不及灌水對番茄產(chǎn)量的影響。而Li等[16]通過2種尿素肥料(包膜尿素和碳基尿素)和2種灌水水平(充分灌,虧缺灌(90%))的研究,發(fā)現(xiàn)番茄產(chǎn)量影響最大的是肥,其次為水。這是由不同試驗條件下不同的地力和生產(chǎn)力水平造成的。
田間滴灌管布置方式、灌水量、施N肥量等對溫室番茄田間土壤含水率分布、硝態(tài)氮質(zhì)量分數(shù)、番茄產(chǎn)量、水氮利用效率等均有不同程度的影響。
1)土壤含水率與硝態(tài)氮質(zhì)量分數(shù)均受管道布置方式影響。N素等溶質(zhì)隨灌溉水入滲運移,其分布趨勢和土壤水分布基本一致。20~40 cm土層深度范圍土壤含水率分布較高;T1和T2布置方式較T3布置土壤含水率分布均勻。土壤硝態(tài)氮(NO3-N)質(zhì)量分數(shù)隨土層深度的增加呈減小趨勢,0~30 cm土層硝態(tài)氮質(zhì)量分數(shù)均值均大于30~60 cm土層均值;T2管道布置方式相較于T1和T3布置硝態(tài)氮含量均勻。
2)灌水因素和施肥模式對番茄產(chǎn)量、水氮利用效率均有顯著影響,適宜的灌水量、氮肥施用量及合適的田間滴灌管道布置方式不僅能使番茄獲得高產(chǎn),還能維持高效的灌溉水利用效率和肥料偏生產(chǎn)力。在本試驗條件下,獲得番茄高產(chǎn)的灌水量因素、施肥模式以及管道布置方式的最優(yōu)組合為W2(70%ET0)、N3(240 kg/hm2)、T2(1管2行),可為當?shù)販厥曳训喂嗍┓噬a(chǎn)實踐提供參考。但從高效的灌溉水利用效率和肥料偏生產(chǎn)力角度考慮,番茄滴灌施肥模式的最優(yōu)水平組合分別為W2(70%ET0)、N2(180 kg/hm2)、T2(1管2行)和W2(70%ET0)、N1(120 kg/hm2)、T2(1管2行)。
[1] 吳立峰,張富倉,周罕覓,等. 不同滴灌施肥水平對北疆棉花水分利用率和產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學報,2014,30(20):137-146. Wu Lifeng, Zhang Fucang, Zhou Hanmi, et al. Effect on drip irrigation and fertilizer application on water use efficiency and cotton yield in North of Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(20): 137-146. (in Chinese with English Abstract)
[2] Indu Sinha, Buttar G S, Brar A S. Drip irrigation and fertigation improve economics, water and energy productivity of spring sunflower[J]. Agricultural Water Management, 2017, 185: 58-64.
[3] Jayakumar M, Janapriya S, Surendran U. Effect of drip fertigation and polythene mulching on growth and productivity of coconut (L. ), water, nutrient use efficiency and economic benefits[J]. Agricultural Water Management, 2017, 182: 87-93.
[4] Wolff M W, Hopmans J W, Stockert C M, et al. Effects of drip fertigation frequency and N-source on soil N2O production in almonds[J]. Agriculture, Ecosystems and Environment, 2017, 238: 67-77.
[5] Wei Qin, Marius Heinen, Nalentijn B T, et al. Exploring optimal fertigation strategies for orange production, using soil–crop modelling[J]. Agriculture, Ecosystems and Environment, 2016, 223: 31-40.
[6] Wang Haidong, Li Jing, Cheng Minghui, et al. Optimal drip fertigation management improves yield, quality, water and nitrogen use efficiency of greenhouse cucumber[J]. Scientia Horticulturae, 2019, 243: 357-366.
[7] 張燕,張富倉,強生才,等. 水肥供應(yīng)對溫室滴灌施肥番茄生長及水氮利用的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究,2017,35(4):103-109. Zhang Yan, Zhang Fucang, Qiang Shengcai, et al. Effects of irrigation and fertilization on growth, water and nitrogen use of tomato in greenhouse under fertigation[J]. Agricultural Research in the Arid Areas, 2017, 35(4): 103-109. (in Chinese with English Abstract)
[8] 陳修斌,潘林,王勤禮,等. 溫室番茄水肥耦合數(shù)學模型及其優(yōu)化方案研究[J]. 南京農(nóng)業(yè)大學學報,2006,29(3):138-141. Chen Xiubin, Pan Lin, Wang Qinli, et al. Water-fertilizer coupling effects and its optimization in greenhouse tomato production[J]. Journal of Nanjing Agricultural University, 2006, 29(3): 138-141. (in Chinese with English Abstract)
[9] 陳碧華,郜慶爐,段愛旺,等. 水肥耦合對番茄產(chǎn)量和硝酸鹽含量的影響[J]. 河南農(nóng)業(yè)科學,2007,36(5):87-90. Chen Bihua, Gao Qinglu, Duan Aiwang, et al. Coupling effect of water and fertilizer on tomato yield and nitrate content[J]. Journal of Henan Agricultural Sciences, 2007, 36(5): 87-90. (in Chinese with English Abstract)
[10] 張學科,李惠霞,張倓,等. 滴灌條件下水氮減量對番茄氮素利用效率的影響[J]. 灌溉排水學報,2018,37(3):45-50. Zhang Xueke, Li Huixia, Zhang Tan, et al. Effects of different water and nitrogen levels on nitrogen use efficiency under drip irrigation[J]. Journal of Irrigation and Drainage, 2018, 37(3): 45-50. (in Chinese with English Abstract)
[11] Bar Yose N B, Sagiv B. Response of tomatoes to N and water applied via trickle irrigation system. I. [J]. Nitrogen Agron J 1982, 74: 633-637.
[12] Lara D, Adjanohoun A, Ruiz J. Response on tomatoes sown in the non-optimal season to fertigation on a compacted red ferralitic soil[J]. Cultivar Tropicales, 1996, 17(1): 8-9.
[13] Mahajan G, Singh K G. Response of greenhouse tomato to irrigation and fertigation[J]. Agricultural Water Management, 2006, 84(1/2): 202-206.
[14] Zotarelli L, Dukes M D, Scholberg J M S, et al. Tomato nitrogen accumulation and fertilizer use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling[J]. Agricultural Water Management, 2009, 96(8): 1247-1258.
[15] Zotarelli L, Scholberg J M, Dukes M D, et al. Tomato yield, biomass accumulation, root distribution and irrigation water use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling[J]. Agricultural Water Management, 2009, 96(1): 23-34.
[16] Li Yanmei, Sun Yanxin, Liao Shangqiang, et al. Effects of two slow-release nitrogen fertilizers and irrigation on yield, quality, and water-fertilizer productivity of greenhouse tomato[J]. Agricultural Water Management, 2017, 186: 139-146.
[17] Wang Chenxia, Gu Feng, Chen Jinliang, et al. Assessing the response of yield and comprehensive fruit quality of tomato grown in greenhouse to deficit irrigation and nitrogen application strategies[J]. Agricultural Water Management, 2015, 161: 9-19.
[18] Jensen C R, Battilani A, Plauborg N. Deficit irrigation based on drought tolerance and root signaling in potatoes and tomatoes[J]. Agricultural Water Management, 2010, 98: 403-413.
[19] 張燕,張富倉,袁宇霞,等. 灌水和施肥對溫室滴灌施肥番茄生長和品質(zhì)的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究,2014,32(2):206-212. Zhang Yan, Zhang Fucang, Yuan Yuxia, et al. The effect of irrigation and fertilization on growth and quality of tomato under fertigation in greenhouse[J]. Agricultural Research in the Arid Areas, 2014, 32(2): 206-212. (in Chinese with English Abstract)
[20] 袁宇霞,張富倉,張燕,等. 滴灌施肥灌水下限和施肥量對溫室番茄生長、產(chǎn)量和生理特性的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究,2013,31(1):76-83. Yuan Yuxia, Zhang Fucang, Zhang Yan, et al. Effects of irrigation threshold and fertilization on growth, yield and physiological properties of fertigated tomato in greenhouse[J]. Agricultural Research in the Arid Areas, 2013, 31(1): 76-83. (in Chinese with English Abstract)
[21] 賀會強,陳凱利,鄒志榮,等. 不同施肥水平對日光溫室番茄產(chǎn)量和品質(zhì)的影響[J]. 西北農(nóng)林科技大學學報:自然科學版,2012,40(7):135-140. He Huiqiang, Chen Kaili, Zou Zhirong, et al. Effects of different fertilization levels on yield and quality of greenhouse tomato[J]. Journal of Northwest A&F University: Na Sci Ed, 2012, 40(7): 135-140. (in Chinese with English Abstract)
[22] 王秀康,邢英英,張富倉. 膜下滴灌施肥番茄水肥供應(yīng)量的優(yōu)化研究[J]. 農(nóng)業(yè)機械學報,2016,47(1):141-150. Wang Xiukang, Xing Yingying, Zhang Fucang. Optimal amount of irrigation and fertilization under drip fertigation for tomato[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1): 141-150. (in Chinese with English Abstract)
[23] 賈宋楠,范鳳翠,劉勝堯,等. 滴灌供肥對設(shè)施番茄生長和品質(zhì)的影響[J]. 節(jié)水灌溉,2017(7):28-33,34. Jia Songnan, Fan Fengcui, Liu Shengyao, et al. The effect of drip irrigation on growth and quality of tomato in greenhouse[J]. Water Saving Irrigation, 2017(7): 28-33, 34. (in Chinese with English Abstract)
[24] 邢英英,張富倉,張燕,等. 滴灌施肥水肥耦合對溫室番茄產(chǎn)量、品質(zhì)和水氮利用的影響[J]. 中國農(nóng)業(yè)科學,2015,48(4):713-726. Xing Yingying, Zhang Fucang, Zhang Yan, et al. Effect of irrigation and fertilizer coupling on greenhouse tomato yield, quality, water and nitrogen utilization under fertigation[J]. Scientia Agricultura Sinica, 2015, 48(4): 713-726. (in Chinese with English Abstract)
[25] Pitts D J, Arnold C E, Grimm J M. Influence of lateral tubing location and number on growth and yield of tomatoes with micro irrigation[J]. Proceedings of the Florida State Horticulture Society, 1989, 102: 304-307.
[26] Satpute G U, Pawade M N. Effect of drip layout and planting geometries of tomato (L. ) on crop yield and cost of drip system[C]. Beijing: International Agricultural Engineering Conference, 1992.
[27] Mbarek K B, Boujelben A. Behavior of tomato () and red pepper (L. ) crops under greenhouse conditions conducted in single and twin rows[J]. Tropicultura, 2004, 22 (3): 97-103.
[28] Oner Cetin, Demet Uygan. The effect of drip line spacing, irrigation regimes and planting geometries of tomato on yield, irrigation water use efficiency and net return[J]. Agricultural Water Management, 2008, 95: 949-958.
[29] Badr M A, Abou-Hussein S D, El-Tohamy W A. Tomato yield, nitrogen uptake and water use efficiency as affected by planting geometry and level of nitrogen in an arid region[J]. Agricultural Water Management, 2016, 169: 90-97.
[30] 王健,蔡煥杰,李紅星,等. 日光溫室作物蒸發(fā)蒸騰量的計算方法研究及其評價[J]. 灌溉排水學報,2006,25(6):11-14. Wang Jian, Cai Huanjie, Li Hongxing, et al. Study and evaluation of the calculation methods of reference crop evapotranspiration in solar-heated greenhouse[J]. Journal of Irrigation and Drainage, 2006, 25(6): 11-14. (in Chinese with English Abstract)
[31] 楊德. 試驗設(shè)計與分析[M]. 北京:中國農(nóng)業(yè)出版社,2002.
[32] 張振華,蔡煥杰,郭永昌,等. 滴灌土壤濕潤體影響因素的實驗研究[J]. 農(nóng)業(yè)工程學報,2002,18(2):17-20. Zhang Zhenhua, Cai Huanjie, Guo Yongchang, et al. Experimental study on factors effecting soil wetted volume of clay loam under drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2002, 18(2): 17-20. (in Chinese with English Abstract)
[33] 汪志榮,王文焰,王全九,等. 點源入滲土壤水分運動規(guī)律實驗研究[J]. 水利學報,2000(6):39-44. Wang Zhirong, Wang Wenyan, Wang Quanjiu, et al. Experimental study on soil water movement from a point source[J]. Journal of Hydraulic Engineering, 2000(6): 39-44. (in Chinese with English Abstract)
[34] Li Jiusheng, Zhang Jianjun, Ren Li. Water and nitrogen distribution as affected by fertigation of ammonium nitrate from a point source[J]. Irrigation Science, 2003, 22: 19-30.
[35] 史星雲(yún),李強,張軍,等. 滴灌條件下水肥耦合對釀酒葡萄生長發(fā)育及果實品質(zhì)的影響[J]. 西北農(nóng)業(yè)學報,2019(2):225-236. Shi Xingyun, Li Qiang, Zhang Jun, et al. Effects of water and fertilizer coupling on growth and quality of wine grape under drip irrigation[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2019(2): 225-236. (in Chinese with English Abstract)
[36] 張福鎖,崔振嶺,王激清,等. 中國土壤和植物養(yǎng)分管理現(xiàn)狀與改進策略[J]. 植物學通報,2007,24(6):687-694. Zhang Fusuo, Cui Zhenling, Wang Jiqing, et al. Current status of soil and plant nutrient management in China and improvement strategies[J]. Chinese Bulletin of Botany, 2007, 24(6): 687-694. (in Chinese with English Abstract)
[37] Home P G, Panda R K, Kar S. Effect of method and scheduling of irrigation on water and nitrogen use efficiencies of Okra (Abelmoschus esculentus)[J]. Agricultural Water Management, 2002, 55(2): 159-170.
[38] 張文新,張成軍,趙同科,等,緩釋氮肥減少菜田土壤硝酸鹽淋溶研究[J]. 華北農(nóng)學報,2010,25(5):166-170. Zhang Wenxin, Zhang Chengjun, Zhao Tongke, et al. Research on controlled release nitrogen fertilizer reducing nitrate leaching in vegetable fields[J]. Acta Agriculturae Boreali-Sinica, 2010, 25(5): 166-170. (in Chinese with English Abstract)
[39] Lazcano C, Wade J, Horwath W R, et al. Soil sampling protocol reliably estimates preplant NO3?in SDI tomatoes[J]. Calif Agr, 2015, 69: 222-229.
[40] Zhou Huiping, Kang Shaozhong, Li Fusheng, et al. Nitrogen application modified the effect of deficit irrigation on tomato transpiration, and water use efficiency in different growth stages[J]. Scientia Horticulturae, 2020, 263: 109-112.
[41] Singandhupe R B, Rao G S N, Patil N G, et al. Fertigation studies and irrigation scheduling in drip irrigation system in tomato crop (L.)[J]. European Journal of Agronomy, 2003, 19: 327-340.
[42] Lv Haofeng, Lin Shan, Wang Yafang, et al. Drip fertigation significantly reduces nitrogen leaching in solar greenhouse vegetable production system[J]. Environmental Pollution, 2019, 245: 694-701.
[43] Lamm F R, Stone L R, Manges H L, et al. Optimum lateral spacing for subsurface drip-irrigated corn[J]. Trans ASABE, 1997, 40: 1021-1027.
[44] 邢英英,張富倉,吳立峰,等. 基于番茄產(chǎn)量品質(zhì)水肥利用效率確定適宜滴灌灌水施肥量[J]. 農(nóng)業(yè)工程學報,2015,31(增刊1):110-121. Xing Yingying, Zhang Fucang, Wu Lifeng, et al. Determination of optimal amount of irrigation and fertilizer under drip fertigated system based on tomato yield, quality, water and fertilizer use efficiency[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Supp. 1): 110-121. (in Chinese with English Abstract)
[45] 谷曉博,李援農(nóng),杜婭丹,等. 水氮耦合對冬油菜氮營養(yǎng)指數(shù)和光能利用效率的影響[J]. 農(nóng)業(yè)機械學報,2016,47(2):122-132. Gu Xiaobo, Li Yuannong, Du Yadan, et al. Effects of water and nitrogen coupling on nitrogen nutrition index and radiation use efficiency of winter oilseed rape (BrassicaL.)[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(2): 122-132. (in Chinese with English Abstract)
[46] 向友珍,張富倉,范軍亮,等. 基于臨界氮濃度模型的日光溫室甜椒氮營養(yǎng)診斷[J]. 農(nóng)業(yè)工程學報,2016,32(17):89-97. Xiang Youzhen, Zhang Fucang, Fan Junliang, et al. Nutrition diagnosis for N in bell pepper based on critical nitrogen model in solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(17): 89-97. (in Chinese with English abstract)
[47] 龔萍,劉洪光,何新林,等. 水肥配比對大棗氮素分布及利用效率的影響[J]. 節(jié)水灌溉,2018(11):10-15,19. Gong Ping, Liu Hongguang, He Xinlin, et al. Effect of the ratio of water-fertilizer nitrogen distribution and utilization efficiency in jujube trees[J]. Water Saving Irrigation, 2018(11): 10-15, 19. (in Chinese with English abstract)
[48] Daniel G, Brenna J A, Eugene M M, et al. Nitrogen in soil and subsurface drip-irrigated processing tomato plants(L. ) as affected by fertilization level[J]. Scientia Horticulturae, 2020, 261: 108-116.
Effects of water and N-fertilizer supplies on the distribution and use efficiency of water and nitrogen of drip-irrigated tomato in greenhouse
Zhang Xinyan1, Wang Haoxiang1, Niu Wenquan1,2
(1.,,712100,; 2.,,712100,)
This study explored the optimal mode of drip fertigation system of tomato in greenhouse in Yangling, China (109°06'E,36°18'N). Three factors with three levels each were considered including drip irrigation pipeline layout, fertilizer-N application rate and irrigation amount. Three pipeline layout included single-plant row, two-plant row and three-plant row of one pipeline. Three irrigation amounts were 50%ET0, 70%ET0and 90%ET0(potential evapotranspiration) and ET0was calculated based on Penman-Monteith modifier formula. Three fertilizer-N amounts were 120, 180 and 240 kg/hm2. The experiment was carried out in 2018 following the orthogonal test design. During the experiment, soil moisture content and nitrate nitrogen content were determined. Water use efficiency and fertilizer utilization efficiency were calculated. The results showed that the drip irrigation pipeline layout, irrigation amount and fertilizer-N amount had different effects on soil moisture content distribution, nitrate nitrogen, tomato yield and water use efficiency and nitrogen utilization efficiency of greenhouse tomato. The distribution of soil water content in different drip irrigation pipeline layout was basically the same, the water content of the surface layer (0-20 cm) was lower and higher in the soil layer of 20-40 cm. The soil water content below 40 cm depth was decreased. The soil moisture content was low in the area far from the emitter but high in the area around the emitter. The moisture content distributions of single-plant row of one pipeline and two-plant row of one pipeline were much uniform than that of three-plant row of one pipeline. The soil nitrate nitrogen (NO3-N) content decreased generally with the soil depth, and the mean value of the nitrate nitrogen content in the 0-30 cm soil layer was greater than that at 30-60 cm. The maximum value of nitrate nitrogen content was 24.96 mg/kg in the 0-30 cm soil layer, and it was 16.71 mg/kg in the 30-60 cm soil layer. Under the same fertilizer-N treatment, the nitrate nitrogen content at the center of the test pit in the 0-30 cm soil layer was larger in the treatment of two-plant row of one pipeline mode than that in single-plant row and three-plant row of one pipeline. It would be conducive to the absorption and utilization of nitrogen by roots. The irrigation amount had an extremely significant effect on the yield of tomato. The fertilizer-N amounts had a significant effect on the yield. The tomato yield was not significantly different for the treatments of irrigation amount of 70%ET0and 90%ET0, and both treatments were significantly higher than that with the irrigation amount of 50%ET0. The irrigation amount and fertilizer-N application rate had significant effects on water use efficiency and partial nitrogen productivity. The optimized mode of drip fertigation with high yield of tomato was two-plant row of one pipeline, irrigation amounts 70%ET0and fertilizer-N application rate of 240 kg/hm2. Considering the high efficiency of irrigation water utilization and N-fertilizer partial factor productivity, the optimal combination mode of drip fertigation on tomato was two-plant row of one pipeline, irrigation amounts 70%ET0, N-fertilizer amounts 180 kg/hm2and two-plant row of one pipeline, irrigation amounts 70%ET0and N-fertilizer amounts 120kg/hm2, respectively. The result can provide some technical guidance for the production practice of the greenhouse tomato drip fertigation.
soil moisture; fertilization; greenhouse; nitrate nitrogen; drip irrigation; yield; water use efficiency; partial factor productivity
張新燕,王浩翔,牛文全. 水氮供應(yīng)對溫室滴灌番茄水氮分布及利用效率的影響[J]. 農(nóng)業(yè)工程學報,2020,36(9):106-115. doi:10.11975/j.issn.1002-6819.2020.09.012 http://www.tcsae.org
Zhang Xinyan, Wang Haoxiang, Niu Wenquan. Effects of water and N-fertilizer supplies on the distribution and use efficiency of water and nitrogen of drip-irrigated tomato in greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(9): 106-115. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.09.012 http://www.tcsae.org
2019-09-03
2020-02-08
國家重點研發(fā)計劃項目(2016YFC0400202)
張新燕,博士,副教授,主要從事節(jié)水灌溉理論與新技術(shù)研究。Email:xnvxy@nwsuaf.edu.cn
10.11975/j.issn.1002-6819.2020.09.012
S275.6;S157.4+1
A
1002-6819(2020)-09-0106-10