弭雪 隗闖 張萌 石海群 陳娜 周宇
[摘要] 目的 探討GHS-R1a缺失對Aβ1-42模型小鼠空間學習和記憶的影響。方法 借助腦立體定位注射技術(shù),5只GHS-R1a敲除的Ghsr1a-/-小鼠及6只同窩對照野生型Ghsr1a+/+小鼠背側(cè)海馬CA1區(qū)注射Aβ1-42,另外7只野生型Ghsr1a+/+小鼠背側(cè)海馬CA1區(qū)注射等量生理鹽水(NS)作為空白對照。1周后對3組小鼠同時進行Morris水迷宮訓練和測試,檢測小鼠的空間學習和空間記憶能力。結(jié)果 Ghsr1a+/++Aβ1-42組小鼠經(jīng)過6 d的訓練能夠迅速找到水下隱匿平臺,且找到平臺所用的時間與Ghsr1a+/++NS組小鼠比較差異無顯著意義(P>0.05),說明Aβ1-42注射不影響小鼠的空間學習。水迷宮測試顯示,Ghsr1a+/++NS組小鼠在平臺象限探索的時間百分比明顯高于其他3個象限(F=8.401,q=5.603~7.642,P<0.01),說明訓練后該組小鼠形成了正常的空間記憶;而接受Aβ1-42注射的兩組小鼠在平臺象限探索的時間百分比與其他3個象限相比,差異均無顯著性(P>0.05),提示這兩組小鼠存在空間記憶障礙。接受Aβ1-42注射的兩組小鼠在平臺象限探索的時間百分比比較,差異也無顯著性(P>0.05)。結(jié)論 海馬腦區(qū)Aβ1-42注射損害小鼠的空間記憶能力,對小鼠的空間學習能力無影響。GHS-R1a敲除不能改善Aβ1-42模型小鼠的空間記憶障礙。
[關(guān)鍵詞] 受體,胃促生長素;淀粉樣β肽類;CA1區(qū),海馬;空間學習;空間記憶;小鼠
[中圖分類號] R338.2 ?[文獻標志碼] A ?[文章編號] 2096-5532(2020)02-0169-04
doi:10.11712/jms.2096-5532.2020.56.070 [開放科學(資源服務(wù))標識碼(OSID)]
[網(wǎng)絡(luò)出版] http://kns.cnki.net/kcms/detail/37.1517.R.20200417.0914.005.html;2020-04-17 16:16
[ABSTRACT] Objective To investigate the effects of GHS-R1a deficiency on spatial learning and memory in an Aβ1-42-injected mouse model. ?Methods Five GHS-R1a knock-out mice (Ghsr1a-/-) and six wild-type littermates (Ghsr1a+/+) received a stereotactic injection of Aβ1-42 into the CA1 region of the dorsal hippocampus. As a blank control, seven Ghsr1a+/+mice received an injection of an equal volume of normal saline (NS) into the dorsal hippocampal CA1 region. After one week, the Morris water maze task was simultaneously applied in the three groups to assess the spatial learning and memory capabilities of the mice. ?ResultsAfter 6 d of training, the Ghsr1a+/+ mice with Aβ1-42 injection quickly found the hidden platform, and there was no significant difference in time to the hidden platform between the Ghsr1a+/+ mice with Aβ1-42 injection and with NS injection (P>0.05), indicating that Aβ1-42 injection did not affect spatial learning. The probe test showed that the Ghsr1a+/+ mice with NS injection spent a significantly higher percentage of time in the platform quadrant than in the other three quadrants (F=8.401,q=5.603-7.642,P<0.01), indicating that these mice acquired normal spatial memory after training. However, for the mice with Aβ1-42 injection, there was no significant difference in the percentage of time between the four quadrants (P>0.05), suggesting that these mice had spatial memory impairment; and the percentage of time spent in the platform quadrant showed no significant difference between the Ghsr1a-/- mice and Ghsr1a+/+ mice with Aβ1-42 injection (P>0.05). ?Conclusion Injection of Aβ1-42 into the hippocampus impairs the spatial memory of mice but has no effect on the spatial learning. Knocking out the GHS-R1a fails to improve spatial me-mory deficits in Aβ1-42-injected mice.
[KEY WORDS] receptors, ghrelin; amyloid beta-peptides; CA1 region, hippocampal; spatial learning; spatial memory; mice
阿爾茨海默?。ˋD)是最常見的進行性、神經(jīng)退行性疾病,主要以β淀粉樣蛋白沉積和Tau蛋白過度磷酸化為標志性病理改變。記憶和認知功能減退是AD早期腦功能減退典型的臨床表現(xiàn)。與學習記憶密切相關(guān)的海馬是AD神經(jīng)退變最敏感的腦區(qū)之一[1-4]。海馬注射Aβ1-42作為一種簡單的造模方法被廣泛應(yīng)用于AD的基礎(chǔ)研究[5-7]。GHS-R1a是目前所知的乙?;痝hrelin發(fā)揮作用的唯一受體亞型,該受體在中樞神經(jīng)系統(tǒng)有廣泛分布,在下丘腦以及下丘腦以外、與記憶和情緒調(diào)節(jié)密切相關(guān)的腦區(qū)(例如海馬、皮質(zhì)和杏仁核等)均有較豐富的表達[8-10]。GHS-R1a對學習記憶的調(diào)節(jié)作用已有大量報道,但結(jié)論并不一致[11-13]。有研究結(jié)果表明,外周ghrelin注射能夠增加海馬CA1區(qū)樹突棘的密度,促進離體海馬腦片的長時程增強,從而提高嚙齒動物的學習記憶能力[14]。另有研究指出,海馬齒狀回多巴胺受體1型(DRD1)介導的場景恐懼記憶和工作記憶的增強均依賴于該區(qū)存在的DRD1-GHS-R1a異源二聚體[15],強調(diào)了GHS-R1a獨立于配體ghrelin之外對學習記憶的調(diào)節(jié)作用。但也有研究結(jié)果表明,ghrelin及其受體激活對記憶有損害作用[16]。最近的一項研究發(fā)現(xiàn),GHS-R1a敲除小鼠的空間記憶明顯優(yōu)于正常對照小鼠[17],提示 GHS-R1a 的激活可能干擾空間記憶的形成。因此,本研究借助海馬注射Aβ1-42誘導AD小鼠模型的空間學習和記憶障礙,觀察GHS-R1a敲除對模型小鼠空間學習和記憶障礙的可能影響。
1 材料與方法
1.1 實驗動物及分組
成年C57BL6J小鼠與GHS-R1a敲除小鼠雜交得到子一代雜合子小鼠,不同籠的雜合子小鼠交配得到子二代GHS-R1a敲除純合子(Ghsr1a-/-)小鼠以及同窩野生對照(Ghsr1a+/+)小鼠,選用其中3~5月齡雄性小鼠用于本研究。將13只適齡Ghsr1a+/+小鼠隨機分為2組,一組小鼠海馬注射生理鹽水(NS)(Ghsr+/++NS組,n=7),另一組小鼠海馬定位注射Aβ1-42(Ghsr+/++Aβ1-42組,n=6);5只Ghsr1a-/-小鼠海馬定位注射等量的Aβ1-42(Ghsr-/-+Aβ1-42組)。
1.2 Aβ1-42 的配制
取1 mg Aβ1-42(Sigma公司)溶于1 mL六氟異丙醇(Sigma公司)中,室溫靜置1 h后冰上靜置5 min。將溶液放于通風櫥內(nèi)約2 d,使其徹底風干。然后加入50 μL二甲基亞砜(Sigma公司),待徹底溶解后再加入0.01 mol/L的PBS溶液。Aβ1-42的終濃度為5 g/L,放于37 ℃恒溫箱中老化7 d,-20 ℃儲存待用[18]。
1.3 立體定位注射
小鼠按照10 mL/kg體質(zhì)量腹腔注射40 g/L的水合氯醛和40 g/L的烏拉坦混合溶液,待小鼠麻醉后將其固定于腦立體定位儀上,碘附消毒皮膚后,于兩眼連線中點后約5 mm位置切開皮膚,切口長約1 cm。剝離骨膜,暴露前后囟,調(diào)整耳桿使小鼠頭部位于同一平面。背側(cè)海馬CA1區(qū)的立體定位坐標為:前囟后1.6 mm、左右旁開2.0 mm、深度2.0 mm[19]。鉆孔定位注射Aβ1-42或NS,注射完畢留針10 min,使其充分擴散。縫合皮膚,連續(xù)3 d肌肉注射青霉素,術(shù)后休息7 d。
1.4 Morris水迷宮實驗
該系統(tǒng)由測試圓桶(圓桶分為4個象限:平臺象限、對側(cè)象限、左側(cè)象限、右側(cè)象限)、可移動的平臺、運動軌跡追蹤系統(tǒng)及分析軟件4部分組成。實驗前在水池內(nèi)放入增白劑以隱匿平臺位置,控制水溫在24 ℃左右。實驗分為訓練和測試兩部分,測試動物對平臺所在區(qū)域的偏好可以反映其空間記憶能力[20]。訓練階段先將小鼠放在平臺上30 s,隨后于6個入水點的任意一點面朝桶壁將小鼠釋放入水,讓其尋找水下平臺60 s。如小鼠60 s內(nèi)未找到平臺則由實驗者將其引導至平臺,并讓小鼠在平臺上再次停留30 s。系統(tǒng)自動記錄小鼠的運動軌跡和找到平臺的時間,未找到平臺的小鼠將時間記作61 s。小鼠每天接受兩輪訓練,間隔1 h以上,且每次選取不同的入水點將小鼠緩慢釋放入水池中,每天訓練完成小鼠返回飼養(yǎng)籠。訓練天數(shù)依據(jù)小鼠的學習能力而定,直到正常對照小鼠能夠在短時間內(nèi)迅速找到水下的隱匿平臺。訓練的第4天開始空間記憶測試,隔天測試1次(如第4天測試時正常對照小鼠未能區(qū)分平臺象限和其他象限,則第6天再次測試,且第4、5、6天訓練照常進行)。測試時,小鼠先在平臺上停留60 s,然后撤掉平臺,從原平臺的對角線位置將小鼠釋放入水池。軟件自動記錄小鼠的運動軌跡、穿越平臺象限的次數(shù)、探索各個象限的時間百分比等參數(shù),測試時間為60 s。
1.5 統(tǒng)計學分析
應(yīng)用Graph Pad Prism 6軟件進行統(tǒng)計學分析,所得的計量資料數(shù)據(jù)用±s表示,多組比較采用雙因素方差分析,繼以Tukey法進行組間兩兩比較,P<0.05表示差異具有統(tǒng)計學意義。
2 結(jié) ?果
2.1 海馬注射Aβ1-42對野生小鼠空間學習和記憶能力的影響
水迷宮訓練6 d后,Ghsr1a+/++NS組小鼠可以迅速找到水下的隱匿平臺,找到平臺的平均時間從最初的(52.11±16.41)s縮短到(19.45±10.55)s(F=10.750,q=5.022,P<0.01),表現(xiàn)出正常的空間學習能力。第6天訓練結(jié)束后的空間記憶測試結(jié)果顯示,Ghsr1a+/++NS組小鼠在平臺象限探索的時間百分比明顯高于其他3個象限(F=8.401,q=5.603~7.642,P<0.01),表明該組小鼠有良好的空間記憶能力。經(jīng)過6 d的水迷宮訓練,Ghsr1a+/++Aβ1-42組小鼠也可以迅速找到水下隱匿的平臺,找到平臺的平均時間從最初的(56.84±7.32)s縮短到(27.68±10.63)s(F=10.750,q=5.958,P<0.01),表明海馬區(qū)Aβ1-42注射對小鼠的空間學習無明顯影響。但是空間記憶測試的結(jié)果顯示,Ghsr1a+/++Aβ1-42組小鼠在平臺象限的探索時間百分比與其他3個象限相比,差異無統(tǒng)計學意義(P>0.05),提示海馬腦區(qū)Aβ1-42注射可損傷小鼠的空間記憶能力。見表1、2。
2.2 GHS-R1a敲除對海馬Aβ1-42注射誘導的小鼠空間記憶障礙的影響
Ghsr1a-/-+Aβ1-42組小鼠的空間學習受損,在6 d的水迷宮訓練中,該組小鼠每天訓練找到平臺平均時間差異無顯著性(P>0.05)。Ghsr1a+/++Aβ1-42組和Ghsr1a-/-+Aβ1-42組小鼠均不能區(qū)分平臺象限與其他3個象限,兩組小鼠在各個象限的探索時間百分比比較差異均無顯著性(P>0.05);兩組小鼠之間比較,在平臺象限的探索時間百分比差異也無顯著性(P>0.05)。表明兩組小鼠均沒有形成關(guān)于平臺所在空間位置的記憶,即GHS-R1a缺失并不能緩解海馬Aβ1-42注射誘導的小鼠空間記憶障礙。見表1、2。
3 討 ?論
Ghrelin和GHS-R1a在腦內(nèi)隨衰老、炎癥、神經(jīng)退變等發(fā)生動態(tài)變化。研究表明,AD病人血中g(shù)hrelin濃度明顯升高,治療后降低[21]。與此相一致,AD病人和5xFAD模型小鼠海馬內(nèi)GHS-R1a的表達明顯增加[22],提示GHS-R1a的表達增加與AD認知功能減退呈負相關(guān)。本實驗室的前期研究顯示,基底外側(cè)杏仁核注射ghrelin抑制大鼠條件性味覺厭惡記憶的獲取[23]。結(jié)合我們及其他實驗室的前期研究結(jié)果,我們推測GHS-R1a的激活或表達增加抑制學習記憶,而GHS-R1a的缺失可以緩解AD相關(guān)的記憶和認知障礙。因此,我們設(shè)計了本實驗,以探討GHS-R1a敲除對Aβ1-42模型小鼠空間記憶障礙的可能影響。本文結(jié)果顯示,GHS-R1a敲除并未改善Aβ1-42注射誘導的小鼠空間記憶障礙,具體原因目前仍不清楚,可能和GHS-R1a以及Aβ1-42的具體作用機制不同相關(guān),又或者在細胞信號傳導通路上,Aβ的作用靶點處于ghrelin/GHS-R1a信號通路的下游。總之,本文結(jié)果提示GHS-R1a缺失不能對抗Aβ對海馬神經(jīng)元的毒性作用。
Aβ自1985年被發(fā)現(xiàn)是腦內(nèi)淀粉樣神經(jīng)斑塊的主要成分后備受關(guān)注[24]。大腦內(nèi)Aβ蛋白異常聚集、形成毒性斑塊是AD病人的一個重要特征,多年來聚焦于Aβ靶點探索AD發(fā)病機制的研究進展緩慢,這使得人們不得不尋找新的治療靶點。有研究表明,Aβ蛋白的聚集可能是AD病理性進展起始的關(guān)鍵,而其下游信號如Tau蛋白的過度磷酸化和神經(jīng)炎性因子激活為神經(jīng)退行性變的發(fā)展提供主要驅(qū)動力[25]。在GHS-R1a缺失對認知功能的調(diào)控作用中炎性因子激活等事件可能占有重要的地位。接下來我們將借助脂多糖誘導的炎性AD小鼠模型,進一步探討GHS-R1a敲除對于該模型小鼠認知功能的影響。
[參考文獻]
[1] SEONG G J, SANG B H, YUNKWON N, et al. Ghrelin in Alzheimers disease: pathologic roles and therapeutic implications[J]. Ageing Research Reviews, 2019,55(10):945-951.
[2] GIL L, SANDRA A N, CHI-AHUMADA E, et al. Perinuc-lear lamin a and nucleoplasmic lamin B2 characterize two types of hippocampal neurons through Alzheimers disease progression[J]. International Journal of Molecular Sciences, 2020,21(5):232-239.
[3] LE DOUCE J, MAUGARD M, JULIEN V, et al. Impairment of glycolysis-derived L-serine production in astrocytes contri-butes to cognitive deficits in Alzheimers disease[J]. Cell Metabolism, 2020,31(3):503-514.
[4] CAP K C, JUNG Y J, CHOI B Y, et al. Distinct dual roles of p-Tyr42 RhoA GTPase in tau phosphorylation and ATP citrate lyase activation upon different Aβ concentrations[J]. Redox Biology, 2020,33:751-759.
[5] GHAHREMANITAMADON F, SHAHIDI S, ZARGOOSHNIA S, et al. Protective effects of Borago officinalis extract on amyloid β-peptide (25-35)-induced memory impairment in male rats: a behavioral study[J]. Bio Med Research International, 2014,1(5):1-8.
[6] PAULA M C, SIMOES A P, RODRIGUES R J, et al. Predominant loss of glutamatergic terminal markers in a β-amyloid peptide model of Alzheimers disease[J]. Neuropharmacology, 2014,76:51-56.
[7] HUANG H J, LIANG K C, CHEN C P, et al. Intrahip-pocampal administration of Aβ1-40 impairs spatial learning and memory in hyperglycemic mice[J]. Neurobiology of Learning and Memory, 2007,87(4):483-494.
[8] ZIGMAN J M, JONES J E, LEE C E, et al. Expression of ghrelin receptor mRNA in the rat and the mouse brain[J]. The Journal of Comparative Neurology, 2006,494(3):528-548.
[9] LANDGREN S, SIMMS J A, THELLE D S, et al. The ghrelin signalling system is involved in the consumption of sweets[J]. PLoS One, 2011,6(3):e18170.
[10] MANI B K, CHUANG J C, KJALARSDOTTIR L, et al. Role of calcium and EPAC in norepinephrine-induced ghrelin secretion[J]. Endocrinology, 2014,155(1):98-107.
[11] COLLDN G, TSCHP M H, MLLER T D. Therapeutic potential of targeting the ghrelin pathway[J]. International Journal of Molecular Sciences, 2017,18(4):101-111.
[12] NAZARI-SERENJEH F, DARBANDI N, MAJIDPOUR S, et al. Ghrelin modulates morphine-nicotine interaction in avoi-dance memory: involvement of CA1 nicotinic receptors[J]. Brain Research, 2019,9:325-332.
[13] MARYAM E, SADEGHI B, GOSHADROU F. Chronic ghrelin administration restores hippocampal long-term potentiation and ameliorates memory impairment in rat model of Alzheimers disease[J]. Hippocampus, 2018,28(10):724-734.
[14] MORAN T H, GAO S. Looking for food in all the right places[J]? Cell Metabolism, 2006,3(4):233-234.
[15] ANDRAS K, MAVRIKAKI M, ULLRICH C, et al. Hip-pocampal dopamine/DRD1 signaling dependent on the ghrelin receptor[J]. Cell, 2015,163(5):1176-1190.
[16] CARVAJAL P, CARLINI V P, SCHITH H B, et al. Central ghrelin increases anxiety in the Open Field test and impairs retention memory in a passive avoidance task in neonatal chicks[J]. Neurobiology of Learning and Memory, 2009,91(4):402-407.
[17] ALBARRAN-ZECKLER R G, BRANTLEY A F, SMITH R G. Growth hormone secretagogue receptor (GHS-R1a) knoc-kout mice exhibit improved spatial memory and deficits in contextual memory[J]. Behavioural Brain Research, 2012,232(1):13-19.
[18] WANG Jing, CHEN Yabing, ZHANG Changliang, et al. Learning and memory deficits and Alzheimers disease-like changes in mice after chronic exposure to microcystin-LR[J]. Journal of Hazardous Materials, 2019,373:504-518.
[19] KING M V, KURIAN N, QIN S, et al. Lentiviral delivery of a vesicular glutamate transporter 1 (VGLUT1)-targeting short hairpin RNA vector into the mouse hippocampus impairs cognition[J]. Neuropsychopharmacology, 2014,39(2):464-476.
[20] VORHEES C V, WILLIAMS M T. Morris water maze: procedures for assessing spatial and related forms of learning and memory[J]. Nature Protocols, 2006,1(2):848-858.
[21] YOSHINO Y, FUNAHASHI Y, NAKATA S, et al. Ghrelin cascade changes in the peripheral blood of Japanese patients with Alzheimers disease[J]. Journal of Psychiatric Research, 2018,107:79-85.
[22] TIAN Jing, GUO Lan, SUI Shaomei, et al. Disrupted hip-pocampal growth hormone secretagogue receptor 1α interaction with dopamine receptor D1 plays a role in Alzheimers disease[J]. Science Translational Medicine, 2019,11(55):505-516.
[23] SONG Ge, ZHU Qian, HAN Fubing, et al. Local infusion of ghrelin into the lateral amygdala blocks extinction of conditioned taste aversion in rats[J]. Neuroscience Letters, 2018,662:71-76.
[24] MASTERS C L, SIMMS G, WEINMAN N A, et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome[J]. Proceedings of the National Academy of Sciences of the United States of America, 1985,82(12):4245-4249.
[25] JUSTIN M L, HOLTZMAN D M. Alzheimer disease: an update on pathobiology and treatment strategies[J]. Cell, 2019,179(2):312-339.
(本文編輯 馬偉平)