劉 羽,周 婧,李柯萍,李欣瑜,王朝元,3,施正香,3,李保明,3
·農(nóng)業(yè)生物環(huán)境與能源工程·
影響靜態(tài)箱檢測(cè)開放式氣體排放源N2O排放通量的關(guān)鍵因子
劉 羽1,2,周 婧1,李柯萍1,李欣瑜1,王朝元1,2,3※,施正香1,2,3,李保明1,2,3
(1. 中國農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,北京 100083;2. 農(nóng)業(yè)農(nóng)村部設(shè)施農(nóng)業(yè)工程重點(diǎn)實(shí)驗(yàn)室,北京 100083;3. 北京市畜禽健康養(yǎng)殖環(huán)境工程技術(shù)研究中心,北京 100083)
為研究影響靜態(tài)箱檢測(cè)開放式氣體排放源氧化亞氮(N2O)排放通量的關(guān)鍵因子,以提高靜態(tài)箱檢測(cè)氣體排放通量的準(zhǔn)確性,該文在實(shí)驗(yàn)室條件下,探究了箱體配置(有無通氣孔、有無風(fēng)扇)和檢測(cè)條件(不同密閉時(shí)間:30、40、50和60 min;不同排放源表面風(fēng)速:0、0.5、1.0、1.5和2.0 m/s)對(duì)300 mm(直徑)×300 mm(高度)(300 mm×300 mm)的靜態(tài)箱檢測(cè)N2O排放通量準(zhǔn)確性的影響規(guī)律。結(jié)果表明,不同配置的靜態(tài)箱測(cè)量結(jié)果偏差率隨時(shí)間的變化趨勢(shì)均相同,其中有通氣孔和風(fēng)扇的箱體在不同風(fēng)速下的檢測(cè)穩(wěn)定性較好,檢測(cè)準(zhǔn)確性最高。當(dāng)排放源表面風(fēng)速為0~2 m/s時(shí),風(fēng)扇對(duì)靜態(tài)箱檢測(cè)準(zhǔn)確性無顯著性影響,排放源表面的風(fēng)主要通過通氣孔影響靜態(tài)箱的檢測(cè)準(zhǔn)確性。靜態(tài)箱檢測(cè)的氣體排放通量與實(shí)際排放通量的偏差率隨排放源表面風(fēng)速和箱體密閉時(shí)間的增加而顯著降低。該試驗(yàn)推薦在排放源表面風(fēng)速小于2 m/s的無糞便堆積的奶牛運(yùn)動(dòng)場(chǎng)以及排放源介質(zhì)相似的開放式氣體排放系統(tǒng)中使用有通氣孔和風(fēng)扇的靜態(tài)箱對(duì)N2O排放通量進(jìn)行檢測(cè),密閉50 min。
排放控制;環(huán)境工程;奶牛運(yùn)動(dòng)場(chǎng);氧化亞氮;排放通量;靜態(tài)箱法
溫室氣體(Greenhouse Gases, GHGs)排放超標(biāo)是造成全球變暖的重要因素,聯(lián)合國糧食及農(nóng)業(yè)組織(Food and Agriculture Organization of the United Nations,F(xiàn)AO)指出,畜牧業(yè)GHGs排放占全球人為GHGs排放的18%[1]。2015年,反芻動(dòng)物(牛、羊)養(yǎng)殖中GHGs排放占中國畜牧業(yè)GHGs排放總量的72.44%,其中養(yǎng)牛業(yè)是主要來源[2]。畜牧業(yè)GHGs主要來源于畜禽腸道CH4和糞便管理過程中產(chǎn)生的CH4和N2O。以2015年的數(shù)據(jù)為基礎(chǔ)分析中國畜牧業(yè)GHGs排放組成,糞便發(fā)酵產(chǎn)生的N2O排放不容忽視,其排放量占GHGs排放總量的18%~23%[3],且溫室效應(yīng)是CO2的298倍[4]。
中國奶牛養(yǎng)殖場(chǎng)通常配有舍外露天運(yùn)動(dòng)場(chǎng),是奶牛飲水、休息和自由活動(dòng)的場(chǎng)地,運(yùn)動(dòng)場(chǎng)上殘留的糞便量大約為總排糞量的50%[5]。發(fā)達(dá)國家雖已對(duì)奶牛場(chǎng)GHGs排放進(jìn)行了長期系統(tǒng)的檢測(cè)[6-7],但由于奶牛養(yǎng)殖模式、設(shè)施類型、糞便管理等方面均存在顯著差異,其數(shù)據(jù)無法直接作為中國奶牛場(chǎng)氣體排放的參考[8]。目前,廣泛應(yīng)用在開放式系統(tǒng)氣體排放檢測(cè)的方法有靜態(tài)箱法、示蹤氣體法和微氣象法等[9-14]。示蹤氣體法和微氣象法不會(huì)影響被測(cè)排放源周圍的微環(huán)境,是檢測(cè)氣體排放量較為理想的方法[15],但其對(duì)環(huán)境的穩(wěn)定性要求較高且操作復(fù)雜,實(shí)際使用難度大。靜態(tài)箱法簡單、經(jīng)濟(jì)、便捷[16-17],因此是現(xiàn)場(chǎng)檢測(cè)GHGs排放量的首選,運(yùn)用廣泛。
靜態(tài)箱法雖然應(yīng)用廣泛,但其形成的密閉環(huán)境容易受檢測(cè)表面的小氣候環(huán)境干擾,且箱體的材料、大小、高度及土壤情況等因素都會(huì)帶來一定的不確定度[18]。王迎紅[19]發(fā)現(xiàn)由于靜態(tài)箱是根據(jù)箱內(nèi)氣體濃度隨時(shí)間的變化率來計(jì)算通量值,土壤-大氣濃度梯度隨時(shí)間降低的變化往往被忽略,從而造成靜態(tài)箱對(duì)實(shí)際排放通量的低估;Ding等[15]以SF6為示蹤氣體研究了不同箱體直徑和高度的圓筒型靜態(tài)箱對(duì)氣體排放通量檢測(cè)準(zhǔn)確性的影響,推薦300 mm(直徑)×300 mm(高度)(D300 mm× H300 mm)的靜態(tài)箱檢測(cè)準(zhǔn)確性最好,并指出有無擾流風(fēng)扇對(duì)靜態(tài)箱檢測(cè)準(zhǔn)確性沒有影響。然而有研究發(fā)現(xiàn)使用靜態(tài)箱檢測(cè)CH4時(shí),不安裝擾流風(fēng)扇,箱內(nèi)氣體不充分混合會(huì)造成排放通量低估;而擾流風(fēng)扇會(huì)改變箱內(nèi)氣體排放源表面的風(fēng)速場(chǎng),可能造成氣體排放通量的高估[20]。由上可知有無擾流風(fēng)扇對(duì)靜態(tài)箱檢測(cè)準(zhǔn)確性的影響因氣體不同而不同,擾流風(fēng)扇對(duì)靜態(tài)箱檢測(cè)N2O的影響還不明確。此外,密閉時(shí)間、通氣口和排放源風(fēng)速等也會(huì)對(duì)靜態(tài)箱檢測(cè)性能產(chǎn)生影響。Davidson等[21]研究發(fā)現(xiàn)靜態(tài)箱的檢測(cè)精度容易受到箱體密閉時(shí)間的影響,檢測(cè)時(shí)需要合理地選擇密閉時(shí)間,并強(qiáng)調(diào)所有靜態(tài)箱應(yīng)裝配適當(dāng)尺寸的通氣孔以平衡封閉環(huán)境的空氣壓力。但是,目前的研究還不能很好的解釋各影響因素對(duì)靜態(tài)箱檢測(cè)精度的具體影響,因此有必要在實(shí)驗(yàn)室條件下對(duì)相應(yīng)因素的影響進(jìn)行系統(tǒng)研究。
本研究在實(shí)驗(yàn)室條件下采用靜態(tài)箱法對(duì)開放式奶牛運(yùn)動(dòng)場(chǎng)模擬系統(tǒng)的氣體排放通量進(jìn)行檢測(cè),研究擾流風(fēng)扇、通氣孔、密閉時(shí)間和風(fēng)速場(chǎng)等4種關(guān)鍵因素對(duì)靜態(tài)箱檢測(cè)氣體排放量準(zhǔn)確性的影響及相關(guān)規(guī)律。以期提高靜態(tài)箱檢測(cè)氣體排放通量的準(zhǔn)確性及其在現(xiàn)場(chǎng)應(yīng)用的可操作性。
本試驗(yàn)選用規(guī)格為D300 mm×H300 mm的圓桶靜態(tài)箱。為探究通氣孔和擾流風(fēng)扇對(duì)N2O排放通量檢測(cè)精度的影響,試驗(yàn)設(shè)置了4種不同配置的靜態(tài)箱,見表1。
表1 靜態(tài)箱配置
靜態(tài)箱的主要材料為有機(jī)玻璃,包含箱體及箱蓋2部分,箱體底部不封口。箱體和蓋子間放置橡膠墊圈并用螺栓連接,以保證氣密性。4種不同配置的靜態(tài)箱僅在箱蓋上有差異,其中有通氣孔和風(fēng)扇箱體設(shè)計(jì)如圖1,箱蓋上設(shè)置進(jìn)氣口和出氣口,位于箱蓋中心的兩側(cè),以連接內(nèi)徑為3 mm的硅膠采樣管和特氟龍采樣管;箱蓋中心上方的位置安裝有機(jī)玻璃制成的T型通氣孔,向下深入箱體20 mm,向上伸出20 mm,頂端向兩邊分別伸出75 mm,通氣孔外徑為2 mm;箱蓋正中心安裝擾流風(fēng)扇,外徑110 mm,由12 V、3 500 r/min的電機(jī)帶動(dòng)旋轉(zhuǎn),轉(zhuǎn)動(dòng)時(shí)箱體底部距底端50 mm處風(fēng)速為1 m/s,風(fēng)扇底部距箱蓋約150 mm。無通氣孔箱體不設(shè)置T型通氣孔,無風(fēng)扇箱體不預(yù)留箱蓋正中心安裝孔,其余部分均與有通氣孔和風(fēng)扇箱體一致。
靜態(tài)箱檢測(cè)系統(tǒng)見圖2。校準(zhǔn)箱由有機(jī)玻璃制成,包括箱體和箱蓋,箱體直徑1 000 mm,高600 mm;為充分混勻箱內(nèi)的氣體,箱體底部中心位置安裝一直徑120 mm,轉(zhuǎn)速2 700 r/min的混合風(fēng)扇。箱體側(cè)面在距離箱體底部100 mm設(shè)置一直徑為3 mm的開口用來連接氣罐,在距離箱體底面200 mm處設(shè)置一直徑為3 mm的開口用來連接氣體檢測(cè)儀。校準(zhǔn)箱蓋直徑1 000 mm,高150 mm;蓋面上設(shè)置孔徑為5 mm的小孔,小孔間距為30 mm,保證氣體擴(kuò)散的均勻性,蓋上鋪設(shè)150 mm厚的石英砂層(孔隙度為35%,密度為2.2 g/cm3),用來模擬真實(shí)情況中的氣體排放介質(zhì)[15]。在中國,素土地面是奶牛運(yùn)動(dòng)場(chǎng)一種典型的地面類型,土壤密度為2.1 g/cm3,孔隙度約為28%~32%[22],與石英砂相似。
1.靜態(tài)箱體 2.橡膠墊圈 3.靜態(tài)箱蓋 4.出氣孔 5.螺栓孔 6.擾流風(fēng)扇 7.進(jìn)氣孔 8.T型通氣孔
1.T型通氣孔 2.靜態(tài)箱出氣孔 3.靜態(tài)箱進(jìn)氣孔 4.電機(jī) 5.靜態(tài)箱 6.石英砂 7.校準(zhǔn)箱蓋 8.校準(zhǔn)箱進(jìn)氣孔 9.校準(zhǔn)箱出氣孔 10.混合風(fēng)扇 11.校準(zhǔn)箱 12.試驗(yàn)臺(tái) 13.多路器 14.氣體分析儀 15.氣瓶 16.風(fēng)向
該試驗(yàn)于中國農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院試驗(yàn)大廳進(jìn)行,利用實(shí)驗(yàn)室的農(nóng)業(yè)通風(fēng)設(shè)備性能檢測(cè)裝置(即“風(fēng)洞”)進(jìn)行風(fēng)速的調(diào)節(jié),以模擬真實(shí)環(huán)境。風(fēng)洞出風(fēng)口寬1 650 mm,高1 600 mm,本試驗(yàn)系統(tǒng)設(shè)置在出風(fēng)口外,測(cè)試結(jié)果表明距出風(fēng)口1~2 m處風(fēng)速較穩(wěn)定,因此將校準(zhǔn)箱放置在出風(fēng)口外1 m處。
為避免人為操作造成對(duì)排放源表面的干擾,在第一次試驗(yàn)前,須提前24 h將靜態(tài)箱插入石英砂50 mm。試驗(yàn)期間箱體不得拔出或移動(dòng),每次試驗(yàn)結(jié)束后將箱蓋緩慢打開排出箱內(nèi)積累的氣體。
試驗(yàn)前,將熱線風(fēng)速儀(KA41L,Kanomax,日本)平架在排放源表面,進(jìn)行風(fēng)速測(cè)量并記錄,調(diào)節(jié)風(fēng)洞的風(fēng)速使其為所需值,使其穩(wěn)定運(yùn)行15 min后開始進(jìn)行試驗(yàn)。試驗(yàn)期間,每隔10 min用熱線風(fēng)速儀對(duì)排放源表面風(fēng)速進(jìn)行檢測(cè),試驗(yàn)過程中保證持續(xù)監(jiān)測(cè)。由于現(xiàn)場(chǎng)的地表風(fēng)速一般在0~2 m/s左右[22],故本試驗(yàn)風(fēng)速梯度設(shè)置為0.0、0.5、1、1.5和2.0 m/s。
試驗(yàn)時(shí)釋放一定量的氣體進(jìn)入擴(kuò)散箱使箱內(nèi)初始N2O氣體濃度達(dá)到90 mg/m3。緩慢蓋上靜態(tài)箱蓋子,擰緊螺絲。用紅外光聲譜氣體檢測(cè)儀(INNOVA 1412i,LumaSense technologies,美國)對(duì)靜態(tài)箱和校準(zhǔn)箱內(nèi)的氣體濃度進(jìn)行采樣測(cè)量,采樣間隔為10 min,連續(xù)監(jiān)測(cè)60 min。試驗(yàn)結(jié)束后將箱蓋輕輕揭開,釋放箱內(nèi)氣體。每組進(jìn)行5次重復(fù)試驗(yàn)。
本試驗(yàn)采用二次多項(xiàng)式模型(簡稱“QR模型”)對(duì)N2O排放通量進(jìn)行計(jì)算。式(1)是靜態(tài)箱內(nèi)排放通量與時(shí)間的關(guān)系式:
式中為靜態(tài)箱內(nèi)測(cè)量所得的N2O氣體濃度,mg/m2;為密閉時(shí)間,min;,,均為系數(shù),將實(shí)際測(cè)得的氣體濃度和密閉時(shí)間反復(fù)帶入,可求得該系數(shù)。
在用二次多項(xiàng)式模型進(jìn)行擬合分析的情況下,靜態(tài)箱內(nèi)氣體的排放通量計(jì)算公式為
式中為一定時(shí)間內(nèi)氣體排放通量,mg/(m2·min);為箱體有效高度,cm。
在不同試驗(yàn)條件下,靜態(tài)箱體的形狀大小、密閉時(shí)間以及土壤的基本情況等條件都不盡相同,且均會(huì)對(duì)試驗(yàn)結(jié)果造成影響。根據(jù)Venterea[23]的研究,引入理論排放通量低估率(Theoretical Flux Underestimation, TFU),在此條件下,靜態(tài)箱實(shí)際排放通量0與靜態(tài)箱計(jì)算排放通量的關(guān)系為
式中0為修正后的一定時(shí)間內(nèi)氣體排放通量,mg/(m2·min);TFU的值與靜態(tài)箱的有效高度、試驗(yàn)時(shí)的密閉時(shí)間及能夠代表土壤狀態(tài)的具體參數(shù)(如總孔隙度、體積含水量、土壤孔徑分布參數(shù)等)有關(guān),為無量綱。
式中,,,為描述理論排放通量低估值與誤差參數(shù)之間關(guān)系的回歸系數(shù),=26.857 5,=?3.566 6,=0.281 4,=0.047 1;為關(guān)于靜態(tài)箱體有效高度及試驗(yàn)時(shí)密閉時(shí)間的系數(shù):
式中為土壤總孔隙度,%;為體積含水率,%;為pH值修正因子,本試驗(yàn)中采用N2O氣體,取值為1;為微量氣體亨利定律氣液分配系數(shù);為空氣中微量氣體差異系數(shù),cm2/h;為土壤的孔徑分布參數(shù),一般采用=13.6CF+3.5來估算,CF為土壤中黏土的比例,(0 校準(zhǔn)箱內(nèi)氣體排放通量計(jì)算方法[24]為 式中c為校準(zhǔn)箱氣體排放通量,mg/(m2·min);c為校準(zhǔn)箱體積,m3;s為石英砂空隙的體積,m3;c為校準(zhǔn)箱排放源面積,m2;c為一定時(shí)間內(nèi)校準(zhǔn)箱氣體濃度變化量,mg/m3;Δc為采樣時(shí)間間隔,min。校準(zhǔn)箱中測(cè)得的N2O排放通量視為N2O排放通量真實(shí)值。 數(shù)據(jù)分析時(shí)去掉5次重復(fù)中的最大值和最小值,剩余3個(gè)有效數(shù)取平均值。試驗(yàn)數(shù)據(jù)通過EXCEL 2016進(jìn)行整理,并采用SPSS 21.0統(tǒng)計(jì)分析軟件分析。 圖3反映了不同配置的靜態(tài)箱在不同排放源表面風(fēng)速和密閉時(shí)間下對(duì)N2O排放通量檢測(cè)的準(zhǔn)確性,由圖3可知4種不同配置的靜態(tài)箱在不同風(fēng)速下檢測(cè)N2O的準(zhǔn)確性變化趨勢(shì)均相同。在試驗(yàn)初期,箱體密閉時(shí)間較短,檢測(cè)氣體的排放通量高于真實(shí)值。這主要是因?yàn)閯偵w上箱蓋時(shí)會(huì)在很大程度上影響排放源表面氣體混合的過程[25],導(dǎo)致箱體有效高度的增加,造成在短時(shí)間內(nèi)密閉箱體內(nèi)氣體排放通量的高估[26]。當(dāng)氣體持續(xù)排放,箱體內(nèi)的氣體濃度達(dá)到一定值時(shí),會(huì)顯著降低N2O的擴(kuò)散和流動(dòng),從而導(dǎo)致氣體的低估[27]。因此使用靜態(tài)箱法檢測(cè)氣體排放通量結(jié)果一般會(huì)先高于真實(shí)值,再低于真實(shí)值。 圖3 靜態(tài)箱檢測(cè)N2O排放通量偏差率隨排放源表面風(fēng)速和密閉時(shí)間的變化 由圖3可知不同配置的靜態(tài)箱在密閉50 min時(shí)檢測(cè)N2O排放通量的準(zhǔn)確性較高。且有通氣孔和風(fēng)扇的箱體在密閉時(shí)間為50 min時(shí)對(duì)N2O的檢測(cè)準(zhǔn)確度最高,比萬云帆等[28]推薦的密閉15~30 min要長,這是由于本試驗(yàn)所選用的靜態(tài)箱有通氣孔來平衡箱體內(nèi)外的氣壓,延長了靜態(tài)箱的檢測(cè)時(shí)長[22]。 表2反映了不同配置的靜態(tài)箱密閉50 min檢測(cè)N2O排放通量的準(zhǔn)確性受排放源表面風(fēng)速的影響。在0~2 m/s風(fēng)速下,無通氣孔和風(fēng)扇靜態(tài)箱、有通氣孔無風(fēng)扇靜態(tài)箱、無通氣孔有風(fēng)扇靜態(tài)箱及有通氣孔和風(fēng)扇靜態(tài)箱的檢測(cè)偏差率分別為1.02%~?29.06%、12.29%~?47.92%、?9.71%~?40.92%和4.42%~?25.64%。無通氣孔和風(fēng)扇靜態(tài)箱在排放源表面風(fēng)速為0的情況下測(cè)得的N2O排放通量的準(zhǔn)確性顯著高于其他風(fēng)速條件下的結(jié)果(<0.05),其他風(fēng)速下測(cè)得的結(jié)果之間無顯著差異(>0.05)。Bain等[27]在用靜態(tài)箱法測(cè)定氣體排放量時(shí),土壤氣體的排放通量會(huì)隨著外界環(huán)境風(fēng)壓的增高而增大。無通氣孔和風(fēng)扇靜態(tài)箱在沒有任何調(diào)控內(nèi)環(huán)境措施的條件下,箱內(nèi)氣體排放通量受排放源風(fēng)速的影響小,箱外氣體排放通量隨風(fēng)速的增大而增大,從而使該靜態(tài)箱隨著風(fēng)速的增加越來越低估N2O的排放通量。有通氣孔無風(fēng)扇靜態(tài)箱在排放源表面風(fēng)速為1.5和2.0 m/s條件下測(cè)得的N2O排放通量的準(zhǔn)確性顯著低于其他3個(gè)風(fēng)速條件下的結(jié)果(<0.05)。通氣孔通過平衡箱體內(nèi)外的壓差來改善箱體的檢測(cè)性能,當(dāng)外界風(fēng)速通過通氣孔產(chǎn)生文丘里效應(yīng),使箱內(nèi)的氣體不斷逸出[27],靜態(tài)箱下部氣體向上補(bǔ)充,并加快校準(zhǔn)箱氣體排入靜態(tài)箱,從而使靜態(tài)箱檢測(cè)結(jié)果出現(xiàn)高估。但隨著風(fēng)速的增大,氣體從靜態(tài)箱更快地逸出,重復(fù)上述過程,并隨著檢測(cè)時(shí)間的增長,靜態(tài)箱和校準(zhǔn)箱之間的氣體濃度差越來越小,校準(zhǔn)箱進(jìn)入靜態(tài)箱的氣體減少,但靜態(tài)箱的逸出過程仍在繼續(xù),靜態(tài)箱內(nèi)氣體濃度降低,從而使靜態(tài)箱的檢測(cè)結(jié)果出現(xiàn)低估,并隨著風(fēng)速的提高而增大。Hutchinson等[25]表明,當(dāng)環(huán)境中的溫度、氣壓以及箱體體積不變的時(shí)候,由于氣體擴(kuò)散使從通氣孔泄漏的氣體通量小于總通量的0.04%,但在外界有風(fēng)的情況下則會(huì)由于氣壓的變化而導(dǎo)致泄漏氣體通量大幅度增加。除表面風(fēng)速為2.0 m/s的情況,有通氣孔和風(fēng)扇靜態(tài)箱在其他各個(gè)風(fēng)速條件下的檢測(cè)N2O排放通量偏差率均無顯著差異(>0.05),說明該箱體的檢測(cè)穩(wěn)定性較好。且有通氣孔和風(fēng)扇靜態(tài)箱的檢測(cè)準(zhǔn)確性顯著高于無通氣孔有風(fēng)扇靜態(tài)箱(<0.05)。擾流風(fēng)扇的使用會(huì)加快靜態(tài)箱內(nèi)氣體的均勻混合,提高靜態(tài)箱的檢測(cè)準(zhǔn)確性,并縮短檢測(cè)時(shí)間[22]。Christiansen等[20]發(fā)現(xiàn)擾流風(fēng)扇的風(fēng)速不改變氣體從排放源擴(kuò)散的流速,但無擾流風(fēng)扇的箱體會(huì)造成36%的低估。 表2 不同配置靜態(tài)箱密閉50 min時(shí)不同排放源表面風(fēng)速下的偏差率 注:同一靜態(tài)箱中不同小寫字母表示不同排放源表面風(fēng)速下偏差率在0.05 水平差異顯著。 Note: Different letters in same closed chamber indicate there are significant differences at 0.05 level among deviation rates under different emission surface wind speeds. 表3為密閉時(shí)間及排放源表面風(fēng)速對(duì)偏差率的主效應(yīng)分析以及2個(gè)影響因素之間的交互性分析,其中密閉時(shí)長為0~60 min,排放源表面風(fēng)速為0~2 m/s。排放源表面風(fēng)速和密閉時(shí)間是影響偏差率的主效應(yīng),且效應(yīng)顯著(<0.05),排放源表面風(fēng)速和密閉時(shí)間的交互作用對(duì)靜態(tài)箱檢測(cè)N2O排放通量準(zhǔn)確性的影響不顯著(>0.05)。 表3 密閉時(shí)間及排放源表面風(fēng)速對(duì)靜態(tài)箱檢測(cè)準(zhǔn)確性的主效應(yīng)分析 密閉時(shí)間會(huì)影響箱體內(nèi)部的微環(huán)境,從而對(duì)檢測(cè)性能造成影響。研究表明,密閉時(shí)間受靜態(tài)箱配置的影響[29-30],如箱體的有效高度、有無風(fēng)扇和通氣孔的配置等[27]。排放源表面風(fēng)會(huì)影響插入排放源的箱體底部表面氣體的流動(dòng)和進(jìn)出。有風(fēng)的情況下,排放源中的N2O會(huì)被逸出,導(dǎo)致排放源的氣體濃度變低,特別是當(dāng)排放源的濕度較低時(shí)[22]。而本試驗(yàn)采用的是濕度較低的石英砂,因此更易受到風(fēng)速的影響。 根據(jù)密閉時(shí)間和排放源表面風(fēng)速對(duì)靜態(tài)箱檢測(cè)偏差率影響的相關(guān)性分析可知密閉時(shí)間與靜態(tài)箱檢測(cè)偏差率顯著負(fù)相關(guān)(<0.05),隨著靜態(tài)箱密閉時(shí)間的增加,靜態(tài)箱檢測(cè)氣體排放通量的偏差率減小,與前人研究結(jié)論一致[22]。排放源表面風(fēng)速與檢測(cè)偏差率也呈顯著負(fù)相關(guān)(<0.05),但有研究表明該因素與無通氣孔靜態(tài)箱的檢測(cè)性能無相關(guān)性[22],與本文結(jié)論相反,這說明排放源表面風(fēng)速主要通過通氣孔來影響靜態(tài)箱的檢測(cè)性能。 通過以上不同箱體在不同試驗(yàn)條件下的檢測(cè)結(jié)果分析,本試驗(yàn)推薦使用有通氣孔和風(fēng)扇的靜態(tài)箱對(duì)N2O排放通量進(jìn)行檢測(cè),密閉時(shí)間為50 min,排放源表面風(fēng)速小于2 m/s。牛糞是一種復(fù)雜的多孔介質(zhì),新鮮牛糞的濕度可達(dá)84%[31]。奶牛運(yùn)動(dòng)場(chǎng)部分區(qū)域由于牛糞的堆積,孔隙度和濕度均比試驗(yàn)用石英砂高。高孔隙度會(huì)增大表面風(fēng)速對(duì)排放源的影響,使靜態(tài)箱檢測(cè)氣體排放通量的低估率增加[32];而高濕度可以減少箱體內(nèi)正壓的影響,從而減小靜態(tài)箱的低估率[33]。牛糞特性對(duì)靜態(tài)箱檢測(cè)奶牛運(yùn)動(dòng)場(chǎng)氣體排放通量準(zhǔn)確性的影響還需要進(jìn)一步研究。 通過在實(shí)驗(yàn)室模擬奶牛場(chǎng)開放式氣體排放源,研究了靜態(tài)箱配置、箱體密閉時(shí)間以及排放源表面風(fēng)速對(duì)靜態(tài)箱檢測(cè)N2O排放通量準(zhǔn)確性的影響。主要得出以下結(jié)論: 1)不同配置的箱體測(cè)量結(jié)果偏差率隨時(shí)間的變化趨勢(shì)均相同,其中有通氣孔和風(fēng)扇的箱體在不同風(fēng)速下的檢測(cè)穩(wěn)定性較好,檢測(cè)準(zhǔn)確性最高。 2)當(dāng)排放源表面風(fēng)速為0~2 m/s時(shí),風(fēng)扇對(duì)靜態(tài)箱檢測(cè)準(zhǔn)確性無顯著性影響,風(fēng)速主要通過通氣孔來影響靜態(tài)箱的檢測(cè)準(zhǔn)確性。 3)靜態(tài)箱檢測(cè)的氣體排放通量與實(shí)際排放通量的偏差率隨排放源表面風(fēng)速和箱體密閉時(shí)間的增加而降低。 4)推薦在無糞便堆積的奶牛運(yùn)動(dòng)場(chǎng)以及排放源介質(zhì)相似的開放式氣體排放系統(tǒng)中使用300 mm×300 mm有通氣孔和風(fēng)扇的靜態(tài)箱對(duì)N2O排放通量進(jìn)行檢測(cè),排放源表面風(fēng)速小于2 m/s時(shí),密閉時(shí)間為50 min。 [1] Steinfeld H, Gerber P, Wassenaar T, et al. Livestock’s long shadow[M]. Rome, Italy: FAO, 2006: 97-110. [2] 郭嬌,齊德生,張妮婭,等. 中國畜牧業(yè)溫室氣體排放現(xiàn)狀及峰值預(yù)測(cè)[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2017,36(10):2106-2113. ,i,hang,. Chinese greenhouse gas emissions from livestock: Trend and predicted peak value[J]. Journal of Agro-Environment Science, 2017, 36(10): 2106-2113. (in Chinese with English abstract) [3] IPCC. In climate change 2013: The Physical Science Basis[M]. New York: Contribution of Working Group I. Cambridge University Press, 2013. [4] Portmann R W, Daniel J S, Ravishankara A R. Stratospheric ozone depletion due to nitrous oxide: Influences of other gases[J]. Philosophical Transactions of the Royal Society, 2012, 367: 1256-1264. [5] 袁慧軍,高志嶺,馬文奇,等. 應(yīng)用反演式氣體擴(kuò)散技術(shù)測(cè)定奶牛場(chǎng)甲烷的排放特征[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2011,30(4):746-752. Yuan Huijun, Gao Zhiling, Ma Wenqi, et al. Determination of methane emissions from a dairy feedlot using an inverse dispersion technique[J]. Journal of Agro-Environment Science, 2011, 30(4): 746-752. (in Chinese with English abstract) [6] Leytem A B, Dungan R S, Bjorneberg D L, et al. Emissions of ammonia, methane, carbon dioxide, and nitrous oxide from dairy cattle housing and manure management systems[J]. Journal of Environment Quality, 2011, 40(5): 1383-1394. [7] Borhan M S, Capareda C S, Mukhtar S, et al. Greenhouse gas emissions from ground level area sources in dairy and cattle feed yard operations[J]. Atmosphere, 2011, 2: 303-329. [8] 劉羽,劉婕,王朝元,等. 規(guī)模奶牛養(yǎng)殖室外運(yùn)動(dòng)場(chǎng)春季溫室氣體與氨氣排放特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(22):178-184. Liu Yu, Liu Jie, Wang Chaoyuan, et al. Emission characteristic of greenhouse gases and ammonia from open lot of scale dairy farm in spring[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 178-184. (in Chinese with English abstract) [9] Laubach J, Bai M, Pinares-Patino C S, et al. Accuracy of micrometeorological techniques for detecting a change in methane emissions from a herd of cattle[J]. Agricultural and Forest Meteorology, 2013, 17(6): 50-63. [10] Lovanh N, Warren J, and Sistani K. Determination of ammonia and greenhouse gas emissions from land application of swine slurry: A comparison of three application methods[J]. Bioresource Technology, 2010, 101(6): 1662-1667. [11] McGinn S M, Turner D, Tomkins N, et al. Methane emissions from grazing cattle using point-source dispersion[J]. Journal of Environmental Quality, 2011, 40(1): 22-27. [12] Misselbrook T H, Webb J, Chadwick D R, et al. Gaseous emissions from outdoor concrete yards used by livestock[J]. Atmospheric Environment, 2001, 35(31): 5331-5338. [13] Spiehs M J, Whitney M H, et al. Oder and gas missions and nutrient excretion from pigs fed diets containing dried distiller grains with soluble[J]. Applied Engineering in Agriculture, 2012, 28(3): 431-437. [14] Uggetti E, García J, Lind S E, et al. Quantification of greenhouse gas emissions from sludge treatment we[J]. Water Resource, 2012, 46(6): 1755-1762. [15] Ding L Y, Wang C Y, Lu Q K, et al. Effects of configuration and headspace mixing on the accuracy of flux chambers for dairy farm gas emission measurement[J]. Applied Engineering in Agriculture, 2015, 31(1): 153-162. [16] Blackmer A M, and Bremner J M. Gas chromatographic analysis of soil atmospheres[J]. Soil Science Society of America Journal, 1977, 41(5): 908-912. [17] Jukka P, Pasi K, Hannu I, et al. Comparison of different chamber techniques for measuring soil CO2efflux[J]. Agricultural and Forest Meteorology, 2004, 123(3): 159-176. [18] Denmead O T. Approaches to measuring fluxes of methane and nitrous oxide between landscapes and the atmosphere[J]. Plant and Soil, 2008, 309(1/2): 5-24. [19] 王迎紅. 陸地生態(tài)系統(tǒng)溫室氣體排放觀測(cè)方法研究、應(yīng)用及結(jié)果比對(duì)分析[D]. 北京:中國科學(xué)院,2005. Wang Yinghong. Chamber Method Measurement of Greenhouse Gas Emissions from Typical Terrestrial Ecosystems of China: Method Research, Application and Results Discussion[D]. Beijing: Chinese Academy of Science, 2005. (in Chinese with English abstract) [20] Christiansen J R, Korhonen J F, Juszczak R, et al. Assessing the effects of chamber placement, manual sampling and headspace mixing on CH4fluxes in a laboratory experiment[J]. Plant Soil, 2011, 343(1/2): 171-185. [21] Davidson E A, Savagea K, Verchot L V, et al. Minimizing artifacts and biases in chamber-based measurements of soil respiration[J]. Agricultural and Forest Meteorology, 2002, 113: 21-37. [22] Liu Y, Wang C Y, Ding L Y, et al. Influence of deployment time and surface wind speed on the accuracy of measurements of greenhouse gas fluxes using a closed chamber method under low surface wind speed[J]. Journal of the Air & Waste Management Association, 2018, 69(2): 1-11. [23] Venterea R T. Simplified method for quantifying theoretical underestimation of chamber-based trace gas fluxes[J].Journal of Environmental Quality, 2010, 39(1), 126-135. [24] Butterbach-Bahl K, Kiese R, and Liu C Y. Measurements of biosphere-atmosphere exchange of CH4in terrestrial ecosystems[J]. Methods in Enzymology, 2011, 495: 271-287. [25] Hutchinson G L, Livingston G P, Healy R W, et al. Chamber measurements of surface-atmosphere trace gas exchange: Numerical evaluation of dependence of soil, interfacial layer, and source/sink properties[J]. Journal of Geophysical Research-Atmospheres, 2000, 105: 8865-8875. [26] Rachhpal S J, Black T A, Nesic Z, et al. Using automated non-steady-state chamber systems for making continuous long-term measurements of soil CO2efflux in forest ecosystems[J]. Agricultural and Forest Meteorology, 2012, 161: 57-65. [27] Bain W G, Hutyra L, Patterson D C, et al. Wind-induced error in the measurement of soil respiration using closed dynamic chambers[J]. Agricultural and Forest Meteorology, 2005, 131: 225-232. [28] 萬運(yùn)帆,李玉娥,林而達(dá),等. 靜態(tài)箱法測(cè)定旱地農(nóng)田溫室氣體時(shí)密閉時(shí)間的研究[J]. 中國農(nóng)業(yè)氣象,2006,27(2):122-124. Wan Yunfan, Li Yu’e, Lin Erda, et al. Studies on closing time in measuring greenhouse gas emission from dry cropland by static chamber method[J]. Chinese Journal of Agrometeorology, 2006, 27(2): 122-124. (in Chinese with English abstract) [29] Reichman R, and Rolston D E. Design and performance of a dynamic gas flux chamber[J]. Journal of Environmental Quality, 2002, 31: 1774-1781. [30] Gao F, Yates S R. Simulation of enclosure-based methods for measuring gas emissions from soil to the atmosphere[J]. Journal of Geophysical Research, 1998, 103: 26127-26136. [31] Ding L, Lu Q K, Wang C Y, et al. Effects of configuration and headspace mixing on the accuracy of flux chambers for dairy farm gas emission measurement[J]. Applied Engineering in Agriculture, 2015, 31(1): 153-162. [32] Lai D Y F, Roulet N T, Humphreys E R, et al. The effect of atmospheric turbulence and chamber deployment period on autochamber CO2and CH4flux measurements in an ombrotrophic peatland[J]. Biogeosciences Discussions, 2012, 9(2): 1439-1482. [33] Lund C P, Riley W J, Pierce L L, et al. The effects of chamber pressurization on soil-surface CO2flux, and the implications for NEE measurements under elevated CO2[J]. Global Change Biology, 1999, 5: 269-281. Key factors affecting the measurement of N2O emission from dairy farm using static-chamber method Liu Yu1,2, Zhou Jing1, Li Keping1, Li Xinyu1, Wang Chaoyuan1,2,3※, Shi Zhengxiang1,2,3, Li Baoming1,2,3 (1.100083,; 2.100083,; 3.100083,) Open gas emission sources, such as open dairy lot and manure stockpile, are still challenge to directly measure the gas emissions, due to their fully open nature and the relatively low flux of gas emission, particularly interfering by other emissions sources, such as barns and animals. The detection accuracy of the commonly used closed-chamber method depends on the chamber configuration and the different external environment. Four key parameters were evaluated, including the disturbing fan, vent holes, surface wind speed of emission (0.0, 0.5, 1.0, 1.5, and 2.0 m/s) and deployment time (0 to 60 min) in the 300 mm (diameter) × 300 mm (height) (300×300) closed chamber using nitrous oxide (N2O) as reference gas. The experiment was carried out in a wind tunnel to adjust the wind speed in order to simulate the real environment of open dairy lots. A calibration system was designed to generate a reference flux, and the accuracy of chamber performance was defined based on the difference between the reference fluxes and the calculated fluxes in the closed chamber. The results showed that the deviation rates have the similar trends during the deployment time in the closed chambers with different configurations. The flux of gas emission that measured by the closed chamber was higher at the beginning of process, and then lower compared with that of the reference flux. The measurement accuracy of the closed chamber reached the maximum when the deployment time was 50 min, where the deviation rate of the closed chamber without the disturbing fan and vent was 1.02%-?29.06%, 12.29%-?47.92% without the disturbing fan and with the vent, ?9.71%-?40.92% with the disturbing fan and without the vent, and 4.42%-?25.64% with the disturbing fan and vent. There was no significant difference in the deviation rates of the detected N2O emission fluxes under different wind speeds (>0.05) using the closed chamber with the disturbing fan and with/without vent, indicating these two types of chambers have better detection stability. However, the measurement accuracy of the D300 mm×H300 mm closed chamber with the disturbing fan and vent was significantly higher than that with the fan and without vent (<0.05). When the emission speed of surface wind was 0-2 m/s, the disturbing fan had no significant influence on the measurement accuracy of the closed chamber (>0.05), indicating the emission surface wind was affected by the Venturi effect through the vent. Both the deployment time and emission surface wind speed had significant negative correlation on the deviation rate of the closed chambers (<0.05). However, the correlation between the deployment time and emission surface wind speed was not obvious (>0.05). This study recommends to use a D300 mm×H300 mm closed chamber with the disturbing fan and vent to detect the N2O emission flux in an open gas emission system, such as dairy open lots without manure and emission sources with similar media, with the speed of emission surface wind less than 2 m/s, and the deployment time of 50 min. emission control; environmental engineering; dairy open lot; nitrogen oxide; emission flux; closed chamber method 10.11975/j.issn.1002-6819.2020.08.022 S815.4 A 1002-6819(2020)-08-0182-06 劉羽,周婧,李柯萍,等. 影響靜態(tài)箱檢測(cè)開放式氣體排放源N2O排放通量的關(guān)鍵因子[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(8):182-187.doi:10.11975/j.issn.1002-6819.2020.08.022 http://www.tcsae.org Liu Yu, Zhou Jing, Li Keping, et al. Key factors affecting the measurement of N2O emission from dairy farm using static-chamber method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(8): 182-187. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.08.022 http://www.tcsae.org 2019-12-29 2020-03-07 國家自然科學(xué)基金(31472132);北京市大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃(2018bj102);國家奶牛產(chǎn)業(yè)技術(shù)體系(CARS-36) 劉羽,博士生,研究方向?yàn)樵O(shè)施畜禽養(yǎng)殖環(huán)境與控制。Email:xiaohaizhibei@cau.edu.cn 王朝元,教授,博士生導(dǎo)師,研究方向?yàn)樵O(shè)施畜禽養(yǎng)殖過程控制與環(huán)境。Email:gotowchy@cau.edu.cn 中國農(nóng)業(yè)工程學(xué)會(huì)高級(jí)會(huì)員:王朝元(E041200616S)1.5 數(shù)據(jù)分析
2 結(jié)果與分析
2.1 不同配置對(duì)箱體性能的影響
2.2 風(fēng)速對(duì)箱體性能的影響
2.3 密閉時(shí)間與表面風(fēng)速對(duì)靜態(tài)箱檢測(cè)氣體排放通量準(zhǔn)確度的影響
3 結(jié) 論