韓楊 羅海霞 馬春驥 金華 李敏 郝秀靜
摘要:運(yùn)用生物信息學(xué)方法對(duì)牛支原體(Mycoplasma bovis)和無(wú)乳支原體(Mycoplasma agalactiae)的相似性進(jìn)行多重比對(duì)分析。使用Mega 7、Clustal a、Sibeilia等生物信息學(xué)軟件對(duì)M.bovis與M.agalactiae的全基因組、16S rRNA、脂蛋白家族進(jìn)行相似性比對(duì)分析。通過(guò)多重比對(duì)發(fā)現(xiàn),M.bovis與M.agalactiae在全基因、16S rRNA、以及脂蛋白家族方面均表現(xiàn)出較高的相似性。
關(guān)鍵詞:牛支原體;無(wú)乳支原體;全基因組比對(duì)分析
中圖分類號(hào):S858.236.3文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):1000-4440(2020)02-0398-06
Abstract: This study aims to conduct multiple comparative analysis on the similarity of Mycoplasma bovis ?and Mycoplasma agalactiae with the method of bioinformatics. M.bovis and M. agalactiae were compared for similarity in their whole genome, 16S rRNA, and lipoprotein families using bioinformatics softwares such as Mega 7, Clustal a and Sibeilia. Through the multiple alignment, M.bovis and M.agalactiae showed higher similarity in terms of whole gene, 16S rRNA and lipoprotein family.
Key words:Mycoplasma bovis;Mycoplasma agalactiae;whole genome alignment analysis
支原體為自然界中獨(dú)立生存的最小原核微生物,擁有能夠進(jìn)行自我復(fù)制的最小基因組[1]。支原體能攻擊宿主細(xì)胞,引起宿主細(xì)胞的免疫反應(yīng)并損害宿主細(xì)胞,以便在宿主細(xì)胞內(nèi)生長(zhǎng)繁殖[2]。牛支原體(Mycoplasma bovis)是一種主要感染牛呼吸道的病原體[3],能夠持續(xù)感染宿主[4],并引發(fā)包括牛肺炎在內(nèi)的多種慢性疾病[5],如乳腺炎、中耳炎、生殖障礙、關(guān)節(jié)炎[6]、腦膜炎以及角膜結(jié)膜炎等[7]。M.bovis與無(wú)乳支原體(Mycoplasma agalactiae)在16S rRNA序列上有較高的相似性[8-11]。M.agalactiae也可以感染牛,并引發(fā)乳腺炎、角膜結(jié)膜炎和關(guān)節(jié)炎等疾病[12],但主要會(huì)引起小型反芻動(dòng)物的“傳染性無(wú)乳癥”(CA)綜合征[13]。所以在特異性檢測(cè)病原[14]甚至是根據(jù)特定的病原研制疫苗[15]預(yù)防疫病時(shí)就需要對(duì)二者進(jìn)行精準(zhǔn)區(qū)分[16]。為此我們擬通過(guò)對(duì)M.bovis與M.agalactiae的全基因組序列比對(duì),探究二者在基因組層面的相似性,尋找兩者獨(dú)特的基因,為M.bovis快速檢測(cè)方法研究奠定基礎(chǔ),為鑒定物種特異性提供更有效的證據(jù)。此外,我們還想探究二者分離株在16S rRNA上的親緣關(guān)系,以及主要毒力因子膜表面脂蛋白家族的相似性。
1材料與方法
1.1材料來(lái)源
從美國(guó)國(guó)立生物技術(shù)信息中心(National Center for Biotechnology Information, NCBI)中找到牛支原體(Mycoplasma bovis)與無(wú)乳支原體(Mycoplasma agalactiae)的全基因組序列。
1.2統(tǒng)計(jì)分析
運(yùn)用生物信息學(xué)軟件Mega 7構(gòu)建M.bovis與M.agalactiae的16S rRNA、膜表面脂蛋白家族的系統(tǒng)進(jìn)化樹,用Clustal w進(jìn)行多重序列比對(duì),用OrthoMCL v2.0.3對(duì)M.bovis(GenBank:CP002188.1)與M.agalactiae(GenBank:CU179680.1)的全基因組編碼的氨基酸序列進(jìn)行比對(duì)(由北京基華生物技術(shù)服務(wù)有限公司進(jìn)行)。使用OAT-ANI軟件對(duì)M.bovis與M.agalactiae進(jìn)行全基因組共線性分析。
2結(jié)果
2.1M.bovis與M.agalactiae的基因組共線性
運(yùn)用生物信息學(xué)軟件Sibelia對(duì)M.bovis的標(biāo)準(zhǔn)株P(guān)G45與M.agalactiae的標(biāo)準(zhǔn)株P(guān)G2進(jìn)行全基因組共線性分析。由共線性圓形圖(圖1)可以發(fā)現(xiàn),PG45與PG2之間有4個(gè)位置的基因具有共線性關(guān)系,說(shuō)明M.bovis與M.agalactiae的標(biāo)準(zhǔn)株具有一定的相似性。
在M.bovis與M.agalactiae標(biāo)準(zhǔn)株表現(xiàn)出共線性的前提下,對(duì)M.bovis標(biāo)準(zhǔn)株P(guān)G45與M.agalactiae分離株5632進(jìn)行全基因組共線性分析(圖2),對(duì)M.bovis分離株Ningxia-1與M.agalactiae分離株5632也進(jìn)行了全基因組共線性分析(圖3)。結(jié)果表明M.bovis與M.agalactiae不僅在標(biāo)準(zhǔn)株中具有共線性關(guān)系,在分離株中同樣存在共線性關(guān)系,說(shuō)明二者在基因組共線性層面上具有相似性。
2.2M.bovis與M.agalactiae的全基因組比對(duì)分析
采用OrthoMCL v2.0.3軟件對(duì)M.bovis(GenBank:CP002188.1)與M.agalactiae(GenBank:CU179680.1)的全基因組編碼的氨基酸序列進(jìn)行比對(duì),選取閾值(BLASTP E值不大于1×10-5,MCL_INFLATION值=1.5)進(jìn)行相似性聚類,獲得同源基因的列表,以確定M.bovis與M.agalactiae的同源性。
比對(duì)結(jié)果顯示, M.bovis與M.agalactiae之間共有基因家族472個(gè)。使用MUSCLE v3.7軟件(http://www.ebi.ac.uk/Tools/msa/muscle/)將每個(gè)單拷貝基因家族中各成員進(jìn)行全序列比對(duì)。結(jié)果(圖4)表明,牛支原體(M.bovis)特有基因數(shù)量為285,無(wú)乳支原體(M.agalactiae)特有基因數(shù)量為279,牛支原體與無(wú)乳支原體共有的基因家族數(shù)量為472。M.bovis與M.agalactiae共有的基因家族高達(dá)472個(gè),說(shuō)明二者具有較高的相似性和較近的親緣關(guān)系。
為了進(jìn)一步探究M.bovis與M.agalactiae在基因組層面的相似性,使用生物信息學(xué)軟件Jspecies對(duì)M.bovis與M.agalactiae進(jìn)行全基因組平均核苷酸序列同源(ANI)分析。平均核苷酸序列同源性是通過(guò)比較物種全基因組同源基序列判定物種間遺傳關(guān)聯(lián)性的重要參數(shù)。對(duì)M.bovis及M.agalactiae全基因組序列比對(duì)分析后得到的ANI值高達(dá)83.08%,再次說(shuō)明M.bovis與M.agalactiae具有較高的相似性。
2.3支原體16S rRNA系統(tǒng)進(jìn)化樹
在NCBI中找到M.bovis標(biāo)準(zhǔn)株P(guān)G45和M.agalactiae標(biāo)準(zhǔn)株P(guān)G2的16S rRNA堿基序列,并運(yùn)用生物信息學(xué)軟件Clustal w對(duì)二者進(jìn)行多重序列比對(duì)(圖5),發(fā)現(xiàn)相似性高達(dá)97%。由于二者16S rRNA堿基序列相似度過(guò)高,為了探究M.bovis與M.agalactiae間的親緣關(guān)系,在NCBI中找到較常見的11種支原體16S rRNA堿基序列,并找到NCBI中M.bovis與M.agalactiae其余分離株的16S rRNA堿基序列,使用生物信息學(xué)軟件MAGA 7構(gòu)建系統(tǒng)進(jìn)化樹(圖6),由進(jìn)化樹可以看到M.bovis與M.agalactiae無(wú)論標(biāo)準(zhǔn)株還是分離株,均位于同一分枝上,且親緣關(guān)系較近。
2.4M.bovis與M.agalactiae的16S rRNA相似性
對(duì)16S rRNA進(jìn)行生物信息學(xué)分析后,使用引物設(shè)計(jì)軟件Primer Premier 5隨機(jī)對(duì)M.bovis的16S rRNA堿基序列設(shè)計(jì)4對(duì)引物,同時(shí)以M.bovis與M.agalactiae基因組DNA為模板進(jìn)行PCR擴(kuò)增。結(jié)果(圖7)顯示,M.bovis與M.agalactiae均擴(kuò)增出明亮的目的條帶,再次證明二者在16S rRNA層面的相似性。
2.5M.bovis與M.agalactiae表面可變脂蛋白家族進(jìn)化樹
在NCBI中找到M.bovis與M.agalactiae的表面可變脂蛋白家族的基因序列,運(yùn)用生物信息學(xué)軟件MAGA 7構(gòu)建M.bovis與M.agalactiae表面可變脂蛋白家族的進(jìn)化樹。結(jié)果(圖8)顯示,M.bovis的Vsps家族可細(xì)分為3個(gè)亞類,M.agalactiae的Vpma家族與其中一類的親緣距離較近,表面可變脂蛋白家族進(jìn)化的層面上說(shuō)明M.bovis與M.agalactiae的親緣關(guān)系較近。運(yùn)用生物信息學(xué)軟件Clustal w,在M.bovis與M.agalactiae的表面可變脂蛋白家族中相似性較高的多條序列中,各選擇2條進(jìn)行多重序列比對(duì)(圖9),發(fā)現(xiàn)M.bovis與M.agalactiae也顯示出相似性。說(shuō)明M.bovis與M.agalactiae不僅在16S rRNA堿基序列上相似,在與感染致病相關(guān)的高度變異的表面可變脂蛋白方面上也表現(xiàn)出相似性。
3討論
支原體會(huì)感染人類[17-19]和動(dòng)物[20-22],而且往往難以根除[23]。雖然治療支原體病具有較大的社會(huì)經(jīng)濟(jì)意義[24],但由于缺乏對(duì)支原體致病機(jī)制[25]的認(rèn)識(shí),目前正確預(yù)防并控制支原體病疫情還未成系統(tǒng)。牛支原體病的高傳染性和低治愈率[26]對(duì)中國(guó)牛養(yǎng)殖業(yè)的健康發(fā)展造成了巨大威脅,作為寧夏回族自治區(qū)農(nóng)業(yè)特色優(yōu)勢(shì)產(chǎn)業(yè)之一的牛養(yǎng)殖業(yè)[27],同樣受到該病的潛在威脅[28]。本課題組在建立M.bovis的快速檢測(cè)方法時(shí),篩查特異性基因的過(guò)程中發(fā)現(xiàn)M.agalactiae和M.bovis具有極高的相似性。所以本研究運(yùn)用生物信息學(xué)軟件分析了M.bovis和M.agalactiae的相似性,這對(duì)M.bovis快速檢測(cè)方法的建立具有實(shí)際意義。
全基因組序列比較結(jié)果表明M.bovis與M.agalactiae共有的基因家族高達(dá)472個(gè),占全基因組的2/3。M.bovis與M.agalactiae的ANI值高達(dá)83.08%,二者分屬于不同種的支原體,但相似性之高顯而易見。16S rRNA堿基序列比對(duì)以及進(jìn)化樹分析結(jié)果也揭示了M.agalactiae和M.bovis在16S rRNA堿基序列上的相似性。表面可變脂蛋白家族為支原體主要的毒力因子[29]。氨基酸序列比對(duì)結(jié)果顯示, M. agalactiae的Vpma與M.bovis的Vsp具有高度的氨基酸序列相似性。表面可變脂蛋白家族進(jìn)化樹顯示,Vpma家族與Vsp家族中的一類親緣距離較近。對(duì)Vsp家族和Vpma家族的相似性分析不僅可以在表面可變脂蛋白家族的層面上驗(yàn)證M.bovis與M.agalactiae的相似性,也可以探究M.agalactiae的致病機(jī)制。M.bovis的Vsp蛋白已被證明參與宿主細(xì)胞粘附[30],但是關(guān)于M.agalactiae Vpma蛋白的確切功能未見報(bào)道。通過(guò)Vsp家族和Vpma家族的相似性分析,或許可以推測(cè)M.agalactiae的Vpma蛋白也參與宿主細(xì)胞粘附[31]。多方面比對(duì)結(jié)果都表明M.bovis與M.agalactiae具有較高的同源性,所以在建立檢測(cè)方法時(shí)要將二者進(jìn)行區(qū)分[32]。
參考文獻(xiàn):
[1]HEGDE S, ZIMMERMANN M, ROSENGARTEN R, et al. Novel role of Vpmas as major adhesins of Mycoplasma agalactiae mediating differential cell adhesion and invasion of Vpma expression variants[J]. International Journal of Medical Microbiology Ijmm, 2018, 308(2): 263.
[2]ERIC B, DOMINIQUE B, EVELINE S, et al. Experimental infections with Mycoplasma agalactiae identify key factors involved in host-colonization[J]. PLoS One, 2014, 9(4): e93970.
[3]JI W H, WU Y Q. Advances on the research of vaccine against Mycoplasma bovis[J]. China Animal Husbandry & Veterinary Medicine, 2018,45(3):763-769.
[4]NICHOLAS R A J, AYLING R D. Mycoplasma bovis : disease, diagnosis, and control[J]. Research in Veterinary Science, 2003, 74(2): 105-112.
[5]BRAS A L, BARKEMA H W, WOODBURY M R, et al. Clinical presentation, prevalence, and risk factors associated with Mycoplasma bovis-associated disease in farmed bison (Bison bison) herds in western Canada[J]. Javma Journal of the American Veterinary Medical Association, 2017, 250(10): 1167-1167.
[6]LIMIYED B P G. Mycoplasma bovis arthritis and pneumonia in calves[J]. Veterinary Record, 2017, 180(11): 272.
[7]CALCUTT M J, LYSNYANSKY I, SACHSE K, et al. Gap analysis of Mycoplasma bovis disease, diagnosis and control: An aid to identify future development requirements[J]. Transboundary & Emerging Diseases, 2018, 65 (1): 91-109.
[8]李媛,董惠,張美晶,等. 牛支原體套式PCR檢測(cè)方法的建立[J]. 中國(guó)預(yù)防獸醫(yī)學(xué)報(bào), 2009, 31(9): 709-711.
[9]SULYOK K M, BEK K, KREIZINGER Z, et al. Development of molecular methods for the rapid detection of antibiotic susceptibility of Mycoplasma bovis[J]. Veterinary Microbiology, 2018, 213: 47-57.
[10]HEGDGE S, ZIMMERMANN M, ROSENGARTEN R, et al. Novel role of Vpmas as major adhesins of Mycoplasma agalactiae mediating differential cell adhesion and invasion of Vpma expression variants[J]. International Journal of Medical Microbiology, 2018, 308(2):263.
[11]TIMONEN A A E, KATHOLM J, PETERSEN A, et al. Within-herd prevalence of intramammary infection caused by Mycoplasma bovis and associations between cow udder health, milk yield, and composition[J]. Journal of Dairy Science, 2017, 100(8): 6554-6561.
[12]CUBEDDU T, CACCIOTTO C, PISANU S, et al. Cathelicidin production and release by mammary epithelial cells during infectious mastitis[J]. Vet Immunol Immunopathol, 2017, 189: 66-70.
[13]TATAY-DUALDE J, HAM P V D, FE C D L, et al. Mutations in the quinolone resistance determining region conferring resistance to fluoroquinolones in Mycoplasma agalactiae[J]. Veterinary Microbiology, 2017, 207: 63-68.
[14]PARKERR A M, SHEEHY P A, HAZELTON M S, et al. A review of mycoplasma diagnostics in cattle[J]. Journal of Veterinary Internal Medicine, 2018,32(3):1241-1252.
[15]季文恒,吳婭琴,翟肖輝,等. 牛支原體疫苗的研究進(jìn)展[J]. 中國(guó)畜牧獸醫(yī), 2018, 45(3): 763-769.
[16]MANSO-SILVN L, DUPUY V, LYSNYANSKY I, et al. Phylogeny and molecular typing of Mycoplasma agalactiae and Mycoplasma bovis by multilocus sequencing[J]. Veterinary Microbiology, 2012, 161(1/2): 104-112.
[17]KUMAR S. Mycoplasma pneumoniae: A significant but underrated pathogen in paediatric community-acquired lower respiratory tract infections[J]. Indian Journal of Medical Research, 2018, 147(1):23-31.
[18]MOYNIHAN K M, BARLOW A, NOURSE C, et al. Severe Mycoplasma pneumoniae infection in children admitted to pediatric intensive care[J]. Pediatric Infectious Disease Journal, 2018, 37: 1.
[19]SNDERGAARD M J, FRIIS M B, HANSEN D S, et al. Clinical manifestations in infants and children with Mycoplasma pneumoniae infection[J]. PLoS One, 2018, 13(4): e0195288.
[20]GILLE L, CALLENS J, SUPR K, et al. Use of a breeding bull and absence of a calving pen as risk factors for the presence of Mycoplasma bovis in dairy herds[J]. Journal of Dairy Science, 2018,101(9):8289-8290.
[21]管禮麟,馬媛,楊丹茹,等. 綿羊肺炎支原體P208蛋白質(zhì)的分子特征分析及免疫原性[J]. 江蘇農(nóng)業(yè)學(xué)報(bào), 2018,34(1):81-86.
[22]徐引弟,焦文強(qiáng),王治方,等. 雞毒支原體河南株的分離鑒定及生物學(xué)特性研究[J]. 山東農(nóng)業(yè)科學(xué),2018, 50(11):124-128.
[23]KHAN F A, RASHEED M A, FAISAL M, et al. Proteomics analysis and its role in elucidation of functionally significant proteins in Mycoplasma bovis[J]. Microbial Pathogenesis, 2017, 111: 50.
[24]ROSENGARTEN R, CITTI C, GLEW M, et al. Host-pathogen interactions in mycoplasma pathogenesis: Virulence and survival strategies of minimalist prokaryotes[J]. International Journal of Medical Microbiology Ijmm, 2000, 290(1): 15-25.
[25]BRKI S, FREY J, PILO P. Virulence, persistence and dissemination of Mycoplasma bovis[J]. Veterinary Microbiology, 2015, 179(1/2): 15-22.
[26]張文勁,張文皓,唐鑫,等. 牛支原體免疫學(xué)及免疫學(xué)診斷研究進(jìn)展[J].中國(guó)獸醫(yī)學(xué)報(bào),2019,39(9):1868-1872.
[27]邵倩. 寧夏地區(qū)永寧縣牛支原體病流行病學(xué)調(diào)查及防治技術(shù)研究[D].蘭州:甘肅農(nóng)業(yè)大學(xué),2017.
[28]郭亞男,曹思婷,何生虎,等. 2013-2015年寧夏地區(qū)牛支原體感染的血清學(xué)調(diào)查分析[J]. 動(dòng)物醫(yī)學(xué)進(jìn)展, 2017, 38(4): 129-133.
[29]CITTI C, BLANCHARD A. Mycoplasmas and their host: emerging and re-emerging minimal pathogens[J]. Trends in Microbiology, 2013, 21(4): 196-203.
[30]ZHAO G, ZHANG H, CHEN X, et al. Mycoplasma bovis NADH oxidase functions as both a NADH oxidizing and O2 reducing enzyme and an adhesin[J]. Scientific Reports, 2017, 7(1): 44.
[31]CHOPRA-DEWASTHALY R, SPERGSER J, ZIMMERMANN M, et al. Vpma phase variation is important for survival and persistence of Mycoplasma agalactiae in the immunocompetent host[J]. PLoS Pathogens, 2017, 13(9): e1006656.
[32]WAWEGAMA N K, BROWNING G F. Improvements in diagnosis of disease caused by Mycoplasma bovis in cattle[J]. Animal Production Science, 2017, 57(7): 1482.
(責(zé)任編輯:張震林)