李克訥 楊津 徐劍琴 羅家維
摘 要:針對(duì)機(jī)械臂在執(zhí)行任務(wù)過程中末端執(zhí)行器的實(shí)際與期望的初始位置存在誤差的問題,提出一種基于二次型規(guī)劃的容錯(cuò)型運(yùn)動(dòng)規(guī)劃方案,用于減小機(jī)械臂在執(zhí)行軌跡跟蹤任務(wù)時(shí)初始位置誤差對(duì)任務(wù)執(zhí)行精度的影響。采用神經(jīng)動(dòng)力學(xué)方法,把位置誤差轉(zhuǎn)換為機(jī)械臂末端運(yùn)動(dòng)速度,并在速度層上對(duì)機(jī)械臂進(jìn)行建模。使用一種基于線性變分不等式的原對(duì)偶神經(jīng)網(wǎng)絡(luò)求解器,對(duì)提出的二次型規(guī)劃方案進(jìn)行實(shí)時(shí)求解。平面二連桿機(jī)械臂的仿真結(jié)果證明了初始位置誤差呈指數(shù)收斂趨于0,驗(yàn)證了該容錯(cuò)方案的有效性。
關(guān)鍵詞:運(yùn)動(dòng)規(guī)劃;二次型規(guī)劃;初始位置誤差;神經(jīng)網(wǎng)絡(luò)
DOI:10.15938/j.jhust.2020.01.014
中圖分類號(hào): TP24
文獻(xiàn)標(biāo)志碼: A
文章編號(hào): 1007-2683(2020)01-0093-07
Abstract:In the robotic application, the error would exist between the actual and desired initial positions of the end-effectorIn this paper, a fault-tolerant motion planning scheme was proposed based on quadratic programming to reduce the initial position error and improve the tracking accuracy during the end-effector executing the taskBy using the neural-dynamics method, an error-eliminating velocity was designed based on the real-time position error, and was incorporated into the end-effector velocity together with the task desired velocityFurthermore,a primal-dual neural network solver based on linear variational inequalities was used to solve the proposed quadratic programming scheme in real-time-TheMATLAB simulationresults of a two-degree-of-freedom planar manipulator demonstratethat the initial position error is exponential convergent to 0, and the fault-tolerance scheme is effective-Keywords:motion planning; quadratic programming; initial position error; neural network
0 前 言
機(jī)械臂由于其工作效率高、重復(fù)精度好、可以代替人類在危險(xiǎn)環(huán)境下工作等特點(diǎn),被廣泛應(yīng)用于農(nóng)業(yè)、制造業(yè)、服務(wù)業(yè)等多個(gè)領(lǐng)域[1-5]。機(jī)械臂的運(yùn)動(dòng)學(xué)解析問題是機(jī)器人研究中最基本的問題之一,在近幾十年中得到了國(guó)內(nèi)外學(xué)者的廣泛關(guān)注[6]。基于雅克比矩陣求逆的方法經(jīng)常被用來(lái)規(guī)劃?rùn)C(jī)械臂的運(yùn)動(dòng),這一方法雖然能夠進(jìn)行實(shí)時(shí)計(jì)算,但是該方法需要對(duì)矩陣進(jìn)行求逆運(yùn)算,計(jì)算較為復(fù)雜[5-8]。
由于機(jī)械臂工作的環(huán)境比較復(fù)雜,在實(shí)際應(yīng)用中,可能會(huì)由于溫度變化、D-H參數(shù)誤差、傳感器誤差等因素的影響,導(dǎo)致機(jī)械臂在進(jìn)行初始狀態(tài)調(diào)整時(shí),末端執(zhí)行器的初始位置與在執(zhí)行軌跡跟蹤任務(wù)時(shí)期望的初始位置之間存在誤差[9,10]。此外,這一誤差會(huì)隨著機(jī)械臂的長(zhǎng)期工作和磨損而逐漸增大[11]。如果沒有及時(shí)對(duì)該誤差進(jìn)行有效的控制和減小,那么該誤差會(huì)存在于整個(gè)任務(wù)的執(zhí)行過程中,影響任務(wù)的執(zhí)行精度。因此,如何有效減小初始位置誤差是機(jī)械臂進(jìn)行運(yùn)動(dòng)規(guī)劃中需要考慮的重要問題。就作者所知,目前對(duì)于這一問題的研究較少。有學(xué)者提出了一種可用來(lái)進(jìn)行機(jī)器人位姿誤差補(bǔ)償?shù)牟钪邓惴?,但該方法?jì)算較為繁瑣且不能實(shí)現(xiàn)誤差的在線補(bǔ)償[12]。文獻(xiàn)[13]中提出利用激光跟蹤儀測(cè)量機(jī)器人位姿,并構(gòu)建閉環(huán)控制系統(tǒng)對(duì)機(jī)器人位姿誤差進(jìn)行在線補(bǔ)償,該方法需要進(jìn)行多次在線補(bǔ)償,且能達(dá)到的精度不高。還有學(xué)者利用微小位移合成法建立機(jī)器人的位置誤差模型,提出利用雅克比矩陣將末端運(yùn)動(dòng)軌跡誤差轉(zhuǎn)換為關(guān)節(jié)角修正量的算法,通過優(yōu)化關(guān)節(jié)轉(zhuǎn)角來(lái)減小路徑跟蹤誤差[14]。該方法雖然簡(jiǎn)單且易于理解,但是需要進(jìn)行矩陣求逆運(yùn)算,計(jì)算復(fù)雜,同時(shí)難以達(dá)到很好的末端作業(yè)精度。
本文就提出的機(jī)械臂初始位置誤差這一問題,大致分為以下幾部分來(lái)探討其容錯(cuò)規(guī)劃方案。首先,基于神經(jīng)動(dòng)力學(xué)方法把位置誤差轉(zhuǎn)換為機(jī)械臂末端運(yùn)動(dòng)速度,對(duì)容錯(cuò)方案進(jìn)行相應(yīng)的數(shù)學(xué)描述。第二,建立基于二次型的解析方案,在速度層上對(duì)機(jī)械臂的逆運(yùn)動(dòng)學(xué)問題進(jìn)行求解。第三,通過構(gòu)造基于線性變分不等式的原對(duì)偶神經(jīng)網(wǎng)絡(luò)對(duì)上述的二次型解析方案進(jìn)行實(shí)時(shí)求解。最后以二連桿機(jī)械臂為例對(duì)該方案進(jìn)行MATLAB仿真,探討該容錯(cuò)方案對(duì)于消除初始位置誤差的可行性和有效性。
1 初始位置誤差的容錯(cuò)方案描述
4 結(jié) 論
本文針對(duì)二連桿機(jī)械臂在執(zhí)行軌跡跟蹤任務(wù)時(shí)可能出現(xiàn)的初始位置誤差這一問題,提出了一種基于二次型規(guī)劃的容錯(cuò)解析方案,該方案利用基于線性變分不等式的原對(duì)偶神經(jīng)網(wǎng)絡(luò)求解器進(jìn)行求解。除此之外,該方案中沒有進(jìn)行矩陣的求逆運(yùn)算,降低了計(jì)算的難度,同時(shí)原對(duì)偶神經(jīng)網(wǎng)絡(luò)也能夠滿足實(shí)時(shí)求解的要求。仿真結(jié)果表明,機(jī)械臂在存在初始位置誤差的情況下也能夠很好地完成軌跡跟蹤任務(wù)。在往后的研究中,可以將該方法擴(kuò)展到冗余度機(jī)械臂執(zhí)行多任務(wù)的運(yùn)動(dòng)規(guī)劃中,進(jìn)一步提高算法的有效性和實(shí)用性。
參 考 文 獻(xiàn):
[1] 馬曉敏,劉丁,辛菁,等.移動(dòng)機(jī)器人生物啟發(fā)式變結(jié)構(gòu)軌跡跟蹤控制[J].電機(jī)與控制學(xué)報(bào),2018,22(7):97.MA Xiaomin, LIU Ding, XIN Jing, et al. Biologically Inspired Variable Structure Trajectory Tracking Control for a Mobile Robot[J]. Electric Machines and Control, 2018, 22(7): 97.
[2] GOSSELIN C, SCHREIBER L T. Kinematically Redundant Spatial Parallel Mechanisms for Singularity Avoidance and Large Orientational Workspace[J]. IEEE Transactions on Robotics, 2017, 32(2): 286.
[3] 許家忠, 王溫強(qiáng), 謝文博,等. 故障機(jī)械臂模型重構(gòu)后的軌跡規(guī)劃與實(shí)驗(yàn)分析[J]. 哈爾濱理工大學(xué)學(xué)報(bào), 2016, 21(2): 1.XU Jiazong, WANG Wenqiang, XIE Wenbo, et al. The Trajectory Planning and Experimental Analysis of Fault Mechanical Arm Based on Model Reconstructed[J]. Journal of Harbin University of Science and Technology, 2016, 21(2): 1.
[4] 吳海彬,李實(shí)懿,吳國(guó)魁.基于動(dòng)量偏差觀測(cè)器的機(jī)器人碰撞檢測(cè)算法[J].電機(jī)與控制學(xué)報(bào),2015,19(5):97.WU Haibin, LI Shiyi, WU Guokui. Collision Detection Algorithm for Robot Manipulator Based on Momentum Deviation Observer[J]. Electric Machines and Control, 2015,19(5): 97.
[5] WAN J, WU H T, MA R, et al. A Study on Avoiding Joint Limits for Inverse Kinematics of Redundant Manipulators Using Improved Clamping Weighted Least-Norm Method[J]. Journal of Mechanical Science & Technology, 2018, 32(3): 1367.
[6] LIAO B, LIU W. Pseudoinverse-Type Bi-criteria Minimization Scheme for Redundancy Resolution of Robot Manipulators[J]. Robotica, 2015, 33(10): 2100.
[7] HUANG S, PENG Y, WEI W, et al. Clamping Weighted Least-Norm Method for the Manipulator Kinematic Control with Constraints[J]. International Journal of Control, 2016, 89(11): 2240.
[8] PENG C, JI X, WEI W. A Unified Weighted Least Norm Method for Redundant Manipulator Control[J]. International Journal of Advanced Robotic Systems, 2016, 13: 1.
[9] MOHAN S. Error Analysis and Control Scheme for the Error Correction in Trajectory-Tracking of a Planar 2PRP-PPR Parallel Manipulator[J]. Mechatronics, 2017, 46: 70.
[10]張秀珩, 柳洪義, 巴鵬. 基于全微分模型的打磨機(jī)械臂靜態(tài)誤差分析[J]. 機(jī)床與液壓, 2016, 44(15): 1.ZHANG Xiuheng, LIU Hongyi, BA Peng. Static Error Analysis of Grinding Manipulator Based on Total Differential Model[J]. Machine Tool & Hydraulics, 2016, 44(15): 1.
[11]戴厚德,曾現(xiàn)萍,游鴻修,等.基于光學(xué)運(yùn)動(dòng)跟蹤系統(tǒng)的機(jī)器人末端位姿測(cè)量與誤差補(bǔ)償[J].機(jī)器人, 2019, 41(2): 206.DAI Houde, ZENG Xianping, YOU Hongxiu, et al. PoseMeasurement and Error Compensation of the Robot End-Effector Based on an Optical Tracking System[J]. Robot,2019, 41(2): 206.
[12]陳宵燕, 張秋菊, 孫沂琳,等. 工業(yè)機(jī)器人位姿誤差空間IDSW插值補(bǔ)償方法研究[J]. 機(jī)械科學(xué)與技術(shù), 2017, 36(3): 378.CHEN Xiaoyan, ZHANG Qiuju, SUN Yilin, et al. Space IDSW Interpolation Compensation Method of Position and Orientation Error of Industrial Robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2017,36(3): 378.
[13]史曉佳, 張福民, 曲興華,等. KUKA工業(yè)機(jī)器人位姿測(cè)量與在線誤差補(bǔ)償[J]. 機(jī)械工程學(xué)報(bào), 2017, 53(8): 1.
SHI Xiaojia, ZHANG Fumin, QU Xinghua, et al. Position and Attitude Measurement and Online Errors Compensation for KUKA Industrial Robots[J]. Journal of Mechanical Engineering, 2017,53(8): 1.
[14]張紹春,張明路,呂曉玲,等.5R串聯(lián)機(jī)器人的靜態(tài)誤差分析及優(yōu)化方法[J].機(jī)械設(shè)計(jì)與制造,2018(6):250.ZHANG Shaochun, ZHANG Minglu, LV Xiaoling, et al. Analysis and Optimization of the Static Error on 5R Serial Robot[J]. Machinery Design & Manufacture, 2018(6): 250.
[15]XIAO L, ZHANG Z, ZHANG Z, et al. Design, Verification and Robotic Application of a Novel Recurrent Neural Network for Computing Dynamic Sylvester Equation[J]. Neural Networks, 2018, 105: 185.
[16]LI K, ZHAGN Y. State Adjustment of Redundant Robot Manipulator Based on Quadratic Programming[J]. Robotica, 2012, 30(3): 477.
[17]張雨濃, 易稱福, 馬偉木. 實(shí)時(shí)求解線性規(guī)劃問題的原對(duì)偶神經(jīng)網(wǎng)絡(luò)[J]. 運(yùn)籌學(xué)學(xué)報(bào). 2010, 14(3): 1.ZHANG Yunong, YI Chengfu, MA Weimu. On a Primal-Dual Neural Network for Online Solution of Linear Programming[J]. Operations Research Transactions, 2010,14(3): 1.
[18]LI S, ZHOU M, LUO X. Modified Primal-Dual Neural Networks for Motion Control of Redundant Manipulators With Dynamic Rejection of Harmonic Noises[J]. IEEE Transactions on Neural Networks & Learning Systems, 2018, 29(10): 4791.
[19]ZHAGN Y. On the LVI-Based Primal-Dual Neural Network for Solving Online Linear and Quadratic Programming Problems[C]// American Control Conference. IEEE, 2005, 2: 1351.
[20]ZHANG Y. Dual Neural Networks: Design, Analysis, and Application to Redundant Robotics[C]// In: Kang, G.B.(ed.) Progress in Neurocomputing Research, New York, 2007:41.
(編輯:溫澤宇)