亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Catheter ablation of premature ventricular complexes associated with false tendons:A case report

        2020-04-22 01:47:48YaBingYangXiaoFengLiTingTingGuoYuHeJiaJunLiuMinTangPiHuaFangShuZhang
        World Journal of Clinical Cases 2020年2期
        關(guān)鍵詞:外置式外置管體

        Ya-Bing Yang, Xiao-Feng Li, Ting-Ting Guo, Yu-He Jia, Jun Liu, Min Tang, Pi-Hua Fang, Shu Zhang

        Ya-Bing Yang, Cardiovascular Medicine Department, Beijing Renhe Hospital, Beijing 102600,China

        Xiao-Feng Li, Ting-Ting Guo, Yu-He Jia, Jun Liu, Min Tang, Pi-Hua Fang, Shu Zhang, Center for Cardiac Arrhythmia, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China

        Abstract

        Key words: Intracardiac echocardiography; CartoSoundTM; Radiofrequency catheter ablation; Premature ventricular complexes; False tendons; Case report

        INTRODUCTION

        A false tendon is a common intraventricular anatomical variation[1].It refers to a fibroid or fibromuscular structure that exists in the ventricle besides the normal connection of the papillary muscle and mitral or tricuspid valve.It can be divided into a left ventricular false tendon and right ventricular false tendon.A large number of clinical studies have suggested that there is a significant correlation between false tendons and premature ventricular complexes (PVCs)[1,2].However, few studies have verified this correlation during radiofrequency catheter ablation of PVCs.

        We report a case of successful radiofrequency catheter ablation of PVCs associated with left ventricular false tendons.Intracardiac echocardiography (ICE) with the CartoSoundTMsystem was used to demonstrate, for the first time, that the occurrence of PVCs was associated with false tendons.No classical Purkinje potential and special potential were observed in the local potential of the target region of the patient, and the ectopic excitability resulting in mechanical traction at the false tendon attachment site of the interventricular septum may be a possible mechanism for these PVC.

        This case verified that false tendons can cause premature ventricular beats and may be cured by radiofrequency catheter ablation guided by ICE with the CartoSoundTMsystem.

        CASE PRESENTATION

        Chief complaints

        A 45-year-old male was admitted to hospital due to “2-mo of intermittent palpitations and shortness of breath”.

        History of present illness

        Chest pain, convulsion, and nausea were not observed.Occasional vomiting was relieved after a few minutes to several hours of rest, and aggravated under emotional stress and after meals.

        Personal and family history

        The patient denied any previous history of hypertension, coronary heart disease,diabetes, surgical trauma and allergies.No smoking and drinking history, no infectious disease history and no hereditary family history were noted.

        Physical examination upon admission

        On admission, blood pressure was 110/70 mmHg, heart rate was 70 beats/min,premature contraction could be heard, no obvious heart murmur or abnormal heart sound, and no leg swelling were observed.There were no other positive signs.

        Laboratory examinations

        No obvious abnormalities were found during routine blood, blood biochemistry,coagulation function, thyroid function, and infectious disease screening.

        該站500 kV HGIS采用外置電流互感器的結(jié)構(gòu),即電流互感器的線圈套于HGIS管體外部,然后采用一個艙室對其進(jìn)行封裝。這種外置式結(jié)構(gòu)相對來說更適合應(yīng)用于室內(nèi),當(dāng)應(yīng)用于室外時對其防水應(yīng)有較高的要求。

        Imaging examinations

        Electrocardiography (ECG) showed sinus rhythm, and frequent PVCs, with right bundle branch block pattern, with lead V1of R wave, lead V2 and V3 of the rSr wave,and lead V4, V5 and V6 of the RS wave; lead II, III and AVF of the R wave, and the R amplitude in lead III was higher than that of II; lead I, AVL of the rS wave, and S amplitude in lead avL were deeper than that of I (Figure 1).Dynamic 24 h ECG monitoring of the average heart rate showed 69 beats/min, with the slowest at 48 beats/min and the fastest at 104 beats/min.A total of 93926 heart beats with premature ventricular beats were found accounting for 18.1%.Echocardiography showed a left ventricular ejection fraction of 65%; left ventricular end-diastolic diameter of 47 mm; an abnormal muscle bundle at the base of the interventricular septum and the other end was connected to the left ventricular lateral wall near the apex, resulting in a slight stenosis of the left ventricular outflow tract, local thickness of the interventricular septum of approximately 15 mm, and normal thickness of the remaining chamber walls with coordinated movement.Doppler examination demonstrated that the blood flow velocity at the left ventricular outflow tract was approximately 1.8 m/s.It was concluded that an abnormal muscle bundle was present in the left ventricle, and the blood flow velocity was fast.

        FINAL DIAGNOSIS

        Frequent PVCs, ventricular tachycardia, second degree SA block, and false tendons.

        TREATMENT

        Intracardiac electrophysiological examination and radiofrequency ablation were performed under local anesthesia.A Soundstar catheter (Biosense Webster, Diamond Bar, CA, United States) was inserted into the middle of the right atriumviathe left femoral vein and rotated clockwise to the HomeView position.The tricuspid annulus and right ventricular long axis were then established.The Soundstar catheter was placed towards the tricuspid annulus with its sector curved as A for easy insertion into the right ventricle.The curve was then loosened to enable the catheter tip to block the right ventricular outflow tract, and rotated clockwise, left ventricular false tendons were observed by intracardiac two-dimensional echocardiography (Figure 2),a left ventricular structure model was then established (Figure 3A), during which the left anterior papillary muscles, posterior papillary muscles and false tendons were mapped.After the entire left ventricular structure was established by CartoSoundTM, a saline-irrigated Navistar Smarttouch (Biosense Webster, United States) catheter was advanced into the left ventricle using a retrograde approachviathe right femoral artery, the PVCs were then mapped in the established structure model (Figure 3B),and the earliest site was located at the interventricular septum attachment of the false tendons, which was 20 ms earlier than in the surface ECG (Figure 4).The PVCs disappeared after 10 s ablation (saline irrigation 17 mL/min, power 30-35 W,temperature 43°C).The ablation lasted for 90-120 s at each point, and 5 points were ablated until no PVCs were observed for 30 min under repeated ventricular stimulation and static isoproterenol.

        OUTCOME AND FOLLOW-UP

        ECG monitoring showed no PVCs on the first postoperative day.In addition, no complications, such as pericardial tamponade, atrioventricular block and hematoma of the lower extremity were observed.Twenty-four hour dynamic ECG three months later in the out-patient department demonstrated that sinus rhythm, second degree SA blocks, and less than 1000 beats of PVCs.The patient fell well with no relapse of heart palpitations and shortness of breath.

        Figure 1 12-lead Electrocardiograph of the patient, the blue frame shows premature ventricular complexes.

        DISCUSSION

        The CartoSoundTMsystem can provide electroanatomical three-dimensional mapping for arrhythmia[3,4], but the CartoSoundTMalone cannot provide accurate anatomical information, especially for PVCs and ventricular tachycardia arising from abnormal anatomical conditions due to the complexity and large variation in the anatomy[5].ICE can provide real-time intracardiac ultrasound images[6,7], and the 3D modeling CartoSoundTMcatheter and analysis software developed on the basis of ICE can provide a 3D anatomical reconstruction of the heart before insertion of the mapping catheter, and interface seamlessly with electroanatomic mapping, thereby providing accurate anatomical positioning for complex arrhythmia treatments, reducing operating time, increasing ablation success rates, and reducing X-ray exposure[8,9].In this case, the intracardiac three-dimensional ultrasound catheter technique was used to confirm that the earliest activation site mapped in the ventricle was located at the attachment of false tendons near the basal side of the interventricular septum, and radiofrequency catheter ablation succeeded in curing the PVCs.These techniques can provide direct evidence of PVCs, which can be induced by false tendons and treated by radiofrequency ablation.The mechanisms of PVCs arising from left ventricular false tendons may include the following:High automaticity of Purkinje cells in the muscle fibers, increased ectopic excitability resulting from repeated mechanical traction of the false tendon attachment, and circle reentry from false tendons, normal myocardium, to conductive tissue[10].No classical Purkinje potential was observed in the local potential of the target region of this patient, and the ectopic excitability resulting in mechanical traction at the false tendon attachment site of the interventricular septum may be a possible mechanism for these PVCs.

        CONCLUSION

        This case report verified that false tendons can cause premature ventricular beats, and the ectopic excitability resulting in mechanical traction at the false tendon attachment site may be a possible mechanism for these PVCs which may be cured by radiofrequency ablation guided by ICE with the CartoSoundTMsystem.

        Figure 2 Left ventricular false tendons were detected by intracardiac two-dimensional echocardiography.

        Figure 3 Three-dimensional structure model.

        Figure 4 The earliest activation site of the premature ventricular complexes were mapped 22 ms prior to the onset of surface electrocardiography and unipolar endoelectrography at the interventricular septum attachment of false tendons and were successfully ablated.

        猜你喜歡
        外置式外置管體
        一種外定型無支架扣模保溫鋼管
        鋼管(2023年2期)2023-08-06 05:33:48
        一種新型內(nèi)漲式橡膠密封圈
        大型循環(huán)流化床鍋爐外置式換熱器關(guān)鍵技術(shù)研究
        PLC可編程控制器相關(guān)外置的選擇計算研究
        電子制作(2019年13期)2020-01-14 03:15:34
        2AI2硬鋁合金管體精密鍛造成形工藝研究
        車載GSM-R外置抗干擾設(shè)備
        談開關(guān)外置式智能電能表停復(fù)電裝置在配網(wǎng)中的應(yīng)用策略
        電子制作(2018年18期)2018-11-14 01:48:24
        電能表用外置斷路器常見失效模式分析
        TIG焊外置式提升引弧控制系統(tǒng)的研究
        一種深孔螺釘防倒管
        科技資訊(2016年9期)2016-05-14 00:55:35
        狠狠97人人婷婷五月| 一区二区久久精品66国产精品| 日本中文字幕官网亚洲| 免费观看91色国产熟女| 免费1级做爰片1000部视频| 欧美一区波多野结衣第一页| 自拍视频国产在线观看| 亚洲国产av一区二区三区天堂| av综合网男人的天堂| 久久久久无码精品亚洲日韩| 精品人妻免费看一区二区三区| 国产三级精品三级在线专区| 日本熟日本熟妇中文在线观看| 成人免费ā片在线观看| 无码啪啪熟妇人妻区| 亚洲第一区二区精品三区在线| 强奷乱码中文字幕| 屁屁影院一区二区三区| 日韩一二三四区免费观看 | 毛片在线啊啊| 国产午夜福利小视频在线观看| 国产av无码国产av毛片| 亚洲中文字幕无码爆乳av| 中文字幕日本人妻一区| 国产精品亚洲二区在线看| 亚洲色成人网站www永久四虎| 亚洲精品有码在线观看| 成人亚洲av网站在线看| 亚洲国产精品成人精品无码区在线 | 午夜爽毛片| 亚洲一区二区三区视频免费看| 国产精品无码aⅴ嫩草| 四虎欧美国产精品| 亚洲另类国产精品中文字幕| 日韩欧美在线综合网另类| 日日碰狠狠躁久久躁96avv| 亚洲 美腿 欧美 偷拍| 国产一区二区三区激情视频| 中文字幕精品久久久久人妻红杏ⅰ| 五月婷婷影视| 激情五月开心五月啪啪|