亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        調(diào)和算子多項(xiàng)式廣義次譜的顯式上界

        2020-04-18 06:18:46黃振明
        關(guān)鍵詞:數(shù)理

        黃振明

        (蘇州市職業(yè)大學(xué) 數(shù)理部,江蘇 蘇州 215104)

        1 Introduction and Statement of Result

        Let Pt(x) be a polynomial of degree t (t ≥2)as Pt(x) = ptxt+ pt-1xt-1+ …+ p1x + p0,where pt= 1,pi≥0 (i = 0,1,…,t - 1)are real numbers.The following spectrum problem of polynomial of harmonic operator Pt(-Δ)has been extensively studied by many mathematical researchers:

        and obtained an explicit inequality estimating the upper bound of the secondary spectrum in terms of the linear function of the principal one[1].

        In this paper we further study a more general situation of Problem(1),that is the generalized problem of polynomial operator Pt(-Δ)

        To our knowledge, the general case(3)has not been studied previously. For any positive integer t(t ≥2) in Problem(3), we established an explicit upper bound for the secondary spectrum in terms of the principal one. The inequality we gained is called universal inequality because it does not involve domain dependence.This proof is similar in spirit to that of Carston and Dietmar[2].Indeed,we have the following theorem after some complicated work.

        Theorem 1 Let λ1,λ2be the principal and secondary spectrum of Problem(3).Then

        2 Proof of Theorem 1

        We multiply(3)by u,integrate by parts,use the boundary conditions and(5),this gives

        thus we have

        Using the definition of φkand(3),one obtains

        and

        Therefore,we have

        On the other hand,using integration by parts,we obtain

        which gives

        Combining(7)with(9),yields

        Lemma 1 Suppose that u is an eigenfunction of Problem (3)corresponding to the principal spectrumλ1with∫Ω|?u|2dx = 1.Then

        Proof (a)Let us first prove the following inequality

        This is done by mathematical induction. For s= 1, using integration by parts, Schwarz’s inequality and(5),meanwhile noting the boundary condition in(3),we have

        so(11)is correct for s= 1.

        Assume(11)is true for some fixed s= k - 1(k ≤t - 2).Then,using integration by parts,Schwarz’s inequality and the boundary condition again,we have

        after simplified,it turns out

        so the inequality(11)is true for s= k,and we are done.

        Using(11)repeatedly to∫Ω||?1+su2dx,combining(6)we have

        that completes the proof.

        (b)Similarly,using(5),integration by parts,Schwarz’s inequality and Lemma1(a),we have

        This finishes the proof of Lemma1(b).

        Lemma 2 Let u be an eigenfunction of Problem(3)corresponding to the principal spectrumλ1,and φkbe as above.Then we have

        Proof (a)Using integration by parts and the definition of the harmonic operator,we have

        so Lemma 2(a)is proved.

        (b)When r ≥1,using integration by parts,we have

        so,we get

        Using Lemma 2(a),we have

        When r = 0,with the similar process,we obtain

        thus

        This finishes the proof of Lemma 2(b).

        Lemma 3 For I,J defined as above,the following estimate holds

        Proof Using Lemma 2(b)to I and the first term of J respectively,we have

        and

        Using Lemma 1(b),Lemma 2(b)and Lemma 1(a),we obtain

        thereby we complete the proof of Lemma 3.

        Lemma 4 Let φkand λ1be as above.Then

        Proof Using the homogeneous boundary condition of φkand u, integration by parts, Lemma 2(b)and(5),we have

        By Young’s inequality with ε,(12),Lemma 2(a)and Lemma 1(a),one gets

        where ε >0 is an arbitrary constant.The right-hand side of(13)assumes its minimum at the point

        at which we obtain the inequality

        thus finishing the proof of Lemma 4.

        Proof of Theorem 1 We rewrite(10)as

        Lemma 4 can be read as

        Therefore, substituting Lemma 3 and(15)into(14), we derive the inequality(4)in the Theorem 1 immediately after simplified.

        猜你喜歡
        數(shù)理
        基于數(shù)理認(rèn)知的數(shù)理邏輯類益智玩具設(shè)計(jì)研究
        玩具世界(2024年2期)2024-05-07 08:15:50
        萊州市第二實(shí)驗(yàn)小學(xué) 應(yīng)用“德融數(shù)理” 打造“行知樂園”
        中國德育(2022年12期)2022-08-22 06:18:14
        踐行“德融數(shù)理” 打造“行知樂園”
        中國德育(2022年12期)2022-08-22 06:17:24
        循序力行,讓“德融數(shù)理”落地生根
        中國德育(2022年12期)2022-08-22 06:17:16
        數(shù)理:它是幾號(hào)柜
        孩子(2020年9期)2020-09-16 06:29:36
        數(shù)理:多少人吃飯
        孩子(2019年9期)2019-11-07 01:35:49
        紹興文理學(xué)院數(shù)理信息學(xué)院
        柳宗悅民藝思想中的“數(shù)理”觀
        物之?dāng)?shù)理:高中物理提升學(xué)生數(shù)學(xué)解釋素養(yǎng)
        最天然呆筆記 誰說數(shù)理就一定枯燥艱深?
        无码AV高潮喷水无码专区线| 一本色综合网久久| 国产精品成人网站| 2019年92午夜视频福利| 精品国免费一区二区三区| 亚洲国产av高清一区二区三区| 2019nv天堂香蕉在线观看 | 内射中出无码护士在线| 岛国熟女一区二区三区| 一本到亚洲av日韩av在线天堂| 曰韩无码av一区二区免费| 欧美野外疯狂做受xxxx高潮| 久热香蕉av在线爽青青| 亚洲情久久久精品黄色| 欧美性猛交aaaa片黑人 | 中文少妇一区二区三区| 激情亚洲一区国产精品| 米奇777四色精品人人爽| 亚洲区日韩精品中文字幕| 热综合一本伊人久久精品 | 亚洲国产精品ⅴa在线观看| 色欲av一区二区久久精品| 日韩精品有码中文字幕| 国产欧美综合一区二区三区| 熟女人妻在线视频| 中文字幕国产精品中文字幕| 成人自拍偷拍视频在线观看| 久久伊人少妇熟女大香线蕉| 国产成+人+综合+亚洲 欧美| 亚洲天堂av社区久久| 日韩精品视频久久一区二区 | 插入中文字幕在线一区二区三区| 日韩亚洲无吗av一区二区| 久久久久久国产精品免费免费男同 | 久久婷婷国产综合精品| 精品一区二区久久久久久久网站| 国产成人综合亚洲av| 亚洲写真成人午夜亚洲美女| 国产成人精品123区免费视频| 亚洲午夜精品久久久久久抢| 日本a级片一区二区三区|