[摘要] 目的 探討高鐵飲食對(duì)小鼠腸道大腸桿菌豐度的影響。方法 實(shí)驗(yàn)分為正常飲食組和高鐵飲食組,其中高鐵飲食組小鼠用含質(zhì)量分?jǐn)?shù)0.03羰基鐵粉的鼠糧喂養(yǎng)。2周后,采用細(xì)菌16S rDNA序列擴(kuò)增和MiSeq測(cè)序技術(shù)對(duì)小鼠新鮮糞便中的大腸桿菌豐度進(jìn)行分析。結(jié)果 與正常飲食組相比,高鐵飲食2周后高鐵飲食組小鼠新鮮糞便中大腸桿菌豐度顯著增加,差異有顯著性(U=19.0,P<0.05)。結(jié)論 高鐵飲食2周可以顯著增加小鼠腸道大腸桿菌的豐度。
[關(guān)鍵詞] 羰基鐵化合物;胃腸道;序列分析,DNA;大腸桿菌;小鼠
[中圖分類號(hào)] R574.4;R378.21 "[文獻(xiàn)標(biāo)志碼] A "[文章編號(hào)] 2096-5532(2020)02-0137-03
doi:10.11712/jms.2096-5532.2020.56.072 [開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]
[網(wǎng)絡(luò)出版] http://kns.cnki.net/kcms/detail/37.1517.R.20200417.1001.020.html;2020-04-18 16:17
[ABSTRACT] Objective To explore the effect of high-iron diet on the abundance of intestinal Escherichia coli in mice. Methods Mice were divided into normal diet group and high-iron diet group. The mice in the high-iron diet group fed on a diet with a mass fraction of carbonyl iron powder of 0.03. After two weeks, the bacterial 16S rDNA amplification and MiSeq sequencing were used to analyze the abundance of E. coli in the fresh feces of the mice. "Results Compared with the normal diet group, the high-iron diet group showed a significantly increased abundance of E. coli in the fresh feces (U=19.0,Plt;0.05). "Conclusion A high-iron diet for two weeks can significantly increase the abundance of E. coli in the intestine of mice.
[KEY WORDS] iron carbonyl compounds; gastrointestinal tract; sequence analysis, DNA; Escherichia coli; mice
鐵是細(xì)菌生長(zhǎng)必不可少的重要因素之一[1]。鐵攝入不足和過(guò)量都對(duì)宿主有害。鐵強(qiáng)化和補(bǔ)鐵可以提高血漿非轉(zhuǎn)鐵蛋白結(jié)合鐵水平,有利于病原菌生存[2-3]。在大多數(shù)情況下,腸道菌群的數(shù)量和種類處于相對(duì)平衡的狀態(tài),可以保護(hù)宿主不受病原菌的侵害[4-5]。但是細(xì)菌的組成受到很多因素的影響,尤其是飲食成分中包含的金屬離子[6-7]。飲食結(jié)構(gòu)決定了腸道細(xì)菌的微環(huán)境,進(jìn)而影響了微生物的多樣性。此外,鐵水平與許多病原體和機(jī)會(huì)致病菌的毒力直接相關(guān)[8-9]。而大部分大腸桿菌(Escherichia coli)通常被看作機(jī)會(huì)致病菌[10]。鐵為致病性細(xì)菌生長(zhǎng)和毒力的關(guān)鍵調(diào)控因子,在高鐵條件下未被吸收的鐵可以刺激腸道環(huán)境中致病菌的生長(zhǎng)和增強(qiáng)致病菌的毒性[11-13]。羰基鐵粉是一種黑灰色、粉末狀還原型元素態(tài)鐵粉,其鐵含量高、鈍化后穩(wěn)定性強(qiáng),空氣中氧化還原性弱,在谷類及其制品、乳粉和特殊食品中已有廣泛應(yīng)用[14]。本研究參考本實(shí)驗(yàn)室前期研究用含羰基鐵粉的鼠糧喂養(yǎng)小鼠[15],旨在探討高鐵飲食對(duì)小鼠腸道大腸桿菌豐度的影響?,F(xiàn)將結(jié)果報(bào)告如下。
1 材料與方法
1.1 動(dòng)物分組與處理
SPF級(jí)C57BL/6J雄性小鼠20只(8周齡),購(gòu)自北京維通利華實(shí)驗(yàn)技術(shù)有限公司,每籠5只飼養(yǎng)于清潔的小鼠房?jī)?nèi),保證室溫(21±2)℃、濕度(50±5)%、12 h/12 h晝夜光照循環(huán),小鼠可自由飲食[16]。將小鼠隨機(jī)分為正常飲食組和高鐵飲食組,各10只。其中正常飲食組小鼠給予正常飲食喂養(yǎng),高鐵飲食組小鼠用含質(zhì)量分?jǐn)?shù)為0.03羰基鐵粉[15]的高鐵鼠糧(由南京協(xié)同醫(yī)藥生物工程有限責(zé)任公司提供)喂養(yǎng)。動(dòng)物使用和管理均經(jīng)青島大學(xué)動(dòng)物倫理委員會(huì)批準(zhǔn)。
1.2 糞便樣本采集
喂養(yǎng)2周后采集兩組小鼠新鮮糞便樣本,置于無(wú)菌離心管中,并立即置于-80 ℃低溫冰箱中保存以便進(jìn)行后續(xù)檢測(cè)[6]。
1.3 樣本DNA抽提和檢測(cè)
糞便樣本中微生物DNA的提取采用 QIAamp DNA Stool Mini Kit試劑盒(QIAGEN,Hilden,Germany),按照試劑盒說(shuō)明書進(jìn)行操作。
1.4 細(xì)菌16S rDNA序列擴(kuò)增及MiSeq測(cè)序
選取16S rDNA的V4-V5區(qū)序列進(jìn)行高通量測(cè)序分析。采用兩步聚合酶鏈?zhǔn)椒磻?yīng)(PCR)擴(kuò)增方法進(jìn)行文庫(kù)構(gòu)建。將純化的DNA作為模板,利用16S rDNA V4-V5區(qū)的通用引物515F(5′-GTGCCAGCMGCCGCGG-3′)、926R(5′-CCGTCAATTCMTTTGAGTTT-3′)以及含有部分Hiseq測(cè)序引物和barcode序列的融合引物進(jìn)行PCR擴(kuò)增。①第1次PCR反應(yīng)體系:5×Buffer 10 μL,dNTP(10 mmol/L)1 μL,Phusion超保真DNA聚合酶1.0 U,正反向引物(10 mmol/L)各1 μL,模板DNA 20~50 ng,補(bǔ)充超純水至50 μL。PCR反應(yīng)條件:94 ℃、2 min;94 ℃、30 s,56 ℃、30 s,72 ℃、30 s,72 ℃、5 min,25個(gè)循環(huán)。②第2次PCR反應(yīng)體系:5×Buffer 8 μL,dNTP(10 mmol/L)1 μL,Phusion超保真DNA聚合酶0.8 U,正反向引物(10 mmol/L)各1 μL,模板DNA 5 μL,補(bǔ)充超純水至40 μL。PCR反應(yīng)條件:94 ℃、2 min;94 ℃、30 s,56 ℃、30 s,72 ℃、30 s,72 ℃、5 min,10 ℃保溫,8個(gè)循環(huán)。全部PCR產(chǎn)物采用Axy Prep DNA凝膠回收試劑盒(AXYGEN公司產(chǎn)品)進(jìn)行回收,并應(yīng)用FTC-3000TM Real-Time PCR儀進(jìn)行熒光定量,均一化混勻后完成文庫(kù)構(gòu)建,采用HiSeq Rapid SBS Kit v2試劑盒,由微基生物科技(上海)有限公司完成illumina MiSeq測(cè)序。
1.5 生物信息學(xué)分析
測(cè)序得到的原始數(shù)據(jù)通過(guò)barcode分配樣品reads,得到每個(gè)樣本的有效序列。采用Trimmo-matic軟件,將測(cè)序結(jié)果末端低質(zhì)量的序列去掉,根據(jù)PE reads之間的overlap關(guān)系,采用flash軟件將成對(duì)的reads拼接成一條序列。采用mothur軟件對(duì)序列質(zhì)量進(jìn)行質(zhì)控,將模糊堿基、單堿基高重復(fù)區(qū)、過(guò)長(zhǎng)和過(guò)短的序列以及PCR過(guò)程中產(chǎn)生的一些嵌合體去除,得到優(yōu)化序列。之后進(jìn)行OTU(ope-rational taxonomic unit)聚類(UPARSE software),將OTU代表序列與Silva 128數(shù)據(jù)庫(kù)比對(duì)進(jìn)行物種信息注釋?;诜诸悓W(xué)信息,在門、綱、目、科、屬、種分類水平上進(jìn)行群落結(jié)構(gòu)的統(tǒng)計(jì)分析。
1.6 統(tǒng)計(jì)學(xué)處理
采用Graph Pad Prism 6.0軟件進(jìn)行統(tǒng)計(jì)學(xué)處理,所得計(jì)量資料數(shù)據(jù)以±s表示,兩獨(dú)立樣本的比較采用非參數(shù)Mann-Whitney U檢驗(yàn),以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié) "果
正常飲食組和高鐵飲食組小鼠新鮮糞便中大腸桿菌豐度值分別為0.000 37±0.000 20和0.008 10±0.003 80(n=10),高鐵飲食2周后高鐵飲食組小鼠新鮮糞便中大腸桿菌的豐度顯著高于正常飲食組,差異有顯著性(U=19.0,P<0.05)。
3 討 "論
鐵是地球上含量非常豐富的金屬(約占地球質(zhì)量的35%)[17],對(duì)包括大多數(shù)細(xì)菌在內(nèi)的幾乎所有生物都至關(guān)重要[3]。鐵過(guò)量是鐵代謝紊亂的疾病,會(huì)導(dǎo)致機(jī)體損害。高鐵膳食、高鐵補(bǔ)品、長(zhǎng)期服用鐵劑以及臨床上長(zhǎng)期輸血,均會(huì)引起體內(nèi)鐵儲(chǔ)存過(guò)多[18-20]。鐵可能會(huì)改變病原菌與保護(hù)性細(xì)菌的比例。細(xì)菌定殖依賴于其獲取鐵和其他營(yíng)養(yǎng)物質(zhì)的能力,多種菌株會(huì)在結(jié)腸中激烈競(jìng)爭(zhēng)未被吸收的膳食鐵[21-22]。在人類、動(dòng)物和植物中,條件致病菌被稱為暫時(shí)良性微生物或共生菌,它們?cè)诃h(huán)境變化或宿主壓力下可能會(huì)導(dǎo)致疾病。大腸桿菌屬腸桿菌科,為條件致病菌。BENONI等[23]對(duì)大鼠的研究顯示,最早在高鐵飲食2周后,大腸桿菌的數(shù)量有所增加。還有研究表明,貧血的非洲兒童補(bǔ)充鐵質(zhì)后,致病性腸桿菌與保護(hù)性雙歧桿菌和乳酸菌的比例增加,并伴有反映腸道炎癥糞便鈣衛(wèi)蛋白含量的增加[24]。本實(shí)驗(yàn)運(yùn)用細(xì)菌16S rDNA序列擴(kuò)增和MiSeq測(cè)序技術(shù),在物種信息的基礎(chǔ)上分析了大腸桿菌的豐度變化。結(jié)果顯示,高鐵飲食在短期內(nèi)可引起小鼠腸道大腸桿菌數(shù)量的增多。推測(cè)原因可能為:2周的高鐵飲食給小鼠腸道造成了一種應(yīng)激狀態(tài),腸道中的細(xì)菌無(wú)法立即適應(yīng),引起腸道的炎癥反應(yīng),從而引發(fā)腸道中機(jī)會(huì)致病菌如大腸桿菌等的大量繁殖。近年來(lái),關(guān)于鐵和腸道菌群的研究越來(lái)越多,盡管這些研究在動(dòng)物的選擇上以及處理方法上存在很大差異,但可以確定的是,對(duì)于大多數(shù)腸道革蘭陰性菌(如致病大腸桿菌、沙門菌)來(lái)說(shuō),鐵過(guò)量吸收在其增殖分化過(guò)程中起著至關(guān)重要的作用[25]。
綜上所述,在高鐵飲食2周后,小鼠腸道致病菌大腸桿菌的豐度顯著增加,但這對(duì)小鼠腸道功能有何種影響還有待進(jìn)一步研究。
[參考文獻(xiàn)]
[1] YILMAZ B, LI H. Gut microbiota and iron: the crucial actors in health and disease[J]. Pharmaceuticals (Basel, Switzerland), 2018,11(4):98.
[2] LIN Fei, WU Hao, ZENG Mingyong, et al. Probiotic/pre-biotic correction for adverse effects of iron fortification on intestinal resistance to Salmonella infection in weaning mice[J]. Food amp; Function, 2018,9(2):1070-1078.
[3] KORTMAN G M, RAFFATELLU M, SWINKELS D W, et al. Nutritional iron turned inside out: intestinal stress from a gut microbial perspective[J]. FEMS Microbiology Reviews, 2014,38(6):1202-1234.
[4] HEINTZ-BUSCHART A, PANDEY U, WICKE T, et al. The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder[J]. Movement Disorders, 2018,33(1):88-98.
[5] GHAISAS S, MAHER J, KANTHASAMY A. Gut micro-biome in health and disease: linking the microbiome-gut-brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases[J]. Pharmacology amp; Therapeutics, 2016,158:52-62.
[6] CAO K H, ZHANG H H, HAN H H, et al. Effect of dietary protein sources on the small intestine microbiome of weaned piglets based on high-throughput sequencing[J]. Letters in Applied Microbiology, 2016,62(5):392-398.
[7] DOSTAL A, CHASSARD C, FLORENTINE M H, et al. Iron depletion and repletion with ferrous sulfate or electrolytic iron modifies the composition and metabolic activity of the gut microbiota in rats[J]. The Journal of Nutrition, 2012,142(2):271-277.
[8] KORTMAN G M, BOLEIJ A, SWINKELS D W, et al. Iron availability increases the pathogenic potential of salmonella typhimurium and other enteric pathogens at the intestinal epithelial interface[J]. PLoS One, 2012,7(1):e29968.
[9] SAMPSON T R, DEBELIUS J W, THRON T, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease[J]. Cell, 2016,167(6):1469-1480.
[10] LEIMBACH A, HACKER J, DOBRINDT U. E. coli as an all-rounder: the thin line between commensalism and pathogenicity[J]. Current Topics in Microbiology and Immunology, 2013,358:3-32.
[11] BUHNIK-ROSENBLAU K, MOSHE-BELIZOWSKI S, DANIN-POLEG Y, et al. Genetic modification of Iron metabolism in mice affects the gut microbiota[J]. Biometals: an International Journal on the Role of Metal ions in Biology, Biochemistry, and Medicine, 2012,25(5):883-892.
[12] ELLI M, ZINK R, RYTZ A, et al. Iron requirement of Lactobacillus spp. in completely chemically defined growth media[J]. Journal of Applied Microbiology, 2000,88(4):695-703.
[13] NAIKARE H, PALYADA K, PANCIERA R, et al. Major role for FeoB in campylobacter jejuni ferrous iron acquisition, gut colonization, and intracellular survival[J]. Infection and Immunity, 2006,74(10):5433-5444.
[14] 劉魯林,李然,常欣,等. 羰基鐵粉在安全毒理學(xué)與鐵營(yíng)養(yǎng)強(qiáng)化劑應(yīng)用方面的研究進(jìn)展[J]. 中國(guó)食品添加劑, 2010(5):176-181.
[15] 薛波,周囡囡,崔俊濤,等. 小鼠α-syn基因敲除對(duì)高鐵所致黑質(zhì)酪氨酸羥化酶表達(dá)降低影響[J]. 青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2018,54(1):23-25,29.
[16] LIU Haixia, LU Jia, CHEN Xiaoyan, et al. The Kv7/KCNQ channel blocker XE991 protects nigral dopaminergic neurons in the 6-hydroxydopamine rat model of Parkinson’s disease[J]. Brain Research Bulletin, 2018,137:132-139.
[17] CAIRO G, BERNUZZI F, RECALCATI S. A precious metal: iron, an essential nutrient for all cells[J]. Genes amp; Nutrition, 2006,1(1):25-39.
[18] CAPPELLINI M D, COHEN A, PIGA A, et al. A phase 3 study of deferasirox (ICL670), a once-daily oral iron chelator, in patients with beta-thalassemia[J]. Blood, 2006,107(9):3455-3462.
[19] 姜懿宸. 過(guò)量鐵攝入對(duì)大鼠腸道黏膜及腸道菌群影響的研究[D]. 青島:青島大學(xué), 2017.
[20] ANDRE G B, JEAN-PAUL M, ALLAIN T, et al. Pathobiont release from dysbiotic gut microbiota biofilms in intestinal inflammatory diseases: a role for iron[J]? Journal of Biomedical Science, 2019,26(1):1.
[21] ANDREWS S C, ROBINSON A K, RODRGUEZ-QUIO-NES F. Bacterial iron homeostasis[J]. FEMS Microbiology Reviews, 2003,27(2/3):215-237.
[22] MULEVICIENE A, D’AMICO F, TURRONI S, et al. Iron deficiency anemia-related gut microbiota dysbiosis in infants and young children: a pilot study[J]. Acta Microbiologica et Immunologica Hungarica, 2018,65(4):551-564.
[23] BENONI G, CUZZOLIN L, ZAMBRERI D, et al. Gastrointestinal effects of single and repeated doses of ferrous sulphate in rats[J]. Pharmacological Research, 1993,27(1):73-80.
[24] JAEGGI T, KORTMAN G M, MORETTI D, et al. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants[J]. Gut, 2015,64(5):731-742.
[25] ANDERSON R C, COOKSON A L, MCNABB W C, et al. Lactobacillus plantarum DSM 2648 is a potential probiotic that enhances intestinal barrier function[J]. FEMS Microbiology Letters, 2010,309(2):184-192.
(本文編輯 馬偉平)