亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Entropy,Fisher Information and Variance with Frost-Musulin Potenial

        2016-05-28 11:56:30IdiodiandOnate
        Communications in Theoretical Physics 2016年9期

        J.O.A.Idiodi and C.A.Onate

        Physics Department,University of Benin,Benin,Nigeria

        1 Introduction

        There has been a great interest in studying information theoretic measures for different quantum systems because the information theory of quantum-mechanical systems are related to the modern quantum communication and density functional methods.[1?2]The quantum information plays a crucial role in the measurement of uncertainty and other quantum parameters of the system.[2]The information entropy is a superior measure of spreading and then of quantum uncertainity,a property of fundamental relevance for the adequate characterization of the position and momentum densities.[3?5]The entropies have been used for numerous practical purposes e.g.measure the squeezing of quantum fluctuation[6]and to reconstruct the charge and momentum densities of atomic and molecular systems[7?8]by means of maximum entropy procedures.The Fisher information is the basic variable of the principle of extreme physical information which has been used to obtain various fundamental equations of motion in physics.[9]It is equally being used to rederive classical thermodynamics without the usual concept of Boltzmann’s entropy.It is understood that the position-space Shannon entropyS(ρ)measures the uncertainity in the localization of a particle in space while the momentum-spacenthe Shannon entropy measures the uncertainity in predicting the momentum of the particle.[10]These entropies are closely related to fundamental and experimentally measurable quantities such as the kinetic energy and magnetic susceptibility,which make them useful in the study of the structure and dynamics of atomic and molecular systems.[8]Thus in this paper,we calculate both the position and momentum of the Shannon entropy and Renyi entropy,the Fisher information and Variance of a system and the observed behavior of these quantities with the quantum numbern.We compute the wave function in Sec.2.In Sec.3,we show the basic equation in this work.Section 4 presents the Shannon,Renyi entropies,Fisher information and variance.In the fi nal section,we give the conclusion.

        2 Wave Function of Radial Schrdinger Equation with Frost-Musulin Potential

        Given the Radial Schrdinger Equation as[11]

        and the Frost–Musulin potential as

        where

        Substitute Eqs.(2)and(3)into Eq.(1)and by defining a variable of the formy=e?δr,we have a differential equation of the form

        where

        The wave function is obtained as

        where

        3 Basic Equations

        In this section,we write some equations that are useful in this work.The Shannon information entropyS(ρ)andS(γ)of the electron densityρ(r)in the coordinate space for position and momentum space respectively are defined as[12?14]

        whereγ(p)denotes the momentum density.The Renyi position entropy is defined as[15?18]

        It is a generalization of the Shannon entropy.The corresponding momentum space entropy is given as[14]

        The Fisher information entropy of the radial probability distributionρ(r)function is calculated by using[19]

        The position Variance is given as[19]

        4 Frost-Musulim Potential with Shannon Entropy,Renyi Entropy,Fisher Information and Variance

        To obtain the Shannon and Renyi entropies in the position space,we define the radial probability distribution functionρ(r)for this problem as the square of the radial wave function and obtain the following

        where,

        4.1 Shannon Entropy for the Frost-Musulin Potential

        Entropy is a thermodynamic quantity representing the unavailability of a system’s thermal energy for conversion into mechanical work.It is often interpreted as the degree of disorder or randomness in the system.Shannon entropy is the expected value or average of the information contained in each message.It measures the information in a message as opposed to the portion of the message that is determined.Shannon entropy can determine the minimum channel capacity required to reliably transmit the source as encoded binary digit.

        To obtain the position space for the Shannon entropy,we substitute Eq.(14)into Eq.(8)and have

        where we have used the following for mathematical simplicity;

        By using the identity in Appendix B and standard integral in Appendix A,we obtain the Shannon entropy in the position space as

        whenn=1,

        The momentum space of the Shannon entropy is obtained by substituting Eq.(15)into Eq.(9)to have

        where=lnγ(p).Using the relation in Appendix B and integral in Appendix A,we obtain the Shannon entropy in the momentum space as

        4.2 Renyi Entropy for the Frost-Musulin Potential

        To obtain the position-space for the Renyi-entropy,we substitute Eq.(14)into Eq.(10)to have

        The Renyi entropy in the momentum space is obtained by substituting Eq.(15)into Eq.(11)to have

        which gives

        4.3 Fisher Information Entropy for the Frost-Musulin Potential

        To obtain the Fisher information entropy,we substitute Eq.(14)into Eq.(13)and then solve it bit by bit as follows

        where

        Thus,we obtain the Fisher information entropy as

        4.4 Variance with Frost-Musulin Potential

        Using Eq.(13),we obtain the following

        Here,we obtain the information content in terms of the Shannon entropy and Renyi entropy.The information content in terms of Shannon entropy is given as

        Equation(32)thus gives the uncertainty relation.The information content in terms of Renyi entropy is defined as

        5 Conclusion

        In this paper,we have calculated the position-space and momentum-space of the Shannon entropy and Renyi entropy,the Fisher information and the variance of the Frost-Musulin potential.The information-theoretic measures of the localization of the quantum-mechanical distribution density of the system are obtained in a closed and compact form.The Shannon entropy gives the average of information contained in each message in any quantum mechanical system.The Fisher information describes the concentration of the density around its nodes,providing a measure of the oscillatory character of the corresponding wave function.This describes the chemical and physical properties of the systems.The computed variance gives the spreading around the centroid.However,we have computed the Shannon entropy,the Renyi entropy,the Fisher information and variance for various values ofn.It is observed that the Shannon entropy,the Renyi entropy,the Fisher information and variance all decrease with increasing quantum numbernrespectively.

        Appendix A

        Appendix B

        [1]E.Romera,P.Sanchez-Moreno,and J.S.Dehesa,Chem.Phys.Lett.414 (2005)468,doi: 10.1016/j.cplett.2005.08.032

        [2]B.J.Falaye,F.A.Serrano,and S.H.Dong,Phys.Lett.A(2015),doi:org/10.1016/j.physleta.2015.09.029.

        [3]P.Hohenberg and W.Kohn,Phys.Rev.A 136(1964)864,doi:10.1103/PhysRevA.136.B864.

        [4]P.G.Parr and W.Yang,Theory of Atoms and Molecules,Oxford University Press,Oxford(1989).

        [5]N.H.March,Electron Density Theory of Atoms and Molecules,Academic Press,New York(1992).

        [6]A.Orlowski,Phys.Rev.A 56(1997)2545.

        [7]A.Galindoand P.Pascual,QuantumMechanics,Springer,Berlin(1978).

        [8]J.C.Angulo,J.Antolin,A.Zarzo,and J.C.Cuchi,Eur.Phys.J.D 7(1999)479.

        [9]B.R.Frieden,Science from Fisher Information,Cambridge University Press,Cambridge(2004).

        [10]J.S.Dehesa,A.Martinez-Finkelshtein,and J.Snchez-Ruiz,J.Comput.Appl.Math.133(2001)23,doi:Pll s0377-0427(00)00633-6.

        [11]S.M.Ikhdair,M.Hamzavi,and B.I.Ita,Phys.Scr.85(2012)045009,doi:10.1088/0031-8949/85/04/045009

        [12]K.D.Sen and J.Katriel;J.Chem.Phys.125(2006)074117,doi.org/10.1063/1.2263710.

        [13]W.A.Yahya,K.J.Oyewumi,and K.D.Sen,J.Math.Chem.(2016),doi.10.1007/s10910-016-0657.

        [14]J.S.Dehesa,R.J.Yanez,A.I.Aptekarev,and V.Buyarov,J.Math.Phys.39(1998)3050,doi:10.1063/1.2190-335

        [15]E.Romera and A.Nagy,Phys.Lett.A 372(2008)6823,doi:10.1016/j.physleta.2008.10.027.

        [16]S.Lopez-Rosa,J.C.Angulo,J.S.Dehesa,and R.J.Yanez,Phys.Lett.A.387(2008)2243.doi:10.1016/j.physa2007.12.005.

        [17]F.de los Santos,C.Guglieri,and E.Romera,Physica E 42(2010)303,doi:10.1016/j.physe 2009.06.078.

        [18]A.I.Aptekarev,J.S.Dehesa,and A.Martinez-Finkelshtein,J.Comput.Appl.Math.233(2010)1355,doi.org/10.1090/jams/853.

        [19]B.J.Falaye,K.J.Oyewumi,S.M.Ikhdar,andM.Hamzavi, Phys. Scr. 89 (2014) 115204, doi:10.1088/0031.8949/89/1152204.

        [20]J.S.Dehesa,A.Martinez-Finkelshtein,and V.N.Sorokin,Mol.Phys.34(2006)613.

        亚洲福利视频一区二区三区| 久热香蕉视频| 麻豆精品国产精华精华液好用吗| 国产白嫩美女在线观看| 亚洲男人天堂av在线| 91九色精品日韩内射无| 欧美黑人巨大videos精品| 久人人爽人人爽人人片av| 少妇人妻200篇白洁| 国产免费播放一区二区| 97碰碰碰人妻视频无码| 福利视频偷拍一区二区| 精品国偷自产在线视频九色| 精品久久亚洲中文无码| 午夜亚洲国产精品福利| 色偷偷av一区二区三区人妖 | 国产精品一区二区三区播放| 女人色熟女乱| 中文字幕av日韩精品一区二区| 国产精品制服一区二区| 日本成人午夜一区二区三区| 无码人妻丰满熟妇啪啪网站 | 日韩大片高清播放器大全| 久久久久99精品成人片直播| 国产内射合集颜射| 日韩女优一区二区视频| 国产一区亚洲二区三区极品| 男女做爰猛烈啪啪吃奶动| 久久午夜伦鲁片免费无码| 亚洲欧洲综合有码无码| 国产精品人成在线765| 音影先锋中文字幕在线| 色噜噜狠狠一区二区三区果冻| 五月天激情综合网| 中文字幕国内一区二区| 一区二区三区精品少妇| 女性女同性aⅴ免费观女性恋| 无码专区中文字幕DVD| 日韩人妻无码中文字幕一区| 美腿丝袜在线观看视频| 久久精品国产亚洲av电影网|