楊文君
中山市中珠排洪渠工程管理中心,中國·廣東 中山 528400
論文綜述了計算流體力學(computational fluid dynamics,簡稱CFD),尤其是在水利領域的近四年內的發(fā)展成果,分別從網(wǎng)格技術、無網(wǎng)格技術、計算方法以及計算模型等方面進行了論述。
計算流體力學;網(wǎng)格技術;數(shù)值格式;湍流模型;大渦模擬
計算流體力學是流體力學的一個分支,用來求解固定幾何形狀空間內的流體的動量、熱量和質量方程以及相關的其他方程,并通過計算機模擬獲得某種流體在特定條件下的有關信息。技術的發(fā)展促進了計算流體力學不斷發(fā)展[1]。
網(wǎng)格技術方面,網(wǎng)格的合理設計和高質量的生成是CFD計算的前提條件。計算網(wǎng)格可分為以下幾類:(1)結構網(wǎng)格;(2)非結構網(wǎng)格;(3)基于充分發(fā)揮結構網(wǎng)格和非結構網(wǎng)格各自優(yōu)點的思想的混合網(wǎng)格;(4)重疊網(wǎng)格。
朱金和等采用基于混合網(wǎng)格的有限控制體積法對杜家臺蓄滯洪區(qū)進行數(shù)值模擬[2]。由于四邊形結構網(wǎng)格能較好順應水流方向同時減少網(wǎng)格數(shù)量,非結構三角形網(wǎng)格能較好處理分洪民垸的復雜地形、順應蓄滯洪區(qū)圍堤走向及對圍堤附近的局部網(wǎng)格進行加密。并根據(jù)實測資料進行驗證計算,發(fā)現(xiàn)混合網(wǎng)格的有限控制體積法對蓄滯洪區(qū)水流運動進行計算可以減小計算工作量并且獲得精度盡可能高的計算成果。張細兵等采用基于混合網(wǎng)格的有限控制體積法對荊江分洪區(qū)進行洪水演進過程中泥沙輸移和河床沖淤變形的同步模擬[3]。因為非結構三角形網(wǎng)格能較好擬合復雜的水域邊界,并能自由對重點區(qū)域進行加密處理,所以能模擬分洪過程。國際上許多學者的分蓄洪區(qū)洪水演進的研究大都采用結構化網(wǎng)格,一般未考慮河床沖淤變形問題,該文的創(chuàng)新之處在于采用非結構網(wǎng)格并且考慮了河床沖於變形問題。其中,在CNKI 上將主題詞或關鍵詞限制為重疊網(wǎng)格,將時間限制為2010年至2014年,未找出重疊網(wǎng)格在水利方面的應用,大多數(shù)集中在航天領域。
在網(wǎng)格技術方面上,水利方面近年發(fā)展的較多的網(wǎng)格是混合網(wǎng)格,這種網(wǎng)格技術優(yōu)點比較突出:計算精度和效率高、網(wǎng)格生成簡單、人工工作量小。重疊網(wǎng)格的優(yōu)點比較適合航空航天的領域,在水利方面的研究較少。
20世紀70年代發(fā)展起來的無網(wǎng)格方法,由于其節(jié)點間沒有拓撲連接關系,避免了傳統(tǒng)方法在求解時不斷重分網(wǎng)格所帶來的精度降低及計算復雜性增加等問題。目前,無網(wǎng)格方法的研究與應用主要集中在計算固體力學等領域,在計算流體力學領域的應用仍處于摸索階段。目前己經(jīng)提出了一系列無網(wǎng)格方法,從近似函數(shù)的逼近方案可將其分為以下幾類。
第一,基于核近似的無網(wǎng)格方法,如光滑質點流體動力學方法(Smoothed Particle Hydrodynamics,SPH)、再生核粒子方法、移動粒子半隱式方法等(Moving Particle Semi-Implicit,MPS)??娂獋惖热私⒘烁咚倩聣K體運動模型對高速滑坡產生的巨大涌浪進行全程預測[4],對滑坡沖擊產生的水體運動,根據(jù)可壓縮流連續(xù)方程和Navier-Stokes 方程由SPH 法求解,將所得初始涌浪高度、波浪爬坡高度與其他理論方法得到的結果進行了比較,結果表明該方法能夠模擬滑坡涌浪運動過程,SPH 法適合模擬具有瞬時大變形等物理力學問題。何濤等在流體微可壓縮的假定下,運用SPH 方法模擬了二維自由表面流動問題,發(fā)現(xiàn)計算結果與實驗數(shù)據(jù)吻合,計算精度理想,且消除了流體粒子附著在邊界上的不合理現(xiàn)象。張馳等將SPH 方法和MPS 方法模擬潰壩問題的比較分析[5],發(fā)現(xiàn)SPH 方法易于給出更為清晰、光滑的自由面形狀,而MPS 方法給出的粒子分布較為凌亂;在收斂性上,隨著初始粒子間距的減小,SPH 和MPS 均趨于收斂,但MPS 方法收斂得更快些;對于時間步長,在滿足CFL 條件且計算穩(wěn)定的情況下,對結果影響不是很大;在計算效率上,SPH 方法具有較高的效率,適合求解大型復雜流動問題,而MPS 方法計算量較大,為具體問題計算選用不同的無網(wǎng)格粒子方法提供了選擇依據(jù)。
第二,基于最小二乘近似的無網(wǎng)格方法,如擴散單元法、無網(wǎng)格Galerkin 方法、有限點方法、局部邊界積分方程法、無網(wǎng)格局部Petrov-Galerkin 方法、最小二乘無網(wǎng)格方法、最小二乘配點無網(wǎng)格方法以及加權最小二乘無網(wǎng)格方法等。
第三,基于徑向基函數(shù)近似的無網(wǎng)格方法,如局部徑向點插值方法等。
第四,基于單位分解法近似的無網(wǎng)格方法,如單位分解方法等[6]。
在無網(wǎng)格方面上,水利使用的較多的方法是光滑粒子流體動力學方法(SPH),無網(wǎng)格方法在水動力學領域的應用剛剛起步。
計算方法(或稱計算格式)方面,理想的CFD 計算方法應該是高精度、高效率、高可靠性。CFD 格式盡管種類繁多、發(fā)展迅速,但是認為典型的CFD 空間離散方法主要包括兩個方面。
第一,插值方法。例如,WENO 格式、緊致格式。武從海等針對WENO 格式的構造,得到了新的WENO 權因子計算方法。發(fā)現(xiàn)新的WENO 格式對于連續(xù)波形的模擬要優(yōu)于原格式。王坪等建立了一種基于投影法的求解不可壓縮Navier-Stokes(N-S)方程的高精度緊致差分格式[7]。在時間上采用Kim 和Moin 二階投影法離散,在空間上采用高精度緊致格式離散,并提出了一種新的離散壓力邊界的緊致格式,同時對計算結果進行分析以驗證該投影法的精度和格式穩(wěn)定性。發(fā)現(xiàn)Kim 和Moin 投影法能使得壓力場和速度場均達到時間二階精度,且高精度緊致格式投影法也具有空間高階精度。驅動方腔數(shù)值模擬結果顯示,對N-S 方程的離散格式具有很好的可靠性,適用于對復雜流體流動的小尺度問題的數(shù)值模擬和研究[8]。
第二,通量計算方法。通量計算方法大致分為中心格式和迎風格式,這類方法主要反映的是流動的物理性質。鄭國棟等選取上游流量下游水位的邊界條件和上游水位下游流量的邊界條件兩種不同邊界條件的經(jīng)典算例,建立一維非恒定流明渠模型,分別采用Abbott 六點中心格式、Preissmann 格式以及柯朗格式對算例進行模擬計算[9]。數(shù)值試驗比較發(fā)現(xiàn),Abbott 六點中心格式對邊界條件類型有較高的要求,為了保持格式的穩(wěn)定和準確性常常要避免上游水位、下游流量的邊界條件類型[10]。
在計算方法方面上,水利在完善計算方法上希望達到高精度、高效率以及高可靠性的目標。
在計算模型方面有兩大模式:(1)湍流模式。王春凌的碩士論文中采用不同的湍流模型對水下重力流進行數(shù)值計算模擬,并將湍流模型模擬數(shù)據(jù)與實驗數(shù)據(jù)進行對比從而確定模擬水下重力流的最佳湍流模型。(2)大渦模擬模型。白靜的博士論文建立了懸移質泥沙輸移的大渦模型及邊界條件,對水流運動、細顆粒泥沙在長槽道中的凈淤積和沖刷的情況進行模擬[11]。
在計算模型方面上,湍流模型上不存在普遍適用的優(yōu)秀湍流模型,在工程計算中存在多種湍流模型,但大都有適用的范圍。大渦模型在水利方面可以計算得出水流和泥沙輸運的瞬時規(guī)律[12]。