劉 鳴
(中國鐵建昆侖投資集團有限公司 四川成都 610000)
遠場地震與近場地震存在顯著差異,近遠場地震作用下土木工程結(jié)構(gòu)的響應差異已經(jīng)成了抗震研究的熱點之一。近年來,鋼桁拱橋因其施工簡便和跨越能力強等特點逐漸成為鐵路建設中跨越山谷、河道的典型結(jié)構(gòu)[1]。部分鋼桁拱橋常常包含多種類型構(gòu)件,而近遠場地震對不同類型構(gòu)件造成的損傷可能存在較大差異,因此需要深入探討。在此背景下,眾多學者針對大跨度鋼桁拱橋的抗震特性進行了廣泛研究,如陳麗君[2]采用反應譜法和時程分析法計算了一座大跨度上承式鋼桁拱橋在罕遇地震下的響應,對比了兩種方法的計算結(jié)果并得到橋梁大震不壞的結(jié)論;趙燦暉[3]針對上承式鋼桁拱橋采用時程分析方法得到了結(jié)構(gòu)在不同維度地震荷載作用下的內(nèi)力響應。盡管上述研究在鋼拱橋的地震響應特性、減震措施等方面都取得了較大進展,但是其激勵往往僅設置為1~3條地震;針對大跨度鋼桁拱橋的易損性分析較少,特別是在近遠場地震荷載對于易損性的影響以及橋梁多類型構(gòu)件的易損性差異方面;僅考慮單維地震荷載作用,關(guān)于雙向地震荷載作用下橋梁結(jié)構(gòu)易損性情況尚不明確。
針對上述問題,本文基于概率性地震需求分析(PSDA)方法,分析大跨度上承式鋼桁拱橋在雙向、近遠場地震作用下的易損性。借助OpenSEES開源平臺建立全橋模型;選擇適用于雙向地震損傷評價的應變指標進行損傷評估;全面考慮地震、損傷指標與橋梁結(jié)構(gòu)本身的不確定性,通過增量動力分析方法(IDA)生成地震樣本,利用LHS抽樣法獲得橋梁樣本;得到縱、橫以及雙向地震作用下橋梁關(guān)鍵構(gòu)件的損傷程度,以峰值加速度(PGA)作為地震強度參數(shù)繪制易損性曲線,對比分析橋梁在雙向、近遠場地震作用下的損傷概率。
本文對一座大跨度鐵路上承式鋼桁拱橋進行研究。橋梁跨度為490 m,主梁為梁高3 m的鋼箱梁,橋面寬度為24.9 m,孔跨布置為14×37.2 m;拱上墩采用鋼箱截面剛架墩;主拱圈為矢高109.5 m的提籃式鋼桁拱,拱肋截面為邊長2 m的矩形四片桁;交界墩為鋼筋混凝土剛架墩。
借助OpenSEES平臺建立橋梁彈塑性模型。全橋構(gòu)件由dispBeamColumn單元模擬,并劃分纖維截面。幾何非線性通過設置局部坐標實現(xiàn)。材料非線性通過設置非線性本構(gòu)實現(xiàn),鋼材采用雙線性模型steel02模擬;混凝土采用經(jīng)Scott修正的Kent-Park模型concrete02模擬;交界墩混凝土本構(gòu)參考文獻[4],拱腳混凝土采用Mander模型本構(gòu)[5];支座采用zeroLength單元模擬,邊界條件為全固結(jié)。全橋施加3%的瑞利阻尼。全橋模型見圖1。通過特征值分析,主要振型見圖2。
圖1 全橋模型
圖2 主要振型
通過非線性時程分析獲得橋梁地震響應(地震需求Y),Y的對數(shù)中位數(shù)與地震強度(X)的對數(shù)中位數(shù)服從線性關(guān)系[6],見式(1)。X與Y符合對數(shù)正態(tài)分布,構(gòu)件超過特定損傷指標(Z)的失效概率可以通過標準正態(tài)分布函數(shù)φ表示,見式(2)。將式(1)代入式(2),可以得到以X為自變量的易損性公式,見式(3)。
式中,y、x、z分別為Y、X、Z的中位數(shù);a和b為常數(shù);分別為Y和Z的對數(shù)標準差。
本文根據(jù)鐘劍[7]對PGA、PGV、Sa等參數(shù)的對比研究,選擇PGA作為地震強度參數(shù)。對于損傷指標的研究較多,主要分為單參數(shù)、雙參數(shù)損傷指標兩類。由于應變指標輸出簡單、概念清晰,并且適用于雙向地震損傷評價,因此本文選擇材料應變作為損傷指標,并將損傷分為基本完好、輕度損傷、中等損傷、嚴重損傷、倒塌五個等級。對于純鋼構(gòu)件,以1、2、8.4倍的鋼材屈服強度[8]作為劃分依據(jù);對于混凝土以第一極限狀態(tài)的壓應變限值、0.01、0.03、0.05作為劃分依據(jù)[9];對于鋼管混凝土構(gòu)件與鋼筋混凝土構(gòu)件的鋼材以屈服強度、0.01、0.03、0.05作為劃分依據(jù)。
(1)地震樣本的不確定性
通過收集大量地震記錄實現(xiàn)地震樣本的不確定性。本文選擇10條近場地震[10]與10條遠場地震[11],將地震的PGA通過IDA方法進行調(diào)幅,從0.1 g以步長0.1 g調(diào)幅至1.5 g,生成300條地震,其加速度反應譜見圖3。從圖3可以看出,近場地震在周期1~2 s范圍內(nèi)仍然具有較高的幅值,大跨度橋梁由于具有較大的自振周期會導致更強烈的地震響應。
圖3 地震加速度反應譜
(2)橋梁樣本的不確定性
真實橋梁結(jié)構(gòu)由于制造、安裝、環(huán)境變化等因素具有一定的不確定性,這些不確定性對地震易損性分析的影響不可忽略??紤]混凝土抗壓強度、鋼材屈服強度與彈性模量的不確定性,采用LHS抽樣方法[12]生成300個橋梁樣本與300條地震一一對應。
(3)損傷指標的不確定性
由于材料存在離散性,導致材料的損傷指標也具有不確定性。通過統(tǒng)計300個橋梁樣本的數(shù)據(jù),得出鋼材與混凝土損傷指標的中位數(shù)(z)與對數(shù)標準差(βz)。
對橋梁縱、橫、雙向(縱向+橫向)施加地震力,通過非線性時程分析,獲得最大響應。選取損傷最嚴重的純鋼構(gòu)件(跨中主梁與1/4拱肋)、鋼管混凝土構(gòu)件(拱腳)及鋼筋混凝土構(gòu)件(交界墩底部)進行分析。將其應變響應與PGA進行回歸分析,求得a、b、βy、βz并根據(jù)式(3)得出構(gòu)件的易損性曲線。
(1)純鋼構(gòu)件
圖4為純鋼構(gòu)件在近遠場地震作用下的構(gòu)件易損性曲線。由圖4可知,純鋼構(gòu)件在不同方向輸入地震時,縱向與雙向結(jié)果較為一致,雙向甚至略有減小,橫向最小??梢娸斎氪怪庇谥鲗Х较虻牡卣穑锌赡軙p弱主導方向地震的影響。大跨度橋梁橫向剛度較小,橫向周期較長,與地震的卓越周期差距較大,因此地震橫向輸入下純鋼構(gòu)件損傷概率基本為0。
圖4 純鋼構(gòu)件易損性曲線
對比純鋼構(gòu)件在近遠場地震作用下?lián)p傷概率,在PGA較小時差異很小,對于跨中主梁遠場損傷甚至超過近場,隨著PGA增大差異逐步增加??傮w而言,純鋼構(gòu)件輕微損傷概率最大為98%,發(fā)生中等及嚴重損傷可能性不大,展現(xiàn)出較好的抗震性。
(2)鋼管混凝土構(gòu)件
由圖5可知,鋼管混凝土構(gòu)件在地震不同方向輸入時,雙向損傷概率最大,橫向次之,縱向最小。雙向地震輸入能量較大,因此損傷概率最大,而橫向結(jié)果大于縱向,說明拱腳對于橫向地震作用更為敏感。對比鋼管與混凝土的易損性,混凝土損傷概率遠小于鋼管,拱腳的損傷主要由鋼管控制??梢妼τ阡摴芑炷翗?gòu)件,主要由鋼管通過變形承擔大部分地震荷載,混凝土受鋼管保護因此損傷概率較小。
圖5 鋼管混凝土構(gòu)件易損性曲線
對比近遠場地震作用結(jié)果,仍是近場地震造成的損傷概率大于遠場,鋼管與混凝土的結(jié)果差異都隨著PGA增大不斷增加,其中鋼管的差異比混凝土更大??偠灾?,拱腳的截面及材料設計較為保守,發(fā)生損傷可能性很低,最高的輕微損傷概率為82%,中等損傷基本不會發(fā)生。
(3)鋼筋混凝土構(gòu)件
由圖6可知,鋼筋在縱向和雙向地震作用下的損傷概率基本一致,而混凝土損傷概率卻顯著增加。這表明地震能量較低時,鋼筋可以通過自身的延性變形承擔地震荷載,但是隨著地震能量增大,混凝土參與到耗能中,由于材料的脆性會導致?lián)p傷快速發(fā)展并呈現(xiàn)非線性增長,因此會大大增加構(gòu)件中等與嚴重損傷概率。
圖6 鋼筋混凝土構(gòu)件易損性曲線
比較近遠場地震作用,近場地震造成的損傷概率基本大于遠場,不過在橫向地震作用下混凝土會得出相反結(jié)果,可見近場地震造成的損傷不一定比遠場大,對于橋梁不同構(gòu)件進行近遠場地震的分開討論是必要的?;炷岭S著PGA增大結(jié)果差異不斷增加,且隨著損傷等級加大差異減小。鋼筋在PGA為1.4 g附近,縱向與橫向地震損傷概率差異最大,為42%(縱向地震作用時)??傮w而言,交界墩損傷概率比前述構(gòu)件大,輕微損傷概率最高為98%,中等與嚴重損傷概率最高分別為23%和8%。
基于概率性地震需求分析法對大跨度鋼桁拱橋進行雙向、近遠場地震易損性分析,得到以下結(jié)論:
通過對比不同材料易損性差異發(fā)現(xiàn),低能量地震時,鋼材可以通過自身的良好延性變形承擔地震荷載,但是隨著地震能量增大,混凝土參與到耗能中,由于材料的脆性會導致?lián)p傷快速發(fā)展并呈現(xiàn)非線性增長,因此混凝土嚴重與中等損傷概率會超過鋼材。
比較近遠場地震作用,近場地震造成的損傷概率基本大于遠場地震。在同一損傷等級時,差異隨著PGA增加不斷增大。在同一PGA時,差異隨著損傷等級加大而減小。近遠場地震對于不同構(gòu)件與材料的損傷存在差異,構(gòu)件中交界墩損傷差異最大為42%,材料上對鋼材影響比混凝土大。
對于不同構(gòu)件,1/4拱肋與跨中主梁輕微損傷概率最高為98%,中等、嚴重損傷概率不高,展現(xiàn)出較好的抗震性。拱腳由于擁有強壯的截面以及高強度的材料,發(fā)生損傷可能性很低,輕微損傷概率最高為83%,基本不會發(fā)生中等損傷。交界墩損傷可能性比前述構(gòu)件高,輕微損傷概率最高為98%,中等與嚴重損傷概率最高分別為23%和8%。