亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        The variation of marine environment and climate eff ect in Indo-Pacifi c Ocean

        2020-02-28 09:23:42ZUOJunchengWANGWeiqiangWANGGuihuaXIEQiang
        Journal of Oceanology and Limnology 2020年6期

        ZUO Juncheng , WANG Weiqiang , WANG Guihua , XIE Qiang

        1 Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China

        2 State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China

        3 Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China

        4 Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China

        In the background of global change, the variability of the marine environment and the resulting climate eff ects in the Asia-Pacifi c region and the Indian Ocean have become increasingly prominent. The research on climate eff ects has great research signifi cance and national needs. In order to track and discuss major scientifi c and technological issues in the fi elds of marine environmental variability and climate eff ects, Zhejiang Ocean University and the South China Sea Institute of Oceanology, the Tidal and Sea Level Professional Committee of the Chinese Society of Oceanography, held the fi rst International Symposium at October 2018. Then the related special issue ofJournalofOceanographyandLimnologyis collected, to draw attention to some latest researches of marine environmental variability and climate eff ects in the Asia-Pacifi c and the Indian Ocean.

        The coastal China seas are highly productive areas, with many estuaries, bays, coral reefs and fi sheries, and they are the hot spots of global marine biodiversity. Tan et al. (2020) make an assessment on the future changes in marine environment, i.e., sea surface temperature (SST), salinity, dissolved oxygen (DO), sea water pH, and marine net primary productivity (NPP), in the coastal China seas over the 21stcentury, based on the outputs of Earth System Models. The results show that the East China Seas (ECS, including the Bohai Sea, Yellow Sea, and East China Sea) will be simultaneously exposed to enhanced warming, deoxygenation, acidifi cation, and decreasing NPP as a consequence of increasing greenhouse gas emissions. By the end of this century (2090–2099), SST will increase 3.24±1.23°C, the DO, pH, NPP will decline of -10.90±3.92 μmol/L (decrease of 6.3%), 0.36±0.02, -17.7±6.2 mg/(m2·d) (decrease of 12.9%), respectively, relative to the current levels (1980–2005). These changes will induce considerable biological and ecological responses, and making the ECS among the most vulnerable ocean areas to future climate change.

        As one of the most complicated components of the Earth’s climate system, the Asian summer monsoon (ASM), which fi rstly establishes over the southeastern Bay of Bengal (BOB), aff ects the social activities and economy in Asia. The eff ects of spring warm pool in the BOB on the monsoon onset vortex (MOV) are well discussed, but the feedback of BOB MOV on the evolution of local SST with the barrier layer is still lack of research. In this special issue, Xu et al. (2020) used 2003 spring’s NCEP GODAS reanalysis data to revisit how the BOB MOV infl uences the heat budget in the upper ocean with a barrier layer, and to explore interaction between MOV and BOB SST by consideration of the solar radiation fl ux penetrating the mixed layer and the existence of barrier layer.

        ENSO is another prominent climate signal; it induces extreme weather and infl uences the global climate system profoundly. It is necessary and important to improve the prediction skills of El Ni? o events. While the prediction skills of spring predictability barrier (SPB) related El Ni? o events depending on the sensitive area’s selection, Zhou et al. (2020) defi ned subsurface of the eastern tropical Indian as the sensitive area. Using the targeted observations to the sensitive area, the SPB-related prediction skills are improved by 20.3% in general and 25.2% while added the tropical Indian ocean.

        As an air-sea interaction processes, Tropical Cyclones (TCs) intensity change is aff ected by the ocean. Currently, compared to TC’s track forecast, the forecast of TC’s intensity accuracy, especially in the western boundary current area. Yu et al. (2020) statistically analyze intensity variety before and after the TCs in the East China Sea (ECS) passing over the Kuroshio. During 1949 to 2016, there are totally 81 TCs passing over the Kuroshio, can be divided as three types, intensifi ed TCs (31), maintained TCs (28) and weakened TCs (22). TCs with the center translational speed among 1–8 m/s and the distance from the Kuroshio main axis is 10–75 km are intensifi ed more signifi cantly. Hu et al. (2020) conduct Typhoon Talim in 2017 as a case study, to investigate the interaction between surface currents and typhoon induced wave distributions. Typhoon Talim’s track consistent with the Kuroshio track, the wind-induced current around typhoon eye near Kuroshio can reach to 1.5 m/s. The root mean square error of signifi cant wave height (SWH) was 0.34 m, the SWH is positively correlated with high speed wind-induced current. The interaction between surface current and the wind-sea portion of the wave system can infl uence the distribution of typhoon waves.

        The ability of mesoscale eddies to carry drifters has been studied in the northwest Pacifi c (99°E–180°E, 0°–66°N) during 1993–2015 by Wang et al. (2020). In most cases, drifters trapped by eddies with daily rotation angle ≤90° around the eddy center, the drifters near eddy centers can be trapped for a longer time, and they tend to travel for a longer time in normalized eddy radii between 0.41–0.76. In the tropical ocean and Subtropical Countercurrent, cyclones and anticyclones have similar carrying capability, while cyclonic (anticyclonic) eddies have stronger carrying capability in Southern (Northern) Kuroshio Extension. The carrying days are longer when the Rossby number is smaller. Dai et al. (2020) analyzed an observed anticyclonic eddy’s spatiotemporal variation of 3D structure and heat, salt and dissolved oxygen transport. This eddy survived for 269 days and the mean radius is 91.5 km, it can reach to 1 000 m. The temperature and salinity anomaly cores located at 500–600 m, while the dissolved oxygen anomaly cores located at 250 m. The maximum heat, salt and oxygen transport were 9.37×1011W, 3.08×103kg/s, and 2.70×102kg/s, respectively.

        Fan et al. (2020) evaluated the China Ocean Reanalysis (CORA) in the South China Sea. Compared with in situ observational data, such as Argo profi ling fl oats, drifters and cruise data, temporal and spatial distribution characteristics of temperature, salinity, current and mixed layer depths using CORA data are studied. In 50–400 m in the SCS, the CORA temperature is colder in winter and warmer in summer and autumn, while for the CORA salinity in 0–150 m, it is higher in most time of the year. The mixed layer depths are shallower in both temporal and spatial distribution, for seasonal variations, they are shallower (deeper) in winter (summer). Near the coast, the CORA errors are greater, there exists a weaker SCS western boundary current.

        As research in the marine environmental variability and climate eff ects of the Asia-Pacifi c and the Indian Ocean, more distinct features of the climate changes, such as summer monsoon, ENSO and TCs, also eddies are revealed. Though some of our data and results are preliminary, we hope publications of this special issue will help to intrigue more interests and researches on climate changes in the Asia-Pacifi c and the Indian ocean.

        As the guest editors of this special issue, we want to thank the publisher, the editors of theJournalofOceanologyandLimnology, Dr. Roger Z. YU, Dr. CHEN Yang, Ms. CHEN Xiaoyu and other colleagues. They have been helping the editorial process and also off ering technical support. We also want to thank all the reviewers for their valuable comments that improved the quality of the papers. Many thanks to Zhejiang Ocean University and the South China Sea Institute of Oceanology, the Tidal and Sea Level Professional Committee of the Chinese Society of Oceanography for their support of this special issue.

        References

        Dai J, Wang H Z, Zhang W M, An Y Z, Zhang R. 2020. Observed spatiotemporal variation of three-dimensional structure and heat/salt transport of anticyclonic mesoscale eddy in Northwest Pacifi c.JournalofOceanologyandLimnology, 38(6): 1 654-1 675, https://doi.org/10.1007/s00343-019-9148-z.

        Fan M T, Wang H Z, Zhang W M, Han G J, Wang P Q. 2020. Evaluation of the China Ocean Reanalysis (CORA) in the South China Sea.JournalofOceanologyandLimnology, 38(6): 1 640-1 653, https://doi.org/10.1007/s00343-019-9146-1.

        Hu Y Y, Shao W Z, Shi J, Sun J, Ji Q Y, Cai L N. 2020. Analysis of the typhoon wave distribution simulated in WAVEWATCH- III model in the context of Kuroshio and wind-induced current.JournalofOceanologyandLimnology, 38(6): 1 692-1 710, https://doi.org/10.1007/s00343-019-9133-6.

        Tan H J, Cai R S, Huo Y L, Guo H X. 2020. Projections of changes in marine environment in coastal China seas over the 21stcentury based on CMIP5 models.JournalofOceanologyandLimnology, 38(6): 1 676-1 691, https://doi.org/10.1007/s00343-019-9134-5.

        Wang H Z, Liu D, Zhang W M, Li J X, Wang B. 2020. Characterizing the capability of mesoscale eddies to carry drifters in the northwest Pacifi c.JournalofOceanologyandLimnology, 38(6): 1 711-1 728, https://doi.org/10. 1007/s00343-019-9149-y.

        Xu K, Liu B Q, Liu Y, Wang W Q, He Z Q. 2020. Eff ects of monsoon onset vortex on heat budget in the mixed layer of the Bay of Bengal.JournalofOceanologyandLimnology, 38(6): 1 616-1 631, https://doi.org/10.1007/s00343-019-9061-5.

        Yu Y, Dong C M, Shan H X, Zou B. 2020. Statistical analysis of intensity variations in tropical cyclones in the East China Sea passing over the Kuroshio.JournalofOceanologyandLimnology, 38(6): 1 632-1 639, https://doi.org/10.1007/s00343-019-9069-x.

        Zhou Q, Duan W S, Hu J Y. 2020. Exploring sensitive area in the tropical Indian Ocean for El Ni? o prediction: implication for targeted observation. 2019.JournalofOceanologyandLimnology, 38(6): 1 602-1 615, https://doi.org/10.1007/s00343-019-9062-4.

        亚洲女同一区二区久久| 无码人妻久久一区二区三区不卡 | 无码国产精品一区二区高潮| 亚洲aⅴ无码日韩av无码网站| 久久一二三四区中文字幕| 精品国内日本一区二区| 色一情一乱一伦| 在线播放人成午夜免费视频| 国产不卡在线免费视频| 国内嫩模自拍偷拍视频| 国产精品无码无在线观看| 两个人看的www中文在线观看| 国产桃色精品网站| 亚洲av激情一区二区| 精品人妻少妇嫩草av无码专区| 精品综合久久久久久97超人| 国语精品视频在线观看不卡| 人妻少妇精品视中文字幕免费| 亚洲日韩av一区二区三区中文| 少妇的丰满3中文字幕| 中文字幕乱码亚洲无线| 亚洲国产成人久久精品不卡 | 999久久久免费精品国产| 欧美高h视频| 亚洲不卡免费观看av一区二区| 午夜射精日本三级| 久久天天躁狠狠躁夜夜爽蜜月| 国产成人色污在线观看| 亚洲色图在线免费观看视频| 国产精品久久久久久婷婷| 亚洲精品亚洲人成在线下载| 人妻丰满精品一区二区| 亚洲综合激情另类小说区| 欧美日韩中文国产一区| 激情文学人妻中文字幕| 美女丝袜美腿玉足视频| 国产亚洲午夜高清国产拍精品| 国产亚洲高清不卡在线观看 | 手机在线观看免费av网站| 五级黄高潮片90分钟视频| 亚洲天天综合色制服丝袜在线|