亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        人工智能與密碼專欄序言(中英文)

        2020-02-28 02:57:09
        密碼學報 2020年4期
        關(guān)鍵詞:分類人工智能模型

        李 暉

        西安電子科技大學 網(wǎng)絡(luò)與信息安全學院, 西安710126

        人工智能是指由計算機展現(xiàn)出的類人智能, 機器學習是人工智能的重要應(yīng)用. 機器學習廣義上可以理解為基于已有的經(jīng)驗進行精準預(yù)測的計算方法. 當前學習算法已有了多種應(yīng)用, 例如文本分類、自然語言處理、語音識別與合成、光學字符識別、圖像識別和人臉檢測、游戲、醫(yī)療診斷、推薦系統(tǒng)、機器人等. 這些學習算法可以大致歸類為分類、回歸、排序、聚類、降維等等. 以神經(jīng)網(wǎng)絡(luò)為代表的深度學習在圖像分類、人臉識別、圖像和視頻生成、自然語言理解、語音識別等應(yīng)用中取得了巨大的成功, 人工智能已經(jīng)成為當前計算機科學最熱門的研究領(lǐng)域.

        機器學習從學習情景角度可以分為監(jiān)督學習、無監(jiān)督學習、半監(jiān)督學習、在線學習、強化學習、主動學習等. 影響機器學習性能和準確性的關(guān)鍵因素是數(shù)據(jù)樣本的可靠性和規(guī)模, 只有擁有大規(guī)模的正確數(shù)據(jù),才能保證高質(zhì)量的機器學習. 因此人工智能的數(shù)據(jù)安全保護是密碼學在人工智能安全領(lǐng)域的重要應(yīng)用方向. 當前的一個研究熱點是在機器學習的模型訓(xùn)練和推理階段利用同態(tài)加密、安全多方計算等新型密碼學機制, 保證在得到精確模型或者準確預(yù)測結(jié)果的同時, 不泄露用戶的數(shù)據(jù).

        由于人工智能可以幫助人們提高從大量數(shù)據(jù)中預(yù)測和發(fā)現(xiàn)模式的效率, 利用人工智能尋找具有良好密碼性質(zhì)的密碼部件, 或者在密碼分析過程中幫助發(fā)現(xiàn)密碼算法的設(shè)計規(guī)律, 乃至密碼硬件信息泄露的規(guī)律也是當前人工智能在密碼學研究領(lǐng)域的重要方向.

        本期專欄收錄了1 篇綜述和2 篇論文, 希望對人工智能與密碼相結(jié)合的研究起到促進作用.

        第一篇綜述性論文《面向加密數(shù)據(jù)的安全圖像分類模型研究綜述》對基于加密技術(shù)的圖像分類模型隱私保護做了全面調(diào)研, 從模型推理和模型訓(xùn)練兩個方面介紹了基于安全多方計算和同態(tài)加密等密碼應(yīng)用方案, 對相關(guān)方案進行了比較, 并對未來的研究方向進行了展望.

        第二篇論文《基于機器學習的公平數(shù)據(jù)交易》針對數(shù)據(jù)聚類、分類等大數(shù)據(jù)分析對數(shù)據(jù)可靠性和數(shù)據(jù)交易公平性的需求, 提出了基于機器學習的公平數(shù)據(jù)交易協(xié)議, 運用BP 神經(jīng)網(wǎng)絡(luò)和向量承諾協(xié)議實現(xiàn)數(shù)據(jù)持有者與數(shù)據(jù)消費者交易數(shù)據(jù)的可靠性驗證, 并結(jié)合智能合約達到了數(shù)據(jù)的公平性.

        第三篇論文《基于改進殘差網(wǎng)絡(luò)和數(shù)據(jù)增強技術(shù)的能量分析攻擊研究》則將人工智能用于密碼芯片的側(cè)信道攻擊. 提出了一種使用改進殘差網(wǎng)絡(luò)和數(shù)據(jù)增強技術(shù), 解決了小樣本訓(xùn)練問題, 減少了訓(xùn)練過程中過擬合現(xiàn)象的發(fā)生, 與卷積神經(jīng)網(wǎng)絡(luò)和多層感知器神經(jīng)網(wǎng)絡(luò)相比, 同等條件下測試精度提高了16.63% 和54.27%.

        由于篇幅所限, 本專欄在當前面向人工智能的密碼研究中只覆蓋了較窄的方面, 歡迎從事本方向研究的學者更多的向本刊投稿, 促進這一領(lǐng)域研究成果的交流, 推動人工智能領(lǐng)域密碼創(chuàng)新成果的實際應(yīng)用.

        Artificial intelligence refers to human-like intelligence exhibited by computers, and machine learning is an important application of artificial intelligence. In a broad sense, machine learning can be understood as a calculation method for accurate prediction based on existing experience. Current machine learning algorithms have been used in many applications, such as text classification, natural language processing, speech recognition and synthesis, optical character recognition, image recognition and face detection, games, medical diagnosis, recommendation systems, robots, etc. These learning algorithms can be roughly classified into classification, regression, ranking, clustering, dimensionality reduction, and so on. Neural networks based deep learning has achieved great success in image classification, face recognition, image and video generation, natural language understanding, speech recognition and other applications. Artificial intelligence has become the most popular research field in computer science.

        From the perspective of learning situations,machine learning can be divided into supervised learning, unsupervised learning, semi-supervised learning, online learning, reinforcement learning, active learning, etc. The key factor affecting the performance and accuracy of machine learning is the reliability and scale of data samples. Only with large-scale correct data can high-quality machine learning be guaranteed. Therefore, the data security protection of artificial intelligence is an important research direction of cryptography in the field of AI security. A current research hotspot is the use of new cryptographic mechanisms such as homomorphic encryption and secure multi-party computation(SMC) in the model training and inference stages of machine learning to ensure that accurate models or accurate prediction results are obtained without revealing user data.

        Because artificial intelligence can help people improve the efficiency of predicting and discovering patterns from large amounts of data,using artificial intelligence to find cryptographic components with good cryptographic properties, or to help discover the design rules of cryptographic algorithms in the process of cryptographic analysis,and even the information leakage of cryptographic hardware are also an important direction in the field of cryptography.

        This column contains 1 survey and 2 papers, hoping to promote research on the combination of artificial intelligence and cryptography.

        The first review paper “A Survey on Encrypted Image Recognition Models” conducted a comprehensive survey on the privacy protection of image classification models based on encryption technology.SMC and homomorphic encryption based cryptographic schemes are introduced from the perspective of model training and model inference. The cryptographic application schemes have been compared,and the future research directions have been prospected.

        The second paper “Fair Data Trading Based on Machine Learning” aims at data clustering, classification and other big data analysis requirements for data reliability and data transaction fairness,and proposes a fair data transaction protocol based on machine learning, using BP neural network.The Vector Commitment Protocol realizes the reliability verification of the transaction data between the data holder and the data consumer, and combines with the smart contract to achieve the fairness of the data.

        The third paper “Research on Power Analysis Attack Based on Improved Residual Network and Data Augmentation Technology” uses artificial intelligence for side channel attacks on cryptographic chips. It proposes an improved residual network and data augmentation technology, which solves the problem of small sample training and reduces the occurrence of overfitting during the training process.Compared with convolutional neural networks and multilayer perceptron neural networks,the accuracy of test is improved by 16.63% and 54.27% under the equivalent conditions.

        Due to space limitations, this column covers only a narrow aspect in the current artificial intelligence-oriented cryptographic research. Scholars engaged in this field of research are welcome to contribute more to this journal to promote the exchange of research results in this field, and promote practical application of cryptographic innovations in the field of AI.

        猜你喜歡
        分類人工智能模型
        一半模型
        分類算一算
        重要模型『一線三等角』
        重尾非線性自回歸模型自加權(quán)M-估計的漸近分布
        分類討論求坐標
        2019:人工智能
        商界(2019年12期)2019-01-03 06:59:05
        人工智能與就業(yè)
        數(shù)據(jù)分析中的分類討論
        教你一招:數(shù)的分類
        數(shù)讀人工智能
        小康(2017年16期)2017-06-07 09:00:59
        色综久久综合桃花网国产精品| 国产内射999视频一区| 人妻无码中文专区久久五月婷| 国产精品成人无码久久久久久| 婷婷久久亚洲中文字幕| 中文在线中文a| av无码免费永久在线观看| 日韩啪啪精品一区二区亚洲av| 精品久久免费国产乱色也| 永久免费毛片在线播放| 狠狠色噜噜狠狠狠狠色综合久| 亚洲精品国产品国语在线app| 亚洲av熟女天堂久久天堂| 人人妻人人澡人人爽人人精品av | 国产精品一区二区韩国AV| 成人性生交大片免费看7| 激情五月婷婷一区二区| 午夜视频一区二区三区四区| 人妻精品久久久久中文字幕69| 超碰97人人做人人爱少妇| 国产精品乱子伦一区二区三区| 中文字幕在线乱码日本| 久久亚洲欧美国产精品| 国产精品亚洲一区二区无码| 精品黑人一区二区三区| 一区二区三区中文字幕脱狱者 | 2021年性爱喷水视频| 日韩精品中文字幕一区二区| 亚洲人成77777在线播放网站| 欧美色欧美亚洲另类二区不卡| 日韩成精品视频在线观看| 激情人妻另类人妻伦| 欧美激情a∨在线视频播放| 日韩精人妻无码一区二区三区| 国产成人一区二区三区影院| 免费无码毛片一区二区app| 亚洲最大在线精品| 日本成人中文字幕亚洲一区| 97se亚洲国产综合自在线观看| 中国亚洲女人69内射少妇| 亚洲精品一区二区三区av|