曹丹,馬林龍,劉艷麗,龔自明,金孝芳
茶樹(shù)對(duì)硒吸收累積特性及其硒調(diào)控相關(guān)基因的表達(dá)分析
曹丹,馬林龍,劉艷麗,龔自明,金孝芳*
湖北省農(nóng)業(yè)科學(xué)院果樹(shù)茶葉研究所,湖北 武漢 430064
本文采用沙培試驗(yàn),從動(dòng)態(tài)角度研究了不同時(shí)間和不同濃度下茶樹(shù)對(duì)硒的吸收累積規(guī)律,并分析相關(guān)基因的表達(dá)特點(diǎn)。結(jié)果發(fā)現(xiàn),茶樹(shù)不同部位對(duì)硒的累積量存在較大差異,大部分硒保留在根部,在其體內(nèi)的遷移率較低,硒的累積量和外源硒濃度、培養(yǎng)時(shí)間顯著相關(guān);當(dāng)外源硒濃度在0~0.05?mmol·L-1時(shí),茶樹(shù)長(zhǎng)勢(shì)良好,但當(dāng)濃度高于0.10?mmol·L-1時(shí),茶樹(shù)表現(xiàn)出中毒癥狀。熒光定量PCR分析發(fā)現(xiàn),轉(zhuǎn)錄因子及茉莉酸信號(hào)途徑中的關(guān)鍵基因丙二烯環(huán)化氧化酶基因()和脂氧合酶基因()受到高濃度硒的誘導(dǎo)表達(dá),相關(guān)性分析表明,這3個(gè)基因的表達(dá)量與根系硒含量呈顯著正相關(guān)。本研究表明,茶樹(shù)各部位對(duì)硒的累積與外源硒濃度和培養(yǎng)時(shí)間顯著相關(guān),基因、和可能在該過(guò)程中發(fā)揮著重要作用。
茶樹(shù);硒;吸收累積;基因表達(dá)
硒是人體必需的微量元素,過(guò)量或不足均會(huì)導(dǎo)致機(jī)體產(chǎn)生疾病[1],近幾年由于其“雙刃劍”作用越來(lái)越受到關(guān)注。適量的硒可以清除人體內(nèi)的自由基,具有抗衰老和防癌抗癌等功效[2];在植物體內(nèi)有助于增強(qiáng)植物的抗逆性,提高品質(zhì)[3-5]。植物是人體攝取硒的主要來(lái)源,因此研究植物對(duì)硒吸收累積機(jī)理意義重大。
茶是世界上廣泛流行的飲品,茶樹(shù)富集硒的能力較強(qiáng),但其吸收、轉(zhuǎn)運(yùn)和分配的機(jī)制并不明確?;诖?,研究者相繼開(kāi)展了許多相關(guān)試驗(yàn),葉飛等[6]認(rèn)為茶樹(shù)對(duì)土壤中硒的吸收與土壤pH值有關(guān),pH在4.5~5.5區(qū)間內(nèi)有利于茶樹(shù)對(duì)硒的吸收。劉海燕等[7]通過(guò)檢測(cè)4個(gè)田間試驗(yàn)地12個(gè)樣點(diǎn)茶園土壤及其種植的茶葉樣品中的硒含量發(fā)現(xiàn),茶葉中的硒含量受茶園土壤硒含量、土壤質(zhì)地以及茶園溫濕度等多種環(huán)境因素共同影響。周超等[8]研究發(fā)現(xiàn),干旱脅迫也會(huì)影響茶樹(shù)對(duì)硒的吸收,當(dāng)土壤含水率為90%時(shí),茶樹(shù)根系硒的累積量最高。然而,因茶樹(shù)存在品種和生長(zhǎng)環(huán)境等因素的差異性,利用田間取樣分析的結(jié)果可能會(huì)有偏差,難以系統(tǒng)全面地揭示出茶樹(shù)對(duì)硒吸收累積的規(guī)律特征。本研究采用沙培試驗(yàn)?zāi)P?,探討茶苗?duì)硒的吸收、轉(zhuǎn)運(yùn)及累積的特性。實(shí)驗(yàn)室前期對(duì)水培茶樹(shù)進(jìn)行硒處理,取其根系和葉片進(jìn)行了轉(zhuǎn)錄組測(cè)序,對(duì)其差異基因進(jìn)行分析發(fā)現(xiàn),轉(zhuǎn)錄因子及茉莉酸信號(hào)途徑中的關(guān)鍵基因丙二烯環(huán)化氧化酶基因()和脂氧合酶基因()在硒處理后顯著上調(diào)表達(dá),推測(cè)這些基因與茶樹(shù)硒累積相關(guān)[9]。本試驗(yàn)將繼續(xù)對(duì)其在不同處理?xiàng)l件下表達(dá)情況進(jìn)行研究,探索其與茶樹(shù)硒累積的關(guān)系,有助于解析茶樹(shù)中硒元素的累積機(jī)理。
以金茗1號(hào)為試驗(yàn)材料,該品種是由本課題組采用系統(tǒng)選育的方法從群體種中育成的無(wú)性系優(yōu)良品種[10]。采用沙培培養(yǎng)的方式,基質(zhì)為潔凈河沙(沙粒直徑<1?mm),于烘箱中120℃烘干3?h,冷卻后裝入規(guī)格為24.2?cm× 17.4?cm×6.7?cm的藍(lán)色周轉(zhuǎn)箱,每箱2?800?g。硒源為Na2SeO3,培養(yǎng)液采用1/3 Hoagland營(yíng)養(yǎng)液[9,11],用NaOH和HCl調(diào)節(jié)pH至5.0左右,試驗(yàn)期間每3?d澆1次營(yíng)養(yǎng)液,每箱500?mL至澆透。
1.1.1 沙培時(shí)間對(duì)茶樹(shù)吸收累積硒的影響試驗(yàn)
幼苗取回后,用自來(lái)水清洗其根部的培養(yǎng)基質(zhì),然后在蒸餾水中潤(rùn)洗3次。選取長(zhǎng)勢(shì)一致的茶苗定植于周轉(zhuǎn)箱中,每箱6株。設(shè)置硒濃度為0.05?mmol·L-1,分別在培養(yǎng)0、1、2、4、8、12、24、48、96、192?h取樣,每次取出3箱,根部用蒸餾水清洗干凈后,將茶苗的幼根、嫩莖(一芽二葉以下約5?cm長(zhǎng)的莖段)、一芽二葉分裝用于硒含量測(cè)定,另取一部分根部液氮速凍并置于–80℃保存,用于硒調(diào)控相關(guān)基因的表達(dá)分析。
1.1.2 硒濃度對(duì)茶樹(shù)硒吸收累積的影響試驗(yàn)
選取長(zhǎng)勢(shì)一致,按照1.1.1章節(jié)所述方法清洗定植茶苗,設(shè)置0、0.01、0.03、0.05、0.10、0.30、0.50、1.00?mmol·L-1共8個(gè)硒濃度處理,每個(gè)處理3次重復(fù)。處理期間觀察并記錄茶苗形態(tài)變化,3?d后按1.1.1章節(jié)所述方法取樣保存。
采用HNO3-HClO4(∶=4∶1)消解,消解過(guò)程中溫度控制在180℃,將消解液置于6?mol·L-1的HCl中還原,冷卻后定容過(guò)濾,利用氫化物發(fā)生原子熒光光譜法(HG-AFS-8220)測(cè)定總硒含量[12]。
莖/根遷移系數(shù)=莖中硒含量/根中硒含量,葉/莖遷移系數(shù)=葉中硒含量/莖中硒含量[13]。
茶樹(shù)根系總RNA測(cè)定,采用EASYspin plus多糖/多酚復(fù)雜植物RNA快速提取試劑盒(北京艾德萊生物科技有限公司)提取,通過(guò)M-MLV逆轉(zhuǎn)錄試劑盒(上海英駿生物技術(shù)有限公司)逆轉(zhuǎn)錄為cDNA;采用KAPA SYBR?FAST qPCR Kit試劑盒()在ABI7500型熒光定量PCR儀()進(jìn)行定量PCR反應(yīng)。反應(yīng)體系為20?μL:2×KAPA SYBR?FAST qPCR Master Mix ABI Prism 10?μL,上、下游引物各0.4?μL,cDNA模板1?μL,PCR-grade water 8.2?μL。反應(yīng)步驟:95℃預(yù)變性3?min;95℃變性3?s,60℃退火30?s,72℃延伸30?s,40個(gè)循環(huán)。分別對(duì)各個(gè)樣品進(jìn)行溶解曲線分析,確定每對(duì)引物均為特異性擴(kuò)增,每個(gè)基因重復(fù)3次。
表1 qRT-PCR引物序列
采用Excel 2003和SPSS 19.0 Duncan新復(fù)極差法對(duì)硒含量進(jìn)行統(tǒng)計(jì)分析,并用Person相關(guān)性分析方法,分析7個(gè)時(shí)間點(diǎn)和6個(gè)濃度處理相關(guān)基因的表達(dá)與根部硒含量變化的相關(guān)性,檢驗(yàn)值<0.01,使用TBtools軟件繪制基因表達(dá)熱圖。
茶樹(shù)在硒濃度為0.05?mmol·L-1的沙培營(yíng)養(yǎng)液中培養(yǎng)0~192?h,茶樹(shù)幼根、嫩莖、一芽二葉中的硒含量及不同部位的遷移系數(shù)結(jié)果如圖1-A所示。在沙培時(shí)間0~4?h和8~48?h,根部硒含量接近直線增長(zhǎng)趨勢(shì)(硒含量=0.221?3+0.068?5,2=0.990?6;硒含量=0.067?6+0.848?9,2=0.927?4);而在48~192?h之間,硒含量不再繼續(xù)增加,維持在較高水平。
硒被茶樹(shù)根部吸收后,將繼續(xù)向莖部和葉片遷移。如圖1-A所示,莖部硒含量在0~24?h之間緩慢增長(zhǎng),在24~96?h也接近直線增長(zhǎng)的趨勢(shì)(硒含量=0.018?7-0.145,2=0.965?7),之后在96~192?h保持穩(wěn)定。葉部硒含量在0~24?h內(nèi)未有增加,在24~96?h亦以直線增長(zhǎng)趨勢(shì)(硒含量=0.001?7+0.075?3,2=0.989?7),在96~192?h呈現(xiàn)出根、莖相似的穩(wěn)定趨勢(shì),表明茶樹(shù)在該時(shí)間段可能處于硒吸收、轉(zhuǎn)運(yùn)與分配的動(dòng)態(tài)平衡中。另一方面,從圖1-B可知,外源硒促進(jìn)硒從根部向莖段以及從莖段向葉部的遷移,且隨著處理時(shí)間的延長(zhǎng),其遷移特征表現(xiàn)出降低的趨勢(shì)。
不同濃度硒處理茶樹(shù),根、莖和葉部硒含量及其遷移系數(shù)的變化如圖2所示。沙培茶樹(shù)3?d,硒濃度為0~0.03?mmol·L-1時(shí),茶樹(shù)根部硒含量呈直線增長(zhǎng)趨勢(shì)(硒含量=121.61+0.302?1,2=0.986?0),而莖段和葉部硒含量無(wú)顯著變化。當(dāng)硒濃度為0.03~0.05?mmol·L-1時(shí),根中的硒含量有所下降,同時(shí)根部到莖段的轉(zhuǎn)運(yùn)系數(shù)較之前有所提高,說(shuō)明這不僅與根部硒濃度有關(guān),還與硒從根部到地上部的轉(zhuǎn)運(yùn)相關(guān)。當(dāng)硒濃度在0.05~0.10?mmol·L-1時(shí),根、莖、葉硒含量均無(wú)顯著變化,說(shuō)明此時(shí)可能處于吸收、轉(zhuǎn)運(yùn)與分配的動(dòng)態(tài)平衡或飽和狀態(tài)。當(dāng)硒濃度為0.1~1.0?mmol·L-1時(shí),根莖葉各部位硒含量又接近直線增長(zhǎng)趨勢(shì)(硒含量=3.387+1.212?2,2=0.921?4;硒含量=3.786?2-0.158?2,2=0.993?5;硒含量=2.805?1-0.248?4,2=0.891?3),同時(shí)根系到莖段、莖段到葉部的遷移系數(shù)也呈上升趨勢(shì),說(shuō)明此時(shí)茶樹(shù)根部吸收、轉(zhuǎn)運(yùn)效率均較高。形態(tài)觀察發(fā)現(xiàn),茶樹(shù)在此濃度范圍內(nèi)出現(xiàn)危害癥狀,表現(xiàn)為根系由白色逐漸變紅,葉片發(fā)生褐變,先出現(xiàn)在主脈,再向側(cè)脈延伸,并伴有干枯甚至脫落現(xiàn)象。
熒光定量分析發(fā)現(xiàn)、、在不同硒濃度處理及同一濃度的不同處理時(shí)間下受到響應(yīng)。如圖3所示,當(dāng)茶樹(shù)處于低硒濃度(0~0.05?mmol·L-1)時(shí),茶樹(shù)根系中的這3個(gè)基因呈現(xiàn)正?;蚵韵抡{(diào)表達(dá)趨勢(shì),而根部的硒含量呈顯著上升的趨勢(shì)(圖2-A),表明這3個(gè)基因在此階段不參與調(diào)控硒累積;隨著硒濃度的提高(0.10~1.00?mmol·L-1),茶樹(shù)可能受到脅迫,從而激活體內(nèi)的某些調(diào)節(jié)機(jī)制,誘導(dǎo)轉(zhuǎn)錄因子以及茉莉酸信號(hào)途徑中的關(guān)鍵基因、的上調(diào)表達(dá),增強(qiáng)茶樹(shù)的抗逆性,從而使得根系中硒含量繼續(xù)增加?;?、、與茶樹(shù)根部硒含量的相關(guān)性分析見(jiàn)表2,基因、、的表達(dá)量與硒含量變化呈顯著正相關(guān),相關(guān)系數(shù)分別為0.802、0.723和0.781。
注:A:不同處理時(shí)間對(duì)茶樹(shù)根、莖、葉硒含量的影響,B:不同處理時(shí)間對(duì)硒根-莖與莖-葉遷移系數(shù)的影響
注:A:不同硒濃度處理對(duì)茶樹(shù)根、莖、葉硒含量的影響,B:不同硒濃度處理對(duì)硒根-莖與莖-葉遷移系數(shù)的影響
注:A:CsbHLH62、CsAOC、CsLOX6在硒濃度0.05?mmol·L-1不同處理時(shí)間的表達(dá)量分析,B:CsbHLH62、CsAOC、CsLOX6在不同濃度處理3?d的表達(dá)量分析
表2 硒含量與基因表達(dá)間相關(guān)系數(shù)
**表示<0.01顯著水平
**represents extremely significant difference at 0.01 level
硒是一種具有保健價(jià)值的營(yíng)養(yǎng)元素,植物中硒是人體攝取硒元素的主要途徑,因此植物對(duì)硒的吸收轉(zhuǎn)運(yùn)、代謝與累積一直都是研究熱點(diǎn)。目前還沒(méi)有充分證據(jù)證明硒是植物生長(zhǎng)必需的元素,但以往研究發(fā)現(xiàn)硒形態(tài)、施用方法及施用量等對(duì)茶樹(shù)產(chǎn)量和品質(zhì)有著顯著的影響[14-15]。植物吸收硒的主要形式是硒酸鹽和亞硒酸鹽[16],亞硒酸鹽易被金屬離子氧化物吸附形成難溶性的復(fù)合物,從而降低了硒的移動(dòng)性,而硒酸鹽則較容易運(yùn)轉(zhuǎn)且氧化性較強(qiáng),但易對(duì)植物的生長(zhǎng)造成毒害[17]。此外,硒酸鹽主要存在于堿性環(huán)境中,而亞硒酸鹽主要存在于酸性環(huán)境中[18],茶園土壤大多呈酸性,因而本試驗(yàn)采用亞硒酸鹽作為硒源。硒在植物體內(nèi)主要通過(guò)提高抗氧化能力來(lái)保護(hù)細(xì)胞,還對(duì)植物的光合作用和呼吸作用等過(guò)程有著積極的影響[19]。但是只有適量的硒含量才對(duì)植物有正面效應(yīng),若添加過(guò)量則對(duì)植物有毒害作用[20-21]。本試驗(yàn)也得出類似結(jié)論,當(dāng)硒濃度在0.10?mmol·L-1及以上時(shí),茶樹(shù)出現(xiàn)中毒跡象。我國(guó)絕大多數(shù)地區(qū)的茶園土壤都缺硒,添加外源硒是生產(chǎn)富硒茶的有效途徑之一。然而,由于茶樹(shù)對(duì)不同濃度硒的累積特性存在差異,故篩選合適的硒濃度至關(guān)重要。添加外源硒后,茶樹(shù)各部位的硒含量均能顯著增加,大體呈現(xiàn)根>莖>葉的趨勢(shì);周鑫斌等[22]研究發(fā)現(xiàn),添加亞硒酸鹽后,水稻各器官的硒含量表現(xiàn)為根>葉>莖,說(shuō)明不同植物對(duì)硒的分配規(guī)律有所差異。茶樹(shù)吸收的硒大部分都累積在根部,可能是因?yàn)閬單徕c被吸收后,先在根部轉(zhuǎn)化為其他硒化物再向地上部運(yùn)輸,而根系的吸收速率快于其轉(zhuǎn)化為可向地上部運(yùn)輸?shù)男螒B(tài),這與水稻、油菜及草莓等的研究結(jié)果一致[23-25]。
植物中硒吸收累積等過(guò)程涉及諸多影響因素,包括外界環(huán)境、關(guān)鍵基因的表達(dá)及轉(zhuǎn)錄因子的調(diào)控等。bHLH是一類廣泛存在于植物中的轉(zhuǎn)錄因子,在植物生長(zhǎng)發(fā)育、信號(hào)轉(zhuǎn)導(dǎo)和次生代謝調(diào)控中發(fā)揮著重要的作用[26],本研究中的轉(zhuǎn)錄因子因含有螺旋-環(huán)-螺旋結(jié)構(gòu)域而屬于此類基因[27]。近幾年的研究發(fā)現(xiàn),該類轉(zhuǎn)錄因子還參與植物對(duì)元素的吸收累積,如過(guò)表達(dá)能增加擬南芥對(duì)Zn和Ni的耐受性[28],同時(shí)擬南芥bHLH家族中的、和參與植株對(duì)Cd的響應(yīng)[29]。植物激素茉莉酸(Jasmonic acid,JA)也是植物生長(zhǎng)發(fā)育和次生代謝產(chǎn)物合成的有效誘導(dǎo)因子,大量研究證明,JA可通過(guò)提高抗逆性酶的活性,來(lái)促進(jìn)黃酮、生物堿等物質(zhì)的合成及相關(guān)途徑基因表達(dá)[26]。廖永翠[30]利用熒光定量PCR分析發(fā)現(xiàn),JA信號(hào)途徑中的關(guān)鍵基因能顯著響應(yīng)外界刺激,誘導(dǎo)白木香中倍半萜的合成,過(guò)表達(dá)基因能正向調(diào)控?cái)M南芥倍半萜合酶基因和的表達(dá),最終證實(shí)了JA信號(hào)途徑參與沉香倍半萜的生物合成。在橡膠樹(shù)中,JA分子也可能通過(guò)調(diào)節(jié)bHLH等轉(zhuǎn)錄因子的表達(dá),激活與橡膠生物合成相關(guān)的基因,從而提高乳膠的產(chǎn)量[31]。在擬南芥和硒超累積植物的研究中發(fā)現(xiàn),硒處理可以誘導(dǎo)其體內(nèi)的JA和茉莉酸甲酯(Methyl jasmonate,MeJA)等植物激素合成酶基因的上調(diào)表達(dá),從而誘導(dǎo)體內(nèi)的硒含量增加[32-33]。在本研究中,茶樹(shù)經(jīng)硒處理后,各部位的硒含量顯著增加,高濃度硒能誘導(dǎo)轉(zhuǎn)錄因子與JA信號(hào)通路中關(guān)鍵基因和上調(diào)表達(dá),這可能是因?yàn)楦呶鴿舛忍幚砑せ盍薐A信號(hào)通路,進(jìn)一步調(diào)控其代謝與累積。另外,bHLH類轉(zhuǎn)錄因子可與MYB轉(zhuǎn)錄因子互作參與類黃酮生物合成、花青素累積等次級(jí)代謝[34],而在茶樹(shù)硒富集過(guò)程中是否也有類似的調(diào)控機(jī)制,有待于進(jìn)一步的驗(yàn)證。
[1] 王子健. 中國(guó)低硒帶生態(tài)環(huán)境中硒的環(huán)境行為研究進(jìn)展[J]. 環(huán)境化學(xué), 1993(3): 237-243. Wang Z J. Some biogeochemical aspects of selenium in Chinese low-selenium belt [J]. Environmental Chemistry, 1993(3): 237-243.
[2] Brooks J D, Metter E J, Chan D W, et al. Plasma selenium level before diagnosis and the risk of prostate cancer development [J]. Journal of Urology, 2001, 166(6): 2034-2038.
[3] Hawrylaknowak B. Beneficial effects of exogenous selenium in cucumber seedlings subjected to salt stress [J]. Biological Trace Element Research, 2009, 132(1/3): 259-269.
[4] Cartes P, Jara A A, Pinilla L, et al. Selenium improves the antioxidant ability against aluminium-induced oxidative stress in ryegrass roots [J]. Annals of Applied Biology, 2010, 156(2): 297-307.
[5] Mimmo T, Tiziani R, Valentinuzzi F, et al. Selenium biofortification in: implications on strawberry fruits quality, content of bioactive health beneficial compounds and metabolomic profile [J]. Frontiers in Plant Science, 2017, 8: 1887. doi: 10.3389/fpls.2017.01887.
[6] 葉飛, 龔自明, 高士偉, 等. 湖北恩施茶園土壤及茶葉硒元素調(diào)查研究[J]. 四川農(nóng)業(yè)大學(xué)學(xué)報(bào), 2015, 33(3): 275-278. Ye F, Gong Z M, Gao S W, et al. Investigation of the selenium element in tea plantation of Enshi District, Hubei Province [J]. Journal of Sichuan Agricultural University, 2015, 33(3): 275-278.
[7] 劉海燕, 黃彩梅, 周盛勇, 等. 茶園土壤及與茶葉中微量元素鋅硒含量相關(guān)性的研究[J]. 廣西植物, 2015, 35(6): 868-874, 941. Liu H Y, Huang C M, Zhou S Y, et al. Correlation of zinc and selenium contents in tea and the planting soil [J]. Guihaia, 2015, 35(6): 868-874, 941.
[8] 周超, 胡玉榮, 曾建明, 等. 土壤因子對(duì)茶樹(shù)硒吸收特性的影響[J]. 茶葉科學(xué), 2015, 35(5): 429-436. Zhou C, Hu Y R, Zeng J M, et al. Effects of soil factors on the selenium absorption characteristics of tea plant [J]. Journal of Tea Science, 2015, 35(5): 429-436.
[9] Cao D, Liu Y, Ma L, et al. Transcriptome analysis of differentially expressed genes involved in selenium accumulation in tea plant () [J]. PLoS ONE, 2018, 13(6): e0197506. doi: 10.1371/journal.pone.0197506.
[10] 金孝芳, 賈尚智, 閔彩云, 等. 茶樹(shù)良種‘金茗1號(hào)’[J]. 林業(yè)科學(xué), 2015, 51(12): 156-156. Jin X F, Jia S Z, Min C Y, et al. An Elite Variety of'Jinming 1' [J]. Scientia Silvae Sinicae, 2015, 51(12): 156-156.
[11] Liu Y, Cao D, Ma L, et al. TMT-based quantitative proteomics analysis reveals the response of, to fluoride [J]. Journal of Proteomics, 2018, 176: 71-81.
[12] 中華全國(guó)供銷合作總社. 茶葉中硒含量的檢測(cè)方法: GB/T 21729—2008[S]. 北京: 中國(guó)標(biāo)準(zhǔn)出版社, 2008. All China Federation of Supply and Marketing Cooperatives. Determination of selenium content in tea: GB/T 21729—2008 [S]. Beijing: Standards Press of China, 2008.
[13] 明佳佳, 胡承孝, 趙小虎, 等. 硒對(duì)油菜各部位礦質(zhì)元素含量及其遷移特征的影響[J]. 浙江農(nóng)業(yè)學(xué)報(bào), 2016, 28(9): 1564-1571. Ming J J, Hu C X, Zhao X H, et al. Content and migration characteristic of mineral element in rape with application of selenium [J]. Acta Agriculturae Zhejiangensis, 2016, 28(9): 1564-1571.
[14] 王磊, 黃婷婷, 楊春, 等. 葉面噴硒對(duì)臺(tái)茶12號(hào)所制紅綠茶含硒量及品質(zhì)的影響[J]. 西南農(nóng)業(yè)學(xué)報(bào), 2016, 29(11): 2578-2582. Wang L, Huang T T, Yang C, et al. Effect of selenium content and quality of black tea and green tea made of taiwan tea 12 by foliar spray of selenium [J]. Southwest China Journal of Agricultural Sciences, 2016, 29(11): 2578-2582.
[15] 楊海濱, 李中林, 徐澤, 等. 施肥對(duì)富硒茶園茶葉硒含量、養(yǎng)分和品質(zhì)的影響[J]. 中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào), 2018, 20(5): 130-137. Yang H B, Li Z L, Xu Z, et al. Effects of fertilization on selenium content, nutrient and quality of tea in se-enriched tea garden [J]. Journal of Agricultural Science and Technology, 2018, 20(5): 130-137.
[16] Ba?uelos G S, Lin Z Q. Phytoremediation management of selenium-laden drainage sediments in the San Luis Drain: a greenhouse feasibility study [J]. Ecotoxicology & Environmental Safety, 2005, 62(3): 309-316.
[17] Eustice D C, Foster I, Kull F J, et al.incorporation of selenomethionine into protein bypolysomes [J]. Plant Physiology, 1980, 66(1): 182-186.
[18] Elrashidi M A, Adriano D C, Workman S M, et al. Chemical equilibria of selenium insoils: a theoretical development [J]. Soil Science, 1987, 144(2): 274-280.
[19] 張均華, 朱練峰, 禹盛苗, 等. 稻田硒循環(huán)轉(zhuǎn)化與水稻硒營(yíng)養(yǎng)研究進(jìn)展[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2012, 23(10): 2900-2906. Zhang J H, Zhu L F, Yu S M, et al. Selenium cycling and transformation in paddy field and selenium nutrition of rice: A review [J]. Chinese Journal of Applied Ecology, 2012, 23(10): 2900-2906.
[20] 段曼莉, 付冬冬, 王松山, 等. 亞硒酸鹽對(duì)四種蔬菜生長(zhǎng)、吸收及轉(zhuǎn)運(yùn)硒的影響[J]. 環(huán)境科學(xué)學(xué)報(bào), 2011, 31(3): 658-665. Duan M L, Fu D D, Wang S S, et al. Effects of different selenite concentrations on plant growth, absorption and transportation of selenium in four different vegetables [J]. Acta Scientiae Circumstantiae, 2011, 31(3): 658-665.
[21] 徐云, 王子健, 王文華, 等. Se和環(huán)境中富里酸對(duì)小麥種子發(fā)芽的影響及其生理特性[J]. 應(yīng)用生態(tài)學(xué)報(bào), 1997(4): 439-444. Xu Y, Wang Z J, Wang W H, et al. Effect of selenium and fulvic acid on seed germination of wheat and its physiological properties [J]. Chinese Journal of Applied Ecology, 1997(4): 439-444.
[22] 周鑫斌, 施衛(wèi)明, 楊林章. 富硒與非富硒水稻品種對(duì)硒的吸收分配的差異及機(jī)理[J]. 土壤, 2007, 39(5): 731-736.Zhou X B, Shi W M, Yang L Z. Genotypical differences and characteristics of se uptake and accumulation in rice [J]. Soils, 2007, 39(5): 731-736.
[23] Wang X F, Zhang L, Wan Y N, et al. Effects of foliar-applied selenite and selenate on selenium accumulation in strawberry [J]. Journal of Agricultural Resources and Environment, 2016, 33(4): 334-339.
[24] Chen S Y, Jiang R F, Li H F. Uptake and translocation of selenate or selenite by wheat and rice seedlings [J]. Environmental Science, 2011, 32(1): 284-289.
[25] Liu X W, Zhao Z Q, Hu C X, et al. Effect of sulphate on selenium uptake and translocation in rape (L.) supplied with selenate or selenite [J]. Plant and Soil, 2016, 399(1/2): 295-304.
[26] Anjum S A, Wang L, Farooq M, et al. Methyl jasmonate-induced alteration in lipid peroxidation, antioxidative defence system and yield in soybean under drought [J]. Journal of Agronomy & Crop Science, 2011, 197(4): 296-301.
[27] 曹丹, 金孝芳, 馬林龍, 等. 基于RNA-seq技術(shù)的茶樹(shù)生物信息學(xué)分析[J]. 西南農(nóng)業(yè)學(xué)報(bào), 2019, 32(1): 36-41. Cao D, Jin X F, Ma L L, et al. Bioinformatics analysis ofin tea plant based on rna sequencing [J]. Southwest China Journal of Agricultural Sciences, 2019, 32(1): 36-41.
[28] Wu H L, Chen C L, Du J, et al. Co-Overexpressionwithorin Arabidopsis-Enhanced cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots [J]. Plant Physiology, 2012, 158(2): 790-800.
[29] Mortel J E V D, Schat H, Moerland P D, et al. Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium inand the related Zn/Cd-hyperaccumulator[J]. Plant Cell & Environment, 2010, 31(3): 301-324.
[30] 廖永翠. 茉莉酸信號(hào)途徑參與調(diào)控沉香倍半萜生物合成的分子機(jī)制研究[D]. 北京: 北京協(xié)和醫(yī)學(xué)院, 2015. Liao Y C. Moleular mechanism of JA signaling pathway involved in the regulation of agarwood sesquiterpene biosynthesis [D]. Beijing: Peking Union Medical College, 2015.
[31] Zhao Y, Zhou L M , Chen Y Y , et al.genes with differential responses to tapping, mechanical wounding, ethrel and methyl jasmonate in laticifers of rubber tree (Muell. Arg.) [J]. Journal of Plant Physiology, 2011, 168(14): 1649-1658.
[32] Tamaoki M, Freeman J L, Pilon-Smits E A H. Cooperative ethylene and jasmonic acid signaling regulates selenite resistance in[J]. Plant Physiology, 2008, 146(3): 1219-1230.
[33] Wang J, Cappa J J, Harris J P, et al. Transcriptome-wide comparison of selenium hyperaccumulator and non-accumulator,, species provides new insight into key processes mediating the hyperaccumulation syndrome [J]. Plant Biotechnology Journal, 2018, 16(9): 1582-1594.
[34] 李欣, 李影, 曲子越, 等. bHLH轉(zhuǎn)錄因子在茉莉酸信號(hào)誘導(dǎo)植物次生產(chǎn)物合成中的作用及分子機(jī)制[J]. 植物生理學(xué)報(bào), 2017, 53(1): 1-8. Li X, Li Y, Qu Z Y, et al. The molecular mechanism and the function of bHLH regulating jasmonic acidmediated secondary metabolites synthesis [J]. Plant Physiology Journal, 2017, 53(1): 1-8.
Absorption and Accumulation Characteristics of Selenium in Tea Plant () and Expression Analysis of Genes Related to Selenium Regulation
CAO Dan, MA Linlong, LIU Yanli, GONG Ziming, JIN Xiaofang*
Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
The concentration dependence and time course of selenium (Se) absorption and accumulation in tea plant were investigated under sand culture and the expressions of related genes were also analyzed. The results show that the absorption amounts of Se in different tissues of tea plant were remarkably different. Most of them were fixed by the roots, and low movement from roots to shoots was observed. Moreover, the accumulation of Se was significantly correlated with exogenous Se concentration and culture duration. Furthermore, tea plant grew well in the Se concentration from 0 to 0.05?mmol·L-1, but when the concentration was higher than 0.10?mmol·L-1, tea plant showed poisoning symptoms. Fluorescence quantitative PCR analysis indicates that allene oxide cyclase (), lipoxygenase () (key genes of jasmonic acid signaling pathway), as well as a basic helix-loop-helix transcription factor () could be obviously induced by high concentration of Se. The correlation analysis showes that the expressions of these genes were positively related with the Se content in roots. These results suggest that Se accumulation in different tissues of tea plant was significantly correlated with exogenous Se concentration and culture duration, and,,might play important roles in this process.
tea plant, Se, absorption and accumulation, gene expression
S571.1;Q52
A
1000-369X(2020)01-077-08
2019-04-16
2019-08-05
湖北省農(nóng)業(yè)科技創(chuàng)新中心項(xiàng)目(2019-620-000-001-24)、湖北省農(nóng)業(yè)科學(xué)院青年基金項(xiàng)目(2018NKYJJ12)
曹丹,女,助理研究員,主要從事茶樹(shù)資源與育種研究,skyiswide@163.com。
xfjin@126.com