亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        環(huán)境DNA在水體中存留時(shí)間的檢測(cè)研究——以中國(guó)對(duì)蝦為例*

        2020-02-13 07:01:56單秀娟王偉繼丁小松戴芳群吳歡歡
        漁業(yè)科學(xué)進(jìn)展 2020年1期
        關(guān)鍵詞:物種環(huán)境檢測(cè)

        李 苗 單秀娟 王偉繼 丁小松 戴芳群 呂 丁 吳歡歡

        環(huán)境DNA在水體中存留時(shí)間的檢測(cè)研究——以中國(guó)對(duì)蝦為例*

        李 苗1,3單秀娟1,2①王偉繼1,2丁小松1,3戴芳群1,2呂 丁1吳歡歡1

        (1. 中國(guó)水產(chǎn)科學(xué)研究院黃海水產(chǎn)研究所 農(nóng)業(yè)農(nóng)村部海洋漁業(yè)可持續(xù)發(fā)展重點(diǎn)實(shí)驗(yàn)室 山東省漁業(yè)資源與生態(tài)環(huán)境重點(diǎn)實(shí)驗(yàn)室 青島 266071;2. 青島海洋科學(xué)與技術(shù)試點(diǎn)國(guó)家實(shí)驗(yàn)室海洋漁業(yè)科學(xué)與食物產(chǎn)出過(guò)程功能實(shí)驗(yàn)室 青島 266071;3. 上海海洋大學(xué)海洋科學(xué)學(xué)院 上海 201306)

        精確地掌握物種的分布與種群動(dòng)態(tài)是保護(hù)生物學(xué)的基礎(chǔ)。然而,對(duì)于某些具有特殊生活史的物種以及群體數(shù)量非常少的種群而言,物種分布檢測(cè)極其困難。DNA條形碼技術(shù)與環(huán)境DNA(Environmental DNA, eDNA)的結(jié)合使以上困難得以解決。鑒于eDNA易降解、在環(huán)境中含量低的特性,探究其在環(huán)境中的持續(xù)存留時(shí)間對(duì)于后續(xù)準(zhǔn)確進(jìn)行定性與定量分析至關(guān)重要。本研究以中國(guó)對(duì)蝦()為研究對(duì)象,結(jié)合實(shí)時(shí)熒光定量PCR定量分析了水環(huán)境中eDNA隨時(shí)間的降解情況,基于赤池信息準(zhǔn)則(Akaike Information Criterion, AIC),選擇了最適于eDNA隨時(shí)間降解的統(tǒng)計(jì)模型。結(jié)果顯示,當(dāng)eDNA的釋放源頭被去除后,eDNA在水體中的含量與時(shí)間呈負(fù)相關(guān)關(guān)系,其在環(huán)境中的存留時(shí)間為30 d左右。本研究旨在為合理規(guī)劃物種的定性檢測(cè)與定量評(píng)估提供理論依據(jù),以期將人為因素造成的實(shí)驗(yàn)誤差降到最低。

        環(huán)境DNA;存留時(shí)間;中國(guó)對(duì)蝦

        全球漁業(yè)衰退是21世紀(jì)面臨的重大挑戰(zhàn)之一(Dudgeon, 2010; 金顯仕等, 2015; Evans, 2018)。然而,對(duì)研究人員與政策制定者而言,收集水生生物種群分布與種群動(dòng)態(tài)變化的精確數(shù)據(jù)是其面臨的最大挑戰(zhàn)(Thomsen, 2015),特別是對(duì)于某些密度極小與具有特殊生活史的種群,檢測(cè)其時(shí)空分布與調(diào)查其種群動(dòng)態(tài)變化將變得更加困難(Mackenzie, 2005; Dejean, 2011)。為了克服以上困難,DNA條形碼技術(shù)被成功地應(yīng)用到水生生態(tài)系統(tǒng)中,檢測(cè)來(lái)自生物體細(xì)胞外的DNA(即eDNA)(Bohmann, 2014; 單秀娟等, 2018),進(jìn)而通過(guò)eDNA去掌握物種的分布與種群動(dòng)態(tài)變化。該方法不需要采集生物樣本,對(duì)生態(tài)系統(tǒng)無(wú)傷害且經(jīng)濟(jì)高效。目前,該方法已成功應(yīng)用到生物檢測(cè)(Goldberg, 2015; Davison, 2017)、生物多樣性評(píng)價(jià)(Drummond, 2015; Majaneva, 2018)、生物量評(píng)估(Pillioddavid, 2013; Tillotson, 2018)、魚(yú)類(lèi)洄游(Yamanaka, 2016)以及其他方面(Sigsgaard, 2016、2017)的研究中。

        由于eDNA極易降解,且在環(huán)境中含量極低,因而,其在環(huán)境中的存留時(shí)間將會(huì)直接影響后期的定性與定量分析。為了能夠?qū)DNA技術(shù)準(zhǔn)確地應(yīng)用到水生生態(tài)系統(tǒng)的研究領(lǐng)域中,探究eDNA在水體中的存留時(shí)間顯得尤為重要。eDNA在環(huán)境中的存留時(shí)間是指切斷eDNA的來(lái)源之后,eDNA在環(huán)境中的持續(xù)存在時(shí)間(Dejean, 2011)。雖然,已有相關(guān)研究表明,eDNA在水體中呈指數(shù)式降解(Dejean, 2011; Strickler, 2015),但不同的物種具有不同的生活史,其釋放eDNA的速率各不相同(Minamoto, 2017),從而導(dǎo)致不同物種釋放的eDNA在水體中的存留時(shí)間不同。本研究以中國(guó)對(duì)蝦()為研究對(duì)象,結(jié)合實(shí)時(shí)熒光定量PCR,檢測(cè)eDNA在水體中的存留時(shí)間,同時(shí),探究eDNA降解速率與時(shí)間之間的關(guān)系。本研究旨在為水生生態(tài)系統(tǒng)eDNA的取樣、操作流程優(yōu)化、整體實(shí)驗(yàn)方案設(shè)計(jì)及應(yīng)用提供理論基礎(chǔ)。

        1 材料與方法

        1.1 特異性引物設(shè)計(jì)

        針對(duì)中國(guó)對(duì)蝦的線粒體細(xì)胞色素酶氧化亞基Ⅰ(COⅠ)基因設(shè)計(jì)特異性引物。在GenBank數(shù)據(jù)庫(kù)中檢索中國(guó)對(duì)蝦線粒體DNA (mtDNA) COⅠ基因序列(GenBank登錄號(hào): gbHQ700930.1),利用BioEdit和MEGA7軟件進(jìn)行序列比對(duì),使用Primer Premier 6與Beacon Designer 8軟件設(shè)計(jì)引物與探針,并在NCBI網(wǎng)站上進(jìn)行引物特異性測(cè)試。

        篩選確定1對(duì)特異性擴(kuò)增中國(guó)對(duì)蝦COⅠ基因的目的片段為597 bp的普通PCR引物(COⅠPF:TTGT AGTTACAGCCCACGCT,COⅠPR:AAATTATCCC?GAAGGCGGGT)與1對(duì)目的片段為106 bp的熒光定量PCR引物(COⅠDF:AGGGGTAGGAACAGGATG?AAC,COⅠDR:GACACCAGCTAGATGCAGCG,Probe:5¢FAM-TCAGCTAGAATTGCTCATGCCGGA?GCTTCAGT-3¢BHQ1),其中,普通PCR引物用來(lái)制備質(zhì)粒標(biāo)準(zhǔn)品DNA,定量PCR引物所擴(kuò)增的目的片段為普通PCR引物所擴(kuò)增目的片段的一部分。引物由生工生物工程(上海)股份有限公司合成。

        1.2 中國(guó)對(duì)蝦肌肉組織DNA提取及PCR擴(kuò)增

        實(shí)驗(yàn)所用中國(guó)對(duì)蝦肌肉組織取自2016年渤海漁業(yè)資源調(diào)查捕獲的中國(guó)對(duì)蝦,–20℃保存。

        中國(guó)對(duì)蝦肌肉組織DNA的提取采取傳統(tǒng)的酚–氯仿–異戊醇方法,提取完成后,使用紫外分光光度計(jì)檢測(cè)DNA濃度并稀釋到50 ng/μl,用1.5 ml無(wú)菌離心管分裝,–20℃保存。25 μl PCR反應(yīng)體系:10×Buffer 2.5 μl,dNTPs (各2.5 mmol/L) 0.5 μl,正反向引物(COⅠPF/COⅠPR)(10 mmol/L)各0.5 μl,DNA Polymerase(5 U/μl) 0.5 μl,模板DNA (50 ng/μl) 1 μl, MgCl2(25 mmol/L) 1.5 μl,ddH2O 18 μl。PCR擴(kuò)增反應(yīng)條件:94℃預(yù)變性3 min;94℃30 s,60℃30 s,72℃ 1 min,擴(kuò)增35個(gè)循環(huán);72℃復(fù)延伸10 min。PCR產(chǎn)物用2%的瓊脂糖凝膠電泳進(jìn)行檢測(cè)。

        1.3 中國(guó)對(duì)蝦mtDNA COⅠ基因克隆及質(zhì)粒標(biāo)準(zhǔn)品制備

        將1.2中PCR產(chǎn)物用Gel Extraction Kit (OMEGA)試劑盒進(jìn)行純化。將純化的PCR產(chǎn)物連接到pMD-18-T質(zhì)粒載體(TaKaRa)上,轉(zhuǎn)化入DH5α感受態(tài)細(xì)胞(TaKaRa)中,最后在含Amp、X-gal及IPTG的LB固體平板培養(yǎng)基上過(guò)夜培養(yǎng),經(jīng)過(guò)藍(lán)白斑篩選后,挑取8個(gè)白色單菌落,分別置于1.5 ml離心管中培養(yǎng)8 h,將菌液送至生工生物工程(上海)股份有限公司測(cè)序。

        根據(jù)測(cè)序結(jié)果,選取連接轉(zhuǎn)化成功的菌液擴(kuò)大培養(yǎng)。培養(yǎng)24 h后,使用Plasmid Mini Kit I (OMEGA)進(jìn)行質(zhì)粒標(biāo)準(zhǔn)品DNA提取。DNA提取完成后,使用紫外分光光度計(jì)檢測(cè)并計(jì)算其拷貝數(shù),最后將其稀釋到108copies/μl,–80℃保存?zhèn)溆谩?/p>

        以上所有實(shí)驗(yàn)步驟均按照說(shuō)明書(shū)進(jìn)行操作。

        1.4 樣品采集

        為了檢測(cè)eDNA在水體中的存留時(shí)間,必須保證水體中有一定量的eDNA,且在開(kāi)始檢測(cè)時(shí)切斷其eDNA的釋放源頭,以免生物體不斷地向水體中釋放DNA而影響實(shí)驗(yàn)結(jié)果。因此,通常是在固定的水體中飼養(yǎng)研究對(duì)象一段時(shí)間,待水體中eDNA有一定量的積累后將生物體從水體中移除。

        本實(shí)驗(yàn)所用水樣取自中國(guó)水產(chǎn)科學(xué)研究院黃海水產(chǎn)研究所水產(chǎn)遺傳育種中心中國(guó)對(duì)蝦養(yǎng)殖池(養(yǎng)殖池內(nèi)只有中國(guó)對(duì)蝦這單一物種,且養(yǎng)殖池內(nèi)有足夠量的eDNA),養(yǎng)殖池長(zhǎng)5.5 m、寬3.6 m、高1.2 m,池內(nèi)水體體積為14 m3,池內(nèi)有中國(guó)對(duì)蝦180只,蝦體平均體重為27 g。從池內(nèi)取25 L水樣用提前消毒的無(wú)菌白色塑料桶帶回實(shí)驗(yàn)室,室溫保存,桶內(nèi)用充氣泵保持充氣直至取樣完畢(有關(guān)養(yǎng)殖池信息及中國(guó)對(duì)蝦體長(zhǎng)、體重?cái)?shù)據(jù)均由遺傳育種中心工作人員測(cè)量)。

        取樣工作參照Dejean等(2008)的方法并加以改進(jìn),每隔24 h從水桶內(nèi)取15 ml水樣,裝進(jìn)50 ml無(wú)菌離心管內(nèi),同時(shí),在離心管內(nèi)加3 mol/L的醋酸鈉溶液1.5 ml與無(wú)水乙醇33 ml,每次取3個(gè)平行樣本,–20℃保存直至進(jìn)行eDNA提取。水樣采集時(shí)間為2018年1月12日~2月7日,取樣時(shí)間為每天08:00。

        1.5 eDNA提取

        選用DNeasy Blood and Tissue kit (Qiagen, Hilden, 德國(guó))試劑盒進(jìn)行eDNA的提取,提取方法參照Ficetola等(2008)、Dejean等(2008)與Renshaw等(2015),并進(jìn)行相應(yīng)改進(jìn),其具體提取步驟為:

        將水樣從冰箱拿出,4℃ 9000 g離心1 h。將上一步離心管底部的沉淀物全部刮出,放入2 ml的無(wú)菌離心管中,加入570 μl的Buffer ATL與60 μl的蛋白酶K,渦旋震蕩混勻,恒溫水浴3 h直至沉淀物完全裂解,水浴期間,每隔15 min輕輕顛倒混勻離心管以加速裂解,裂解完成后渦旋震蕩15 s。其余步驟按照試劑盒說(shuō)明書(shū)進(jìn)行,其中,最后一步中DNA的洗脫用60 μl Buffer TE,而非試劑盒中Buffer AE。

        eDNA提取完成后,立即使用紫外分光光度計(jì)檢測(cè)其濃度,若eDNA樣品濃度高于250 ng/μl,則將其進(jìn)行稀釋。每個(gè)eDNA樣品吸取10 μl用作瓊脂糖凝膠電泳檢測(cè)及PCR定量分析,其余50 μl eDNA溶液于–80℃保存。

        1.6 eDNA的定量分析

        所有提取的eDNA樣品采用BBI生命科學(xué)有限公司2×Man Fast qPCR Master Mix(Low Rox)實(shí)時(shí)熒光定量PCR試劑盒進(jìn)行定量分析。PCR采用20 μl體系:10 μl 2×Man Fast qPCR Master Mix,正反向引物(10 μmol/L)各0.4 μl,0.4 μl探針(10 μmol/L),2 μl模板DNA,6.8 μl PCR級(jí)水。擴(kuò)增反應(yīng)程序采用兩步法:94℃預(yù)變性3 min;94℃變性5 s,60℃退火延伸34 s,40個(gè)循環(huán)。

        PCR擴(kuò)增使用ABI 7500型定量PCR儀和96孔板(Thermo Fisher),標(biāo)準(zhǔn)品DNA與未知濃度eDNA樣品均進(jìn)行3個(gè)重復(fù),每個(gè)96孔板進(jìn)行3個(gè)陰性對(duì)照(無(wú)模板)與3個(gè)陽(yáng)性對(duì)照(中國(guó)對(duì)蝦基因組DNA),標(biāo)準(zhǔn)品以10倍濃度梯度從107copies/μl稀釋至101copies/μl。實(shí)驗(yàn)數(shù)據(jù)采用絕對(duì)定量法分析,eDNA拷貝數(shù)取陽(yáng)性擴(kuò)增樣品的平均值,應(yīng)用系統(tǒng)軟件SDS1.4.0.25自動(dòng)計(jì)算t值及生成標(biāo)準(zhǔn)曲線與擴(kuò)增曲線。

        1.7 數(shù)據(jù)分析

        基于AIC選擇了最適于eDNA隨時(shí)間降解的模型(Burnham, 2002; Wickham, 2009),所有數(shù)據(jù)使用R3.5.0進(jìn)行處理,誤差控制在95%的置信區(qū)間以內(nèi)。

        2 結(jié)果與分析

        2.1 引物特異性驗(yàn)證

        PCR產(chǎn)物經(jīng)2%的瓊脂糖凝膠電泳檢測(cè),結(jié)果顯示,引物對(duì)COⅠPF/PR與COⅠDF/DR成功擴(kuò)增出597 bp與106 bp的目的片段,與預(yù)期結(jié)果完全一致,電泳條帶單一且明亮,無(wú)雜帶(圖1),證明所設(shè)計(jì)的引物特異性很好。

        M: DNA Marker DL 2000;泳道1~4為引物COⅠPF/PR的PCR產(chǎn)物;泳道6~9為引物COⅠDF/DR的PCR產(chǎn)物

        M: DNA Marker DL 2000; Lane 1~4: PCR products of COⅠPF/PR; Lane 6~9: PCR products of COⅠDF/DR

        2.2 標(biāo)準(zhǔn)曲線建立及回歸方程設(shè)定

        通過(guò)實(shí)時(shí)熒光定量PCR擴(kuò)增,PCR檢測(cè)系統(tǒng)根據(jù)熒光值的變化規(guī)律,自動(dòng)生成中國(guó)對(duì)蝦COⅠ基因的標(biāo)準(zhǔn)曲線(圖2)。曲線的斜率為=-3.15,相關(guān)系數(shù)2=0.994,回歸方程為=-3.24+37.47,說(shuō)明在稀釋的質(zhì)粒標(biāo)準(zhǔn)品DNA濃度范圍內(nèi)具有良好的線性關(guān)系,表明本研究建立的標(biāo)準(zhǔn)曲線能夠準(zhǔn)確地反映中國(guó)對(duì)蝦COⅠ基因的擴(kuò)增。

        2.3 eDNA檢測(cè)

        使用紫外分光光度計(jì)檢測(cè)未知濃度eDNA樣品發(fā)現(xiàn),大部分樣品的260 nm/280 nm值均低于1.8,只有極少數(shù)樣品的260 nm/280 nm值在1.8~2.0之間,且eDNA樣品濃度普遍較低,說(shuō)明水體中eDNA含量較少且水體中雜質(zhì)較多,因而導(dǎo)致提取的DNA純度較低。

        圖2 中國(guó)對(duì)蝦COⅠ基因AQ-PCR標(biāo)準(zhǔn)曲線

        2.4 eDNA降解結(jié)果

        檢測(cè)結(jié)果顯示,在eDNA的釋放源頭去除后,隨著時(shí)間的推移,水體中eDNA的拷貝數(shù)與時(shí)間呈負(fù)相關(guān)關(guān)系。第1天(2018年1月12日)檢測(cè)時(shí)每15 ml水樣中含有的DNA拷貝數(shù)為3.76×104,而在第27天(2018年2月7日)檢測(cè)時(shí),每15 ml水體中的eDNA拷貝數(shù)則降解為711。此外,基于AIC比較了GAM (Gaussian)、GAM(Inverse.Gaussian)、GLM、一元一次回歸及一元二次回歸5種模型對(duì)eDNA降解與時(shí)間之間的關(guān)系的適用性,發(fā)現(xiàn)用GAM(Gaussian)模型擬合eDNA降解與時(shí)間之間的關(guān)系曲線AIC值最小(AIC=472.0694)(表1),同時(shí),其相關(guān)系數(shù)2也最高(2=0.984) (圖3),說(shuō)明GAM(Gaussian)模型能更好反映eDNA的降解與時(shí)間之間的關(guān)系。

        表1 基于AIC值對(duì)模型的選擇

        Tab.1 The choice of model based on AIC value

        圖3 中國(guó)對(duì)蝦eDNA降解與時(shí)間之間的關(guān)系擬合

        3 討論

        eDNA的檢出率主要取決于釋放速率與降解速率,同時(shí),目標(biāo)種種群數(shù)量的大小對(duì)eDNA的檢出率也有一定的影響。此外,除了不可控的自然因素外,一些人為因素也對(duì)eDNA檢出率的高低有不可忽視的影響。eDNA從生物體釋放進(jìn)入水環(huán)境后,可能會(huì)持續(xù)存在,吸附在有機(jī)或者無(wú)機(jī)顆粒上成為沉積物,或者在水環(huán)境中逐漸被降解(Levy-Booth, 2007),影響其降解的因素主要有核酸酶、溫度、pH、紫外光照、水化學(xué)及微生物的活動(dòng)等一系列生物與非生物因素(Barnes, 2014; Strickler, 2015; Tsuji, 2016)。

        3.1 長(zhǎng)片段eDNA與短片段eDNA在研究中的區(qū)別

        eDNA由釋放源進(jìn)入水環(huán)境后,隨著時(shí)間的變化,一般經(jīng)過(guò)由大片段逐漸分解為小片段直至降解的過(guò)程,在這個(gè)過(guò)程中,根據(jù)其環(huán)境條件的不同,eDNA在不同環(huán)境因子的影響下被加速降解。片段大小為300~400 bp的eDNA在人為實(shí)驗(yàn)控制的條件下能夠在水體中持續(xù)存在7 d (Zhu, 2006; Dejean, 2011),7 d后仍能檢測(cè)到的eDNA則為≤100 bp左右的短片段DNA。本研究采用實(shí)時(shí)熒光定量PCR (TaqMan法)擴(kuò)增了一段目的片段大小為106 bp的短片段eDNA,檢測(cè)了短片段eDNA在水體中滯留時(shí)間的長(zhǎng)短,結(jié)果發(fā)現(xiàn),較長(zhǎng)片段eDNA而言,短片段eDNA在水體存留的時(shí)間要長(zhǎng)很多,其完全降解至少需要30 d,但是,長(zhǎng)片段eDNA能夠更加準(zhǔn)確地反映最新的生物信息(H?nfling, 2016; Bista, 2017)。同時(shí),這也反映出研究者應(yīng)該針對(duì)自己的最終目的設(shè)計(jì)實(shí)驗(yàn),擴(kuò)增符合需求的eDNA片段,以達(dá)到最佳的研究效果。Jo等(2017)設(shè)計(jì)了1對(duì)能夠擴(kuò)增719 bp的長(zhǎng)片段eDNA的引物與1對(duì)能夠擴(kuò)增127 bp的短片段eDNA的引物,分別應(yīng)用實(shí)時(shí)熒光定量PCR對(duì)竹筴魚(yú)()進(jìn)行了生物量估測(cè)及分布監(jiān)測(cè),表明擴(kuò)增長(zhǎng)片段的eDNA能夠更加精確地評(píng)估生物量以及對(duì)物種分布做出準(zhǔn)確判斷。根據(jù)長(zhǎng)短片段eDNA在水體中滯留時(shí)間的不同,建議在利用eDNA技術(shù)進(jìn)行生物量評(píng)估與物種時(shí)空動(dòng)態(tài)分布監(jiān)測(cè)時(shí),設(shè)計(jì)能夠擴(kuò)增長(zhǎng)片段eDNA的引物以擴(kuò)增來(lái)自于生物體最新釋放進(jìn)入水體的DNA,而不是長(zhǎng)期滯留于水體中的DNA,以避免2個(gè)資源調(diào)查周期之間短片段eDNA的累積效果所導(dǎo)致的實(shí)驗(yàn)誤差。

        3.2 不同物種釋放的eDNA在水體中存留時(shí)間的區(qū)別

        一般而言,水生動(dòng)物釋放的eDNA在水體的存留時(shí)間為7~30 d,但不同的生物種類(lèi)的生活史特征不同,釋放eDNA的速率不同(Minamoto, 2017),釋放eDNA量的多少與eDNA片段的大小也各不相同(Geerts, 2018)。因此,對(duì)不同的物種而言,其釋放的DNA在環(huán)境中的存留時(shí)間也不同。Thomsen等(2012)研究發(fā)現(xiàn),在飼養(yǎng)鋤足蟾()和冠北螈()時(shí),養(yǎng)殖水體中eDNA的量隨時(shí)間不斷增加,但將其移除后,水體中eDNA的量快速下降,7~14 d后,eDNA完全降解;而Goldberg等(2013)以淡水螺()為研究對(duì)象,在15℃恒溫條件下飼養(yǎng)淡水螺一段時(shí)間后將其移除,發(fā)現(xiàn)其釋放到水體中的DNA能夠在環(huán)境中存留14~42 d。本研究與前人的研究相比,中國(guó)對(duì)蝦所釋放的eDNA在水體中的存留時(shí)間較長(zhǎng),主要是因?yàn)榧讱ゎ?lèi)的整個(gè)生活史過(guò)程中存在蛻皮現(xiàn)象,因而其釋放到水中的eDNA的量較大。此外,本研究所取水樣的養(yǎng)殖池中的中國(guó)對(duì)蝦密度較大,是eDNA在水體中存留時(shí)間較長(zhǎng)的原因之一。

        3.3 環(huán)境因子對(duì)eDNA存留時(shí)間的影響

        除了物種本身生活史差異性造成的存留時(shí)間不同外,環(huán)境因子的變動(dòng)也會(huì)導(dǎo)致eDNA在水體中存留時(shí)間的差異。已有研究表明,溫度與eDNA的降解速率呈正相關(guān)關(guān)系(Strickler, 2015; Lacoursière- Roussel, 2016)。Strickler等(2015)研究了美國(guó)牛蛙()釋放到水體中的eDNA分別在5℃、25℃和30℃的條件下的降解情況,發(fā)現(xiàn)當(dāng)環(huán)境中eDNA的量相同時(shí),5℃時(shí)eDNA的降解最緩慢,主要因?yàn)榈蜏貤l件下微生物的生長(zhǎng)過(guò)程較為緩慢,降低了有關(guān)生命活動(dòng)導(dǎo)致的eDNA的降解。本研究所用水體是在冬天室溫(15℃)的情況下保存的,與夏季相比,eDNA的降解速率較為緩慢。因此,對(duì)于自然水體而言,隨著季節(jié)的交替變化,水溫發(fā)生變化,其水環(huán)境中的eDNA的降解速率也發(fā)生變化。此外,研究表明,pH、紫外輻射以及水化學(xué)對(duì)eDNA的降解也存在一定的影響(Pilliod, 2013; Barnes, 2014; Eichmiller, 2014、2016a、b)。但是,以上環(huán)境因子共同作用時(shí)如何影響eDNA的降解尚不清楚。未來(lái)在應(yīng)用eDNA技術(shù)準(zhǔn)確評(píng)估目標(biāo)種生物量之前,解決上述環(huán)境因子對(duì)eDNA降解的影響機(jī)制至關(guān)重要。

        4 小結(jié)

        通過(guò)檢測(cè)eDNA在水體中的存留時(shí)間發(fā)現(xiàn),短片段eDNA在水環(huán)境中能夠存留長(zhǎng)達(dá)30 d左右,可以據(jù)此來(lái)合理設(shè)計(jì)實(shí)驗(yàn)方案、確定合適的采樣周期以及尋求妥善的eDNA存儲(chǔ)方法,從而為eDNA技術(shù)更有力地應(yīng)用到水生生態(tài)系統(tǒng)的研究領(lǐng)域奠定基礎(chǔ)。

        致謝:衷心感謝中國(guó)水產(chǎn)科學(xué)研究院黃海水產(chǎn)研究所水產(chǎn)動(dòng)物遺傳育種中心陳寶龍老師與課題組項(xiàng)目聘用人員王惠賓在取樣方面給予的建議與幫助!

        Barnes MA, Turner CR, Jerde CL,. Environmental conditions influence eDNA persistence in aquatic systems. Environmental Science and Technology, 2014, 48(3): 1819

        Bista I, Carvalho GR, Walsh K,. Annual time-series analysis of aqueous eDNA reveals ecologically relevant dynamics of lake ecosystem biodiversity. Nature Communications, 2017, 8: 14087

        Bohmann K, Evans A, Gilbert MT,. Environmental DNA for wildlife biology and biodiversity monitoring. Trends in Ecology and Evolution, 2014, 29(6): 358–367

        Burnham KP. Information and likelihood theory: A basis for model selection and inference//Model selection and multimodel inference. Springer New York, 2002, 49–97

        Davison PI, Copp GH, Créach V,. Application of environmental DNA analysis to inform invasive fish eradication operations. Science of Nature, 2017, 104(3-4): 35

        Dejean T, Valentini A, Duparc A,. Persistence of environmental DNA in freshwater ecosystems. PLoS One, 2011, 6(8): e23398

        Drummond AJ, Newcomb RD, Buckley TR,. Evaluating a multigene environmental DNA approach for biodiversity assessment. GigaScience, 2015, 4(1): 46

        Dudgeon D. Prospects for sustaining freshwater biodiversity in the 21st century: Linking ecosystem structure and function. Current Opinion in Environmental Sustainability, 2010, 2(5-6): 422–430

        Eichmiller JJ, Bajer PG, Sorensen PW. The relationship between the distribution of common carp and their environmental DNA in a small lake. PLoS One, 2014, 9(11): e112611

        Eichmiller JJ, Best SE, Sorensen PW. Effects of temperature and trophic state on degradation of environmental DNA in lake water. Environmental Science and Technology, 2016a, 50(4): 1859–1867

        Eichmiller JJ, Miller LM, Sorensen PW. Optimizing techniques to capture and extract environmental DNA for detection and quantification of fish. Molecular Ecology Resources, 2016b, 16(1): 56–68

        Evans NT, Lamberti GA. Freshwater fisheries assessment using environmental DNA: A primer on the method, its potential, and shortcomings as a conservation tool. Fisheries Research, 2018, 197: 60–66

        Ficetola GF, Miaud C, Pompanon F,. Species detection using environmental DNA from water samples. Biology Letters, 2008, 4(4): 423–425

        Geerts AN, Boets P, Heede SVD,. A search for standardized protocols to detect alien invasive crayfish based on environmental DNA (eDNA): A lab and field evaluation. Ecological Indicators, 2018, 84: 564–572

        Goldberg CS, Sepulveda A, Ray A,. Environmental DNA as a new method for early detection of New Zealand mudsnails (). Freshwater Science, 2013, 32(3): 9

        Goldberg CS, Strickler KM, Pilliod DS. Moving environmental DNA methods from concept to practice for monitoring aquatic macroorganisms. Biological Conservation, 2015, 183: 1–3

        H?nfling B, Lawson HL, Read DS,. Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods. Molecular Ecology, 2016, 25(13): 3101–3119

        Jin XS, Dou SZ, Shan XJ,. Hot spots of frontiers in the research of sustainable yield of Chinese inshore fishery. Progress in Fishery Sciences, 2015, 36(1): 124–131 [金顯仕, 竇碩增, 單秀娟, 等. 我國(guó)近海漁業(yè)資源可持續(xù)產(chǎn)出基礎(chǔ)研究的熱點(diǎn)問(wèn)題. 漁業(yè)科學(xué)進(jìn)展, 2015, 36(1): 124–131]

        Jo T, Murakami H, Masuda R,. Rapid degradation of longer DNA fragments enables the improved estimation of distribution and biomass using environmental DNA. Molecular Ecology Resources, 2017, 17(6): 1–9

        Lacoursière-Roussel A, Rosabal M, Bernatchez L. Estimating fish abundance and biomass from eDNA concentrations: Variability among capture methods and environmental conditions. Molecular Ecology Resources, 2016, 16(6): 1401–1414

        Levy-Booth DJ, Campbell RG, Gulden RH,. Cycling of extracellular DNA in the soil environment. Soil Biology and Biochemistry, 2007, 39(12): 2977–2991

        Mackenzie DI, Nichols JD, Sutton N,. Improving inferences in population studies of rare species that are detected imperfectly. Ecology, 2005, 86(5): 1101–1113

        Majaneva M, Diserud OH, Eagle SHC,. Environmental DNA filtration techniques affect recovered biodiversity. Scientific Reports, 2018, 8(1): 4682

        Minamoto T, Fukuda M, Katsuhara KR,. Environmental DNA reflects spatial and temporal jellyfish distribution. PLoS One, 2017, 12(2): e0173073

        Pillioddavid S, Goldbergcaren S, Arklerobert S,. Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70(8): 1123–1130

        Pilliod DS, Goldberg CS, Arkle RS,. Factors influencing detection of eDNA from a stream-dwelling amphibian. Molecular Ecology Resources, 2013, 14(1): 109–116

        Renshaw MA, Olds BP, Jerde CL,. The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol-chloroform-isoamyl alcohol DNA extraction. Molecular Ecology Resources, 2015, 15(1): 168– 176

        Shan XJ, Li M, Wang WJ. Application of environmental DNA technology in aquatic ecosystem. Progress in Fishery Sciences,2018, 39(3): 23–29 [單秀娟, 李苗, 王偉繼. 環(huán)境DNA (eDNA)技術(shù)在水生生態(tài)系統(tǒng)中的應(yīng)用研究進(jìn)展. 漁業(yè)科學(xué)進(jìn)展, 2018, 39(3): 23–29]

        Sigsgaard EE, Nielsen IB, Bach SS,. Population characteristics of a large whale shark aggregation inferred from seawater environmental DNA. Nature Ecology and Evolution, 2016, 1(1): 4

        Sigsgaard EE, Nielsen IB, Carl H,. Seawater environmental DNA reflects seasonality of a coastal fish community. Marine Biology, 2017, 164(6): 128

        Strickler KM, Fremier AK, Goldberg CS. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biological Conservation, 2015, 183: 85–92

        Thomsen PF, Kielgast J, Iversen LL,. Monitoring endangered freshwater biodiversity using environmental DNA. Molecular Ecology, 2012, 21(11): 2565–2573

        Thomsen PF, Willerslev E. Environmental DNA – An emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation, 2015, 183: 4–18

        Tillotson MD, Kelly RP, Duda JJ,. Concentrations of environmental DNA (eDNA) reflect spawning salmon abundance at fine spatial and temporal scales. Biological Conservation, 2018, 220: 1–11

        Tsuji S, Yamanaka H, Minamoto T. Effects of water pH and proteinase K treatment on the yield of environmental DNA from water samples. Limnology, 2016, 18(1): 1–7

        Wickham H. ggplot2. Springer New York, 2009

        Yamanaka H, Minamoto T. The use of environmental DNA of fishes as an efficient method of determining habitat connectivity. Ecological Indicators, 2016, 62(1): 147–153

        Zhu B. Degradation of plasmid and plant DNA in water microcosms monitored by natural transformation and real-time polymerase chain reaction (PCR). Water Research, 2006, 40(17): 3231–3238

        Studying the Retention Time ofeDNA in Water

        LI Miao1,3, SHAN Xiujuan1,2①, WANG Weiji1,2, DING Xiaosong1,3, DAI Fangqun1,2, Lü Ding1, WU Huanhuan1

        (1. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs; Shandong Provincial Key Laboratory of Fishery Resources and Ecological Environment, Qingdao 266071; 2. Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071; 3. College of Marine Sciences, Shanghai Ocean University, Shanghai 201306)

        Accurate knowledge of species distribution and population dynamics is the basis of conservation biology. However, for certain species that have a special life history and very few populations, species distribution detection becomes extremely difficult. The combination of DNA barcode technology and environmental DNA (eDNA) has solved these difficulties. Currently, this method has been applied successfully to biological testing, biodiversity assessment, biomass assessment, fish migration, and other research. Given the ease of degradation of eDNA and its low level in the environment, exploring its persistence in the environment is critical for accurate qualitative and quantitative analysis. In this study,was used as the research subject. The degradation of eDNA in a water environment was quantitatively analyzed by real-time fluorescent quantitative PCR. The relationship between eDNA degradation rate and time was explored. The most suitable eDNA was selected based on Akaike Information Criterion (AIC). A statistical model of degradation of eDNA over time was used. The experimental results showed that the level of eDNA in water is negatively correlated with time. After the source of eDNA was removed, its residence time in the environment was about one month. The aim of this research was to provide a theoretical basis for the qualitative detection and quantitative assessment of rationally planned species, with a view to minimizing experimental error caused by human factors.

        Environmental DNA; Retention time;

        S931

        A

        2095-9869(2020)01-0051-07

        10.19663/j.issn2095-9869.20180906005

        * 國(guó)家重點(diǎn)研發(fā)計(jì)劃(2017YFE0104400)、國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(2015CB453303)、山東省泰山學(xué)者專(zhuān)項(xiàng)基金項(xiàng)目和青島海洋科學(xué)與技術(shù)試點(diǎn)國(guó)家實(shí)驗(yàn)室鰲山人才培養(yǎng)計(jì)劃項(xiàng)目(2017ASTCP-ES07)共同資助 [This work was supported by the National Key R&D Program of China (2017YFE0104400), the National Basic Research Program of China (2015CB453303), Special Funds for Taishan Scholar Project of Shandong Province, and Aoshan Talents Cultivation Program Supported by Pilot National Laboratory for Marine Science and Technology(Qingdao) (2017ASTCP-ES07)]. 李 苗,E-mail: limiao0417@126.com

        單秀娟,研究員,E-mail: shanxj@ysfri.ac.cn

        2018-09-06,

        2018-12-05

        http://www.yykxjz.cn/

        李苗, 單秀娟, 王偉繼, 丁小松, 戴芳群, 呂丁, 吳歡歡. 環(huán)境DNA在水體中存留時(shí)間的檢測(cè)研究——以中國(guó)對(duì)蝦為例. 漁業(yè)科學(xué)進(jìn)展, 2020, 41(1): 51–57

        Li M, Shan XJ, Wang WJ, Ding XS, Dai FG, Lü D, Wu HH. Studying the retention time ofeDNA in water. Progress in Fishery Sciences, 2020, 41(1): 51–57

        SHAN Xiujuan, E-mail: shanxj@ysfri.ac.cn

        (編輯 馮小花)

        猜你喜歡
        物種環(huán)境檢測(cè)
        吃光入侵物種真的是解決之道嗎?
        “不等式”檢測(cè)題
        “一元一次不等式”檢測(cè)題
        “一元一次不等式組”檢測(cè)題
        長(zhǎng)期鍛煉創(chuàng)造體內(nèi)抑癌環(huán)境
        一種用于自主學(xué)習(xí)的虛擬仿真環(huán)境
        孕期遠(yuǎn)離容易致畸的環(huán)境
        回首2018,這些新物種值得關(guān)注
        環(huán)境
        電咖再造新物種
        男人扒开女人双腿猛进视频| 麻美由真中文字幕人妻| 国产av一区二区日夜精品剧情| 日韩一区在线精品视频| 一本久道综合在线无码人妻| 夜爽8888视频在线观看| 精品一区二区三区四区少妇| 少妇人妻在线伊人春色| 久久99热国产精品综合| 亚洲午夜无码av毛片久久| 四虎在线播放免费永久视频| 精品女同一区二区三区在线播放器 | 日本精品极品视频在线| 一区二区三区视频亚洲| 久久久久无码国产精品一区| 中文字幕无码精品亚洲资源网久久| 亚洲成av人无码免费观看| 女优av一区二区在线观看| 成人乱码一区二区三区av| 亚洲av成人一区二区三区av| 久久久精品亚洲懂色av| 上海熟女av黑人在线播放| 久久久国产精品黄毛片| 动漫在线无码一区| 日韩va高清免费视频| 久久婷婷色香五月综合缴缴情| 国产女女精品视频久热视频| 北岛玲日韩精品一区二区三区| 蜜桃视频在线在线观看| 免费a级毛片无码a∨中文字幕下载| 欧美成人形色生活片| av在线网站手机播放| 精品福利一区二区三区蜜桃 | 亚洲啪啪AⅤ一区二区三区| 亚洲第一黄色免费网站| 亚洲人精品亚洲人成在线| 国产精品亚洲A∨天堂| 日本女u久久精品视频| 国产成人综合日韩精品无码| 免费无码av片在线观看网址| 日本熟妇高潮爽视频在线观看 |