李敏 郭美琪 相偉芳
摘要 分子對(duì)接是利用生物信息分析手段預(yù)測(cè)配體和受體的結(jié)構(gòu)模型,模擬出配體復(fù)合物的結(jié)構(gòu)并通過結(jié)合自由能來判斷結(jié)合強(qiáng)度的一種技術(shù)。分子對(duì)接包括蛋白質(zhì)和小分子的前期準(zhǔn)備,識(shí)別結(jié)合位點(diǎn),搜索配體化合物的構(gòu)象,評(píng)估對(duì)接結(jié)果四部分。昆蟲的化學(xué)感受途徑主要通過化感蛋白與小分子化合物的結(jié)合,實(shí)現(xiàn)對(duì)化學(xué)信息素的接收。分子對(duì)接可以精確模擬昆蟲化感蛋白和信息化合物的結(jié)構(gòu)以及二者的結(jié)合形式,可作為研究昆蟲化學(xué)感受途徑的有效技術(shù)手段,從而有利于研究開發(fā)昆蟲抑制劑,用于農(nóng)林病蟲害的防治。本文綜述了分子對(duì)接技術(shù)在昆蟲化學(xué)感受研究中的應(yīng)用進(jìn)展,并詳細(xì)介紹了分子對(duì)接的相關(guān)軟件,舉例說明了分子對(duì)接的過程,可為該領(lǐng)域的相關(guān)研究提供理論支持和方法指導(dǎo)。
關(guān)鍵詞 分子對(duì)接; 昆蟲; 化學(xué)感受基因; 化學(xué)信息素; 配體復(fù)合物
中圖分類號(hào): Q 965 ?文獻(xiàn)標(biāo)識(shí)碼: A ?DOI: 10.16688/j.zwbh.2018464
Abstract Molecular docking is a technique for predicting the structural models of the ligands and receptors, simulating the structures of ligand complexes, and determining the strength of binding via combining free energies by means of bioinformatic analysis. Molecular docking involves the preparation of proteins and small molecules, the recognition of binding sites, the search for the conformation of ligand compounds, and the evaluation of the docking results. The reception of chemical pheromones by insects is mainly achieved by the combination of chemosensory proteins and small molecule compounds. Molecular docking accurately simulates the structures and the combined forms of insect chemosensory proteins and information compounds, which can be applied efficiently to the study of insect chemosensory pathways. This review summarized the research progresses in molecular docking technique in the field of insect chemosensory reception, introduced the related softwares of molecular docking, and illustrated the process of molecular docking, which provides solid theoretical supports and logical methodological guidance for the related research in this field.
Key words molecular docking; insect; chemosensory gene; chemical pheromone; ligand complexes
分子對(duì)接技術(shù),即通過構(gòu)建并優(yōu)化蛋白質(zhì)與小分子化合物的三維結(jié)構(gòu),將小分子匹配到蛋白質(zhì)的結(jié)合位點(diǎn)上,并評(píng)估結(jié)合力強(qiáng)弱的一種生物分析技術(shù)[1]。目前,分子對(duì)接應(yīng)用于醫(yī)藥研發(fā)和生物大分子設(shè)計(jì)等方面,在昆蟲化學(xué)感受領(lǐng)域中,分子對(duì)接主要被應(yīng)用于兩種小分子結(jié)合蛋白:氣味結(jié)合蛋白 (odorantbinding protein, OBP) 和化學(xué)感受蛋白(chemosensory protein, CSP) 的功能預(yù)測(cè)以及與小分子物質(zhì)的結(jié)合中。研究昆蟲嗅覺和味覺感受蛋白的結(jié)合機(jī)制,對(duì)農(nóng)林病蟲害的防治,利用天敵防治蟲害等工作有著很重要的意義。
1 分子對(duì)接的涵義
分子對(duì)接的理論最早可以追溯到Fisher 提出的“鎖-鑰模型”?!版i-鑰模型”將配體與受體的結(jié)合視為剛性過程,即在結(jié)合過程中,配體和受體的三維結(jié)構(gòu)不發(fā)生改變。由于剛性對(duì)接本身的局限性,1958年Koshland 提出了“誘導(dǎo)契合學(xué)說”[2],該學(xué)說認(rèn)為在分子對(duì)接過程中,應(yīng)將受體與配體視為柔性結(jié)構(gòu),即構(gòu)象可以在一定范圍內(nèi)發(fā)生改變以實(shí)現(xiàn)契合。隨著分子對(duì)接理論的進(jìn)一步深入,目前在分子對(duì)接過程中常用半柔性對(duì)接作為對(duì)接方法,即在對(duì)接過程中,將受體構(gòu)象視為剛性,而小分子構(gòu)象可以在一定范圍內(nèi)發(fā)生變化,此類對(duì)接比較適宜處理大分子與小分子之間的結(jié)合,例如蛋白質(zhì)和配體之間的結(jié)合[3]。
2 分子對(duì)接的過程
分子對(duì)接的過程可以概括為四部分:1)蛋白質(zhì)和小分子配體的準(zhǔn)備,在進(jìn)行分子對(duì)接之前,需在結(jié)構(gòu)數(shù)據(jù)庫(kù)中搜索蛋白質(zhì)和小分子配體的三維結(jié)構(gòu)以進(jìn)行后續(xù)操作。2)結(jié)合位點(diǎn)的識(shí)別,即在進(jìn)行對(duì)接之前,需要識(shí)別蛋白質(zhì)三維結(jié)構(gòu)中可結(jié)合小分子的位點(diǎn)[1]。1994年, Collins 等第一次利用多尺度算法確定了蛋白質(zhì)表面可結(jié)合配體的位點(diǎn),并成功進(jìn)行了柔性分子對(duì)接,促進(jìn)了分子對(duì)接的發(fā)展[4]。3)配體化合物的構(gòu)象搜索,即在分子對(duì)接過程中,由于分子結(jié)構(gòu)具有一定的柔性,配體會(huì)相對(duì)于受體發(fā)生位置及結(jié)構(gòu)的改變,因此,需要搜尋到所有的配體結(jié)構(gòu)以及配體與受體的結(jié)合模式[5]。4)評(píng)估對(duì)接結(jié)果,即對(duì)構(gòu)象搜索過程中,搜索到的大量配體復(fù)合物結(jié)構(gòu)中配體的位置擺放的合理性和受體、配體結(jié)合的親和性進(jìn)行評(píng)估,從而確定結(jié)合力強(qiáng)的配體復(fù)合物[6]。
精確識(shí)別結(jié)合位點(diǎn),提高構(gòu)象搜索能力,改善評(píng)估功能都有助于增強(qiáng)分子對(duì)接結(jié)果的準(zhǔn)確性[7]。
3 蛋白質(zhì)受體結(jié)構(gòu)預(yù)測(cè)的技術(shù)進(jìn)展
目前,X射線衍射,核磁共振已成為解析生物分子結(jié)構(gòu)的兩大主要技術(shù)。X射線衍射研究常常是利用同步輻射的手段獲得蛋白質(zhì)三維結(jié)構(gòu),更適合于較大分子量的樣品,核磁共振則適用于分子量相對(duì)較小的蛋白樣品[8-10]。這兩種技術(shù)經(jīng)常聯(lián)合用于蛋白質(zhì)結(jié)構(gòu)的研究[11-12]。近年來,隨著冷凍電鏡技術(shù)興起,其逐漸被應(yīng)用于解析生物大分子結(jié)構(gòu)的研究中。冷凍電鏡技術(shù)能夠?qū)⑸锎蠓肿拥撵o態(tài)結(jié)構(gòu)在原子級(jí)分辨率下進(jìn)行解析[13]。由于生物大分子并不是穩(wěn)定不變的,常表現(xiàn)出亞穩(wěn)狀態(tài),甚至?xí)憩F(xiàn)出連續(xù)構(gòu)象變化的非平衡態(tài),因此冷凍電子顯微鏡也具備了對(duì)生物大分子中的每一個(gè)子狀態(tài)進(jìn)行動(dòng)態(tài)解析的能力[14]。Joel等利用冷凍電鏡技術(shù)預(yù)測(cè)了榕小蜂Apocrypta bakeri的嗅覺系統(tǒng)中高度保守的Orco受體的三維結(jié)構(gòu)[15]。隨著技術(shù)的發(fā)展,對(duì)蛋白質(zhì)結(jié)構(gòu)的了解更加深入,可以對(duì)蛋白質(zhì)的三維構(gòu)象進(jìn)行更為準(zhǔn)確的預(yù)測(cè)。
4 分子對(duì)接的應(yīng)用
隨著分子對(duì)接的進(jìn)一步發(fā)展,目前分子對(duì)接主要應(yīng)用于醫(yī)藥研發(fā)以及生物大分子設(shè)計(jì)等方面,并日漸廣泛地應(yīng)用于昆蟲化感基因領(lǐng)域的研究。
4.1 醫(yī)藥研發(fā)
利用分子對(duì)接可以預(yù)測(cè)小分子化合物和靶蛋白之間的結(jié)合親和力,因此,分子對(duì)接一經(jīng)出現(xiàn),就被迅速應(yīng)用于醫(yī)藥研發(fā)領(lǐng)域[16-20]。分子對(duì)接技術(shù)不僅可以用于篩選化合物,還可用于虛擬篩選預(yù)測(cè)候選藥物的靶蛋白[21-22]。
在癌癥的治療中,微管蛋白抑制劑已被證明是一種消除癌細(xì)胞的有效策略[23]。研究人員利用AutoDock 4.2軟件,結(jié)合分子動(dòng)力學(xué)模擬等相關(guān)技術(shù),篩選出了新型微管蛋白抑制劑,對(duì)后續(xù)的研究提供了具有價(jià)值的抑制劑數(shù)據(jù)集[24]。
4.2 生物大分子設(shè)計(jì)
利用大分子物質(zhì)和小分子配體的結(jié)合能力,可以設(shè)計(jì)出所需的生物大分子。目前,分子對(duì)接已經(jīng)被廣泛應(yīng)用于生物催化[25-26]、生物傳感器[27]以及生物降解[28]的研究中。
近年來,隨著納米技術(shù)的日益發(fā)展,納米復(fù)合材料也被廣泛應(yīng)用于生物領(lǐng)域的研究中[29-31]。以蛋白質(zhì)-聚電解質(zhì)復(fù)合物形式的聚合物為基礎(chǔ)可以生產(chǎn)納米復(fù)合材料[32]。研究人員利用AutoDock Vina進(jìn)行分子對(duì)接研究并構(gòu)建了酶-聚電解質(zhì)復(fù)合物模型,并將該模型應(yīng)用于有機(jī)磷的現(xiàn)代解毒劑的研發(fā)中[33]。
4.3 昆蟲化學(xué)感受領(lǐng)域的應(yīng)用
隨著多個(gè)物種基因組及轉(zhuǎn)錄組測(cè)序完成,昆蟲化學(xué)感受途徑機(jī)理的研究也取得了很大的進(jìn)展[34]。研究昆蟲化學(xué)感受途徑有利于掌握昆蟲對(duì)信息化合物的接收機(jī)制,從而為深入研究昆蟲的嗅覺及味覺機(jī)制,研究開發(fā)害蟲抑制劑和利用益蟲新技術(shù)等提供理論支持[35]。
目前,分子對(duì)接技術(shù)被廣泛應(yīng)用于化學(xué)感受途徑中重要的化學(xué)感受蛋白OBP和CSP與小分子結(jié)合的功能預(yù)測(cè)中。對(duì)于蛋白CSP的研究已經(jīng)被應(yīng)用于膜翅目蜜蜂科的中華蜜蜂Apis cerana Fabricius[36-39];半翅目粉虱科的煙粉虱Bemisia tabaci (Gennadius)[40]、蝽科[41]等類群的研究中。對(duì)于蛋白OBP的研究已經(jīng)被應(yīng)用于膜翅目蜜蜂科的中華蜜蜂Apis cerana[37]; 半翅目飛虱科的褐飛虱Nilaparvata lugens Stl [42]、蝽科[41]、蚜科[43];鱗翅目夜蛾科的斜紋夜蛾Spodoptera litura (Fabricius)[44-46]、螟蛾科的歐洲玉米螟Ostrinia nubilalis(Hübner)[47]、菜蛾科的小菜蛾P(guān)lutella xylostella (Linnaeus)[48];直翅目蝗科的東亞飛蝗Locusta migratoria manilensis (Meyen)[49];鞘翅目葉甲科[50]等類群的研究中。
5 分子對(duì)接技術(shù)常用軟件
分子對(duì)接技術(shù)常用軟件列于表1。
6 應(yīng)用舉例
6.1 分子對(duì)接前蛋白質(zhì)和小分子配體準(zhǔn)備
6.1.1 蛋白質(zhì)準(zhǔn)備
6.1.1.1 同源建模
常用SWISSMODEL[57],MODELLER 9.9[58]對(duì)蛋白質(zhì)進(jìn)行同源建模,在線提交蛋白的一級(jí)序列,以蛋白模型數(shù)據(jù)庫(kù)中同源蛋白的三維結(jié)構(gòu)為模板來構(gòu)建所需的蛋白模型,一般模型相似度達(dá)到30%及以上,便可獲得相對(duì)比較合理的構(gòu)象[59]。
6.1.1.2 模型評(píng)估
經(jīng)同源建模得到的蛋白質(zhì)的三維結(jié)構(gòu),可通過兩種方式進(jìn)行模型質(zhì)量評(píng)估。1)利用Ramachandran plot(拉氏圖)進(jìn)行評(píng)價(jià)[60]。拉氏圖用于闡述蛋白質(zhì)或肽立體結(jié)構(gòu)中肽鍵內(nèi)α碳原子和羰基碳原子之間的鍵的旋轉(zhuǎn)度ψ對(duì)α碳原子和氮原子之間的鍵的旋轉(zhuǎn)度φ的關(guān)系,主要說明肽類或蛋白質(zhì)的氨基酸的允許區(qū)和不允許區(qū)。很多軟件都可以生成Ramachandran plot,不同軟件生成的Ramachandran plot形式不同。一般落在允許區(qū)和最大允許區(qū)的氨基酸殘基占蛋白總體氨基酸殘基的比例高于90%,即可認(rèn)為同源建模所得模型的構(gòu)象合理[61]。2)對(duì)同源建模所得蛋白質(zhì)結(jié)構(gòu)模型還可以進(jìn)行能量評(píng)價(jià)。利用PROSA(https:∥prosa.services.came.sbg.ac.at/prosa.php),提交蛋白質(zhì)三維結(jié)構(gòu)的PDB文件,分析后顯示評(píng)價(jià)的結(jié)果圖像。評(píng)價(jià)結(jié)果會(huì)顯示出在PDB數(shù)據(jù)庫(kù)中所確定的與目標(biāo)模型大小相似的蛋白結(jié)構(gòu)鏈的Zscore,并形成一個(gè)分布區(qū),若建模所得的模型的Zscore落在分布區(qū)內(nèi),即代表模型合理。一般Zscore為負(fù)值即為合理[52]。
圖1為懸鈴木方翅網(wǎng)蝽化學(xué)感受蛋白CcilCSP1經(jīng)同源建模獲得的蛋白質(zhì)結(jié)構(gòu)模型的Ramachandran plot[62]。
在Ramachandran plot中,CcilCSP1經(jīng)同源建模所得蛋白模型的94.7%的氨基酸殘基位于最大允許區(qū),有5.3%的氨基酸殘基位于較合適區(qū)域,基本沒有氨基酸殘基落在勉強(qiáng)許可區(qū)和不合理區(qū)。另一方面,用PROSA評(píng)價(jià)得到Zscore打分為-6.26,落在了較好的結(jié)構(gòu)蛋白的Zscore分布范圍。經(jīng)兩種方法評(píng)估,CcilCSP1經(jīng)同源建模獲得的模型構(gòu)象合理[62]。
6.1.2 小分子準(zhǔn)備
小分子配體結(jié)構(gòu)的下載:小分子結(jié)構(gòu)可以在pubchem (https:∥pubchem.ncbi.nlm.nih.gov/) 小分子數(shù)據(jù)庫(kù)中獲取[63]。
6.2 小分子結(jié)合位點(diǎn)的識(shí)別
將蛋白質(zhì)三維結(jié)構(gòu)的PDB文件導(dǎo)入Discovery Studio 4.5中,若晶體結(jié)構(gòu)中不含有氫原子,則Chemistry/Hydrogens/Add進(jìn)行加氫操作。在工具欄中,展開ReceptorLigand Interactions/Define and Edit Binding Site,單擊Define Site一欄下的From Receptor Cavities,通過尋找受體蛋白的“空腔”來尋找蛋白中可能結(jié)合小分子配體的位置。
6.3 配體復(fù)合物的構(gòu)象搜索
由于Discovery Studio中的對(duì)接模塊為非開源部分,因此,利用Schrdinger 2015-2軟件包內(nèi)的對(duì)接程序進(jìn)行對(duì)接。將蛋白結(jié)構(gòu)導(dǎo)入Schrdinger 2015-2,利用Maestro程序來觀察對(duì)接過程。Tasks/protein preparation,刪除蛋白質(zhì)“空腔”內(nèi)存在的水分子和雜原子基團(tuán),以保證蛋白受體和小分子配體對(duì)接充分,單擊Preprocess,蛋白質(zhì)準(zhǔn)備完成。Tasks/Docking/Gride Docking 對(duì)蛋白質(zhì)上可能存在的小分子配體的結(jié)合位點(diǎn)進(jìn)行坐標(biāo)定義,并生成網(wǎng)格文件,此處可對(duì)照Discovery Studio中識(shí)別出的“空腔”位置進(jìn)行定義。Tasks/Ligand preparation/LigPrep 在Schrdinger 2015-2中導(dǎo)入并優(yōu)化小分子結(jié)構(gòu),Task/Conformational search /Bioactive search/Standard,搜索小分子化合物可能存在的構(gòu)象,以在對(duì)接過程中存在小分子所有三維構(gòu)象。Task/Docking/Glide Docking 進(jìn)行分子對(duì)接,搜索出所有可能存在的配體復(fù)合物的結(jié)構(gòu)模型。
6.4 對(duì)接結(jié)果的評(píng)估
對(duì)接結(jié)束后,得到所有配體復(fù)合物的對(duì)接分?jǐn)?shù),其中Dockingscore為對(duì)接分?jǐn)?shù),數(shù)值越小,代表小分子配體與蛋白質(zhì)結(jié)合程度越強(qiáng)。在沒有金屬存在的情況下,該數(shù)值應(yīng)與Glidescore相一致。
選中與蛋白受體親和力最強(qiáng)的小分子配體粘貼到蛋白結(jié)構(gòu)上,小分子自動(dòng)填充至蛋白“空腔”內(nèi)。單擊ReceptorLigand Interactions工具欄中的View Interactions,定義蛋白質(zhì)和小分子配體,單擊Show receptorligand interactions on a 2D diagram 下的Show 2D Diagram 指令,即在新頁(yè)面中顯示配體-蛋白相互作用的二維平面圖,便于更加直觀地觀察受體和配體之間的相互作用以及關(guān)鍵的氨基酸基團(tuán)。
7 分子對(duì)接技術(shù)準(zhǔn)確性驗(yàn)證
在利用分子對(duì)接技術(shù)對(duì)昆蟲化學(xué)感受基因相關(guān)的研究中常常運(yùn)用分子動(dòng)力學(xué)模擬[64],熒光競(jìng)爭(zhēng)結(jié)合分析[45,47]以及體外試驗(yàn)等方法來驗(yàn)證并進(jìn)一步確認(rèn)蛋白質(zhì)和小分子配體的結(jié)合位點(diǎn)和結(jié)合強(qiáng)度。
為探索昆蟲氣味結(jié)合蛋白和小分子化合物識(shí)別過程,Xin等構(gòu)建了斜紋夜蛾的氣味結(jié)合蛋白OBP1的三維結(jié)構(gòu),通過Discovery Studio 2.1進(jìn)行OBP1與小分子配體的對(duì)接,并進(jìn)行了熒光競(jìng)爭(zhēng)結(jié)合試驗(yàn),熒光競(jìng)爭(zhēng)結(jié)合分析結(jié)果與分子對(duì)接結(jié)果相同,驗(yàn)證了分子對(duì)接技術(shù)結(jié)果的準(zhǔn)確性[45]。
化學(xué)感受蛋白CSP在昆蟲化學(xué)感受途徑中起重要作用,為了探究昆蟲解毒和防御機(jī)制,Liu等以煙粉虱Bemisia tabaci為研究對(duì)象,測(cè)定編碼CSP1、CSP2和CSP3的基因序列,將CSP與可能相關(guān)基因的表達(dá)聯(lián)系起來,并試圖找到CSP1、CSP2和CSP3與真正的揮發(fā)性或非揮發(fā)性同源化學(xué)配體的相互作用。利用熒光競(jìng)爭(zhēng)結(jié)合分析和分子對(duì)接技術(shù)進(jìn)行研究,結(jié)果顯示CSP1與亞油酸的親和力較高,而CSP2和CSP3蛋白則與α戊基肉桂醛結(jié)合較好。在試驗(yàn)中分子對(duì)接和熒光競(jìng)爭(zhēng)結(jié)合分析的結(jié)果表現(xiàn)出了極大的一致性[40]。
8 挑戰(zhàn)及展望
雖然分子對(duì)接技術(shù)已經(jīng)被廣泛應(yīng)用到各種領(lǐng)域,但依舊面臨著巨大的挑戰(zhàn)。例如:1)許多蛋白結(jié)構(gòu)尚未完全明確,缺乏用于建模的相關(guān)模型;2)評(píng)分函數(shù)過于簡(jiǎn)單化,不能精確評(píng)估蛋白受體和配體間的相互作用。因此,構(gòu)建更多的蛋白晶體結(jié)構(gòu),使得同源建模的模型精準(zhǔn)度進(jìn)一步提高,并在對(duì)接過程中,開發(fā)一種用來準(zhǔn)確預(yù)測(cè)結(jié)合親和力并能夠同時(shí)篩選數(shù)據(jù)庫(kù)中成千上萬的分子的方法是亟待解決的任務(wù)[65]。
隨著大分子結(jié)構(gòu)分析技術(shù)的豐富,蛋白質(zhì)晶體結(jié)構(gòu)的增加以及優(yōu)化,數(shù)據(jù)庫(kù)的進(jìn)一步擴(kuò)充,評(píng)分函數(shù)的進(jìn)一步優(yōu)化,分子對(duì)接技術(shù)也將進(jìn)一步革新,從而更具有準(zhǔn)確性,將被廣泛應(yīng)用于環(huán)境保護(hù)、蟲害防控以及利用昆蟲嗅覺機(jī)制開發(fā)新型抑制劑[66]。
參考文獻(xiàn)
[1] ?S 'LED Z ' P, CAFLISCH A. Protein structurebased drug design: from docking to molecular dynamics [J]. Current Opinion in Structural Biology, 2017, 48:93-102.
[2] KOSHLAND D E. Application of a theory of enzyme specificity to protein synthesis [J]. Proceedings of the National Academy of Sciences of the United States of America, 1958, 44(2): 98-104.
[3] BONVIN A M J J. Flexible proteinprotein docking [J]. Current Opinion in Structural Biology, 2006, 16(2): 194-200.
[4] COLLINS J G, SHIELDS T P, BARTON J K.1HNMR of Rh (NH3)4phi3+ bound to d(TGGCCA)2: classical intercalation by a nonclassical octahedral metallointercalator [J]. Journal of the American Chemical Society, 1994, 116(22): 9840-9845.
[5] SOUSA S F, FERNANDES P A, RAMOS M J. Proteinligand docking: current status and future challenges[J]. Proteins: Structure, Function, and Bioinformatics, 2010, 65(1):15-26.
[6] HUANG Shengyou, ZOU Xiaoqin. Advances and challenges in proteinligand docking [J]. International Journal of Molecular Sciences, 2010, 11(8): 3016-3034.
[7] BAN L, SCALONI A, BRANDAZZA A, et al. Chemosensory proteins of Locusta migratoria[J]. Insect Molecular Biology, 2010, 12(2):125-134.
[8] ROSENZWEIG R, KAY L E. Solution NMR spectroscopy provides an avenue for the study of functionally dynamic molecular machines: the example of protein disaggregation [J]. Journal of the American Chemical Society, 2016,47(20):1466-1477.
[9] KAY L E. New views of functionally dynamic proteins by solution NMR spectroscopy [J]. Journal of Molecular Biology, 2016, 428(2): 323-331.
[10] TUGARINOV V, KANELIS V, KAY L E. Isotope labeling strategies for the study of highmolecularweight proteins by solution NMR spectroscopy [J].Nature Protocols,2006,1(2):749-754.
[11] PERRY J J, TAINER J A. Developing advanced Xray scattering methods combined with crystallography and computation[J]. Methods, 2013, 59(3): 363-371.
[12] GRANT T D, LUFT J R, WOLFLEY J R, et al. Small angle Xray scattering as a complementary tool for highthroughput structural studies [J]. Biopolymers, 2011, 95(8):517-530.
[13] DASHTI A, SCHWANDER P, LANGLOIS R, et al. Trajectories of the ribosome as a Brownian nanomachine [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(49):17492-17497.
[14] LU Ying, WU Jiayi, DONG Yuanchen, et al. Conformational landscape of the p28bound human proteasome regulatory particle [J]. Molecular Cell, 2017, 67(2): 322.
[15] BUTTERWICK J A, MRMOL J D, KIM K H, et al. CryoEM structure of the insect olfactory receptor Orco [J]. Nature, 2018, 560: 447-452.
[27] SIVASUBRAMANIAN A, MAYNARD J A, GRAY J J. Modeling the structure of mAb 14B7 bound to the anthrax protective antigen [J]. Proteins Structure Function & Bioinformatics, 2010, 70(1): 218-230.
[28] SURESH P S, KUMAR A, KUMAR R, et al. An Insilco approach to bioremediation: Laccase as a case study [J]. Journal of Molecular Graphics & Modeling, 2008, 26(5): 845-849.
[29] BABY T T, ARAVIND S S J, AROCKIADOSS T, et al. Metal decorated graphene nanosheets as immobilization matrix for amperometric glucose biosensor [J]. Sensors and Actuators B: Chemical, 2010, 145(1): 71-77.
[30] MAO Kexia, WU Dan, LI Yan, et al. Labelfree electrochemical immunosensor based on graphene/methylene blue nanocomposite [J].Analytical Biochemistry, 2012, 422(1): 22-27.
[31] SONG Yang, LUO Yanan, ZHU Chengzhou, et al. Recent advances in electrochemical biosensors based on graphene twodimensional nanomaterials [J]. Biosensors & Bioelectronics, 2016, 76:195-212.
[32] BUWALDA S J, VERMONDEN T, HENNINK W E. Hydrogels for therapeutic delivery: current developments and future directions [J]. Biomacromolecules, 2017, 18(2):316-330.
[33] LYAGIN I V, EFREMENKO E N. Biomolecular engineering of biocatalysts hydrolyzing neurotoxic organophosphates[J]. Biochimie, 2017, 144: 115-121.
[34] 柳曉磊, 翁群芳, 任珍珍,等.昆蟲化學(xué)感受基因家族研究新進(jìn)展[J]. 江蘇農(nóng)業(yè)科學(xué), 2010(5):1-5.
[35] PELOSI P, ZHOU J J, BAN L P, et al. Soluble proteins in insect chemical communication[J]. Cellular & Molecular Life Sciences, 2006, 63(14):1658-1676.
[36] LIU Qingjun, WANG Hua, LI Hongliang, et al. Impedance sensing and molecular modeling of an olfactory biosensor based on chemosensory proteins of honeybee [J].Biosensors & Bioelectronics,2013, 40(1): 174-179.
[37] LI Hongliang, ZHANG Linya, NI Cuixia, et al. Molecular recognition of floral volatile with two olfactory related proteins in the Eastern honeybee (Apis cerana) [J]. International Journal of Biological Macromolecules, 2013, 56(5):114-121.
[38] LI Hongliang, NI Cuixia, TAN Jing, et al. Chemosensory proteins of the eastern honeybee, Apis cerana: Identification, tissue distribution and olfactory related functional characterization[J]. Comparative Biochemistry & Physiology Part B, 2016, 194/195(4):11-19.
[39] LI H, TAN J, SONG X, et al. Sublethal doses of neonicotinoid imidacloprid can interact with honey bee chemosensory protein 1 (CSP1) and inhibit its function [J].Biochemical & Biophysical Research Communications, 2017, 486(2):391-397.
[40] LIU Guoxia, MA Hongmei, XIE Hongyan, et al. Biotype characterization, developmental profiling, insecticide response and binding property of Bemisia tabaci chemosensory proteins: role of csp in insect defense [J/OL]. PLoS ONE, 2016, 11(5): e0154706.DOI:10.1371/journal.pone.0154706.
[41] LIU Naiyong, ZHU Jiaying, JI Mei, et al. Chemosensory genes from Pachypeltis micranthus, a natural enemy of the climbing hemp vine [J]. Journal of AsiaPacific Entomology, 2017, 20(2):655-664.
[42] GOPAL J V, KANNABIRAN K. Studies on interaction of insect repellent compounds with odorant binding receptor proteins by in silico, molecular docking approach [J]. Interdisciplinary Sciences Computational Life Sciences, 2013, 5(4): 280-285.
[43] DU Shaoqing, YANG Zhaokai, QIN Yaoguo, et al. Computational investigation of the molecular conformationdependent binding mode of (E)βfarnesene analogs with a heterocycle to aphid odorantbinding proteins [J]. Journal of Molecular Modeling, 2018, 24(3):70.
[44] LIU Naiyong, YANG Ke, LIU Yan, et al. Two generalodorant binding proteins in Spodoptera litura are differentially tuned to sex pheromones and plant odorants [J]. Comparative Biochemistry & Physiology Part A Molecular & Integrative Physiology, 2015, 180: 23-31.
[45] XIN Yi, ZHANG Yanbo, WANG Peidan, et al. Ligands binding and molecular simulation: the potential investigation of a biosensor based on an insect odorant binding protein [J]. International Journal of Biological Sciences,2015,11(1):75-87.
[46] ZHANG Yali, FU Xiaobin, CUI Hongchun, et al. Functional characteristics, electrophysiological and antennal immunolocalization of general odorantbinding protein 2 in tea Geometrid, Ectropis oblique[J]. International Journal of Molecular Sciences,2018, 19(3):425.
[47] AHMED T, ZHANG Tiantao, WANG Zhenying, et al. Three amino acid residues bind corn odorants to McinOBP1 in the polyembryonic endoparasitoid of Macrocentrus cingulum Brischke [J/OL]. PLoS ONE, 2014, 9(4): e93501.DOI:10.1371/journal.pone.0093501.
[48] ZHU Jiao, PAOLO P, LIU Yang, et al. Ligandbinding properties of three odorantbinding proteins of the diamond backmoth Plutella xylostella[J]. Journal of Integrative Agriculture, 2016, 15(3): 580-590.
[49] 張龍.飛蝗嗅覺的細(xì)胞與分子機(jī)制研究進(jìn)展[J]. 生命科學(xué), 2010, 22(12):1215-1228.
[50] WANG Yinliang, JIN Yincan, CHEN Qi, et al. Selectivity and ligandbased molecular modeling of an odorantbinding protein from the leaf beetle Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) in relation to habitatrelated volatiles [J]. Scientific Reports,2017,7:15374.DOI:10.1038/541598017155388.
[51] LIU Zhifeng, LIU Yujie, ZENG Guangming, et al. Application of molecular docking for the degradation of organic pollutants in the environmental remediation: A review [J]. Chemosphere, 2018, 203:139-150.
[52] 張亮仁.常用計(jì)算機(jī)輔助藥物設(shè)計(jì)軟件教程[M].北京:中國(guó)醫(yī)藥科技出版社, 2017.
[53] MORRIS G M, HUEY R, LINDSTROM W, et al. AutoDock 4 and AutoDock Tools 4: Automated docking with selective receptor flexibility [J]. Journal of Computational Chemistry, 2010, 30(16): 2785-2791.
[54] RUPPERT J, WELCH W, JAIN A N. Automatic identification and representation of protein binding sites for molecular docking [J]. Protein Science, 1997, 6(3):524-533.
[55] JAIN A N. Scoring noncovalent proteinligand interactions: a continuous differentiable function tuned to compute binding affinities[J]. Journal of ComputerAided Molecular Design, 1996, 10(5):427-440.
[56] NIKOLICHZUGICH J, SLIFKA M K, MESSAOUDI I. The many important facets of Tcell repertoire diversity [J].Nature Reviews Immunology, 2004, 4(2):123-132.
[57] SCHWEDE T, KOPP J, GUEX N, et al. SWISSMODEL: An automated protein homologymodeling server[J]. Nucleic Acids Research, 2003, 31(13): 3381-3385.
[58] WEBB B, SALI A. Comparative protein structure modeling using MODELLER[J]. Current Protocols in Bioinformatics,2014, 47(36):5.6.1-32.
[59] XIANG Zhexin. Advances in homology protein structure modeling [J]. Current Protein and Peptide Science, 2006, 7(3): 217-227.
[60] HOLLINGSWORTH S A, KARPLUS P A. A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins[J]. Biomolecular Concepts, 2010, 1(3/4): 271-283.
[61] CARUGO O, DJINOVI C 'CARUGO K. Half a century of Ramachandran plots [J]. Acta Crystallographica, 2013, 69(8):1333-1341.
[62] 付寧寧,劉佳,渠成等. 懸鈴木方翅網(wǎng)蝽化學(xué)感受蛋白CcilCSP1的結(jié)構(gòu)及其結(jié)合寄主揮發(fā)物的預(yù)測(cè)分析[J]. 林業(yè)科學(xué), 2017, 53(10):109-117.
[63] WANG Yanli, CHENG Tiejun, BRYANT S H, et al. PubChem BioAssay: A decades development toward open highthroughput screening data sharing [J].Nucleic Acids Research, 2017, 22(6):655-666.
[64] GELIN B R, MCCAMMON J A, KARPLUS M. Dynamics of folded proteins [J]. Nature, 1977, 267(5612): 585-590.
[65] ADENIYI A A, MES S. Implementing QM in docking calculations: is it a waste of computational time?[J]. Drug Discovery Today, 2017, 22(8):1216-1223.
[66] PARAMASIVAN R, SIVAPERUMAL R, DHANANJEYAN K J, et al. Prediction of 3dimensional structure of salivary odorantbinding protein2 of the mosquito Culex quinquefasciatus, the vector of human lymphatic filariasis[J]. Silico Biology, 2007,7(1):1-6.
(責(zé)任編輯: 田 喆)