亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        薄壁微噴帶噴灑寬度模型構(gòu)建

        2019-11-11 06:57:20邸志剛楊路華茍萬(wàn)里王金毅
        關(guān)鍵詞:理論

        邸志剛,楊路華,茍萬(wàn)里,王金毅

        薄壁微噴帶噴灑寬度模型構(gòu)建

        邸志剛1,2,楊路華1※,茍萬(wàn)里1,王金毅1

        (1. 天津農(nóng)學(xué)院,天津 300384;2. 中國(guó)農(nóng)業(yè)節(jié)水與農(nóng)村供水技術(shù)協(xié)會(huì),北京 100053)

        為了更好指導(dǎo)微噴帶在農(nóng)業(yè)灌溉系統(tǒng)中規(guī)劃與設(shè)計(jì),在天津市農(nóng)業(yè)水利技術(shù)工程中心開展了薄壁微噴帶噴灑水滴直徑試驗(yàn)與噴灑寬度試驗(yàn),考慮了微噴帶噴灑水滴運(yùn)動(dòng)過(guò)程中受空氣阻力、重力、浮力等因素,建立了基于牛頓力學(xué)與流體力學(xué)理論的微噴帶噴灑水滴運(yùn)動(dòng)數(shù)學(xué)模型,推導(dǎo)了微噴帶噴灑寬度理論計(jì)算式,確定了計(jì)算式中的參數(shù),并對(duì)微噴帶噴灑寬度影響因素進(jìn)行分析。結(jié)果表明:微噴帶噴灑寬度計(jì)算公式計(jì)算結(jié)果與實(shí)測(cè)數(shù)據(jù)吻合較好,對(duì)于不同型號(hào)微噴帶相對(duì)誤差均小于10%。理論計(jì)算公式及試驗(yàn)結(jié)果均反映微噴帶噴灑寬度隨著噴孔仰角呈先增加后減小變化,且當(dāng)噴孔仰角為40°左右噴灑寬度達(dá)到最大。微噴帶噴灑寬度理論計(jì)算公式精度較高,可廣泛應(yīng)用于噴灑寬度的計(jì)算,為微噴帶灌溉系統(tǒng)規(guī)劃設(shè)計(jì)提供理論依據(jù)。

        灌溉;流量;模型;微噴帶;噴灑寬度;工作壓力;噴孔直徑;噴孔仰角

        0 引 言

        微噴帶是一種多孔出流薄壁塑料軟管,能在一定工作壓力下利用噴孔噴水進(jìn)行灌溉。微噴帶灌溉技術(shù)結(jié)合了噴灌和微灌的技術(shù)特點(diǎn),是一種灌水均勻,灌水效率高的節(jié)水灌溉方式,在地區(qū)農(nóng)業(yè)用水資源節(jié)約上起著舉足輕重的作用[1-4]。由于微噴帶具有灌水效果好、抗堵塞性能強(qiáng)、對(duì)作物和土壤沖擊力小等突出優(yōu)點(diǎn),近年來(lái)在中國(guó)得到了廣泛推廣與發(fā)展[5-9]。但目前中國(guó)微噴帶生產(chǎn)市場(chǎng)混亂,缺乏統(tǒng)一技術(shù)標(biāo)準(zhǔn),無(wú)法將該技術(shù)納入《微灌工程技術(shù)規(guī)范》[10]。因此通過(guò)試驗(yàn)確定微噴帶噴灑寬度計(jì)算公式,對(duì)微噴帶灌溉系統(tǒng)規(guī)劃設(shè)計(jì)具有重要意義。

        國(guó)內(nèi)外很多學(xué)者對(duì)微噴帶噴灑寬度等進(jìn)行了研究,Deboer等[11]通過(guò)對(duì)單噴頭開展水力試驗(yàn)研究,運(yùn)用彈道模型研究了噴頭噴灑水滴運(yùn)動(dòng)軌跡,并研究了噴頭水滴平均直徑和水滴動(dòng)能。Sayyadi等[12]利用低壓折射式噴頭開分析工作壓力、噴嘴直徑和安裝高度等因素對(duì)噴頭噴灑寬度影響研究。脫云飛等[13]在無(wú)風(fēng)有空氣阻力假定條件下,基于牛頓力學(xué)與水力學(xué)理論,推導(dǎo)了噴頭噴灑寬度理論公式,并與試驗(yàn)值進(jìn)行對(duì)比分析。王建軍等[14]通過(guò)試驗(yàn)研究了工作壓力與噴射角度對(duì)微噴帶單孔噴灑特性的影響,發(fā)現(xiàn)當(dāng)微噴帶噴射仰角度為30°時(shí)單孔噴灑寬度達(dá)到最大。周斌等[15]研究分析了微噴帶單孔水量分布與濕潤(rùn)區(qū)面積、干燥區(qū)寬度、濕潤(rùn)區(qū)寬度等各因素之間的關(guān)系,發(fā)現(xiàn)微噴帶噴射角度為40°左右時(shí)噴灑寬度最大。盡管國(guó)內(nèi)外對(duì)微噴帶噴灑寬度有所研究,但均采用試驗(yàn)研究,多是對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行分析總結(jié),缺少一個(gè)適用于微噴帶噴灑寬度的理論計(jì)算公式。故本文開展微噴帶噴灑寬度試驗(yàn),基于牛頓力學(xué)與流體力學(xué)理論建立微噴帶噴灑水滴運(yùn)動(dòng)數(shù)學(xué)模型,推導(dǎo)微噴帶噴灑寬度理論計(jì)算公式,確定公式的參數(shù),并對(duì)微噴帶噴灑寬度理論計(jì)算公式影響因素進(jìn)行分析。

        1 材料與方法

        1.1 試驗(yàn)材料

        通過(guò)市場(chǎng)調(diào)研,收集了中國(guó)農(nóng)業(yè)中常見(jiàn)的6種微噴帶,其中微噴帶試樣的折徑、孔徑由生產(chǎn)廠家提供,測(cè)量出微噴帶孔邊距、橫向孔間距,結(jié)合折徑利用弧長(zhǎng)公式確定出微噴帶的噴孔仰角。為便于不同類型的微噴帶對(duì)比分析,對(duì)微噴帶式樣進(jìn)行了編號(hào)。具體參數(shù)見(jiàn)表1。并繪制微噴帶結(jié)構(gòu)式樣圖,如圖1所示。

        圖1 微噴帶結(jié)構(gòu)式樣圖

        表1 試驗(yàn)微噴帶試樣具體參數(shù)表

        注:NY/T44-0.8-3代表微噴帶型號(hào),其中44代表折徑,0.8代表噴孔直徑,3代表噴孔數(shù)。以此類推。

        Note: NY/T44-0.8-3 stands for the type of micro-sprinkling hose, of which 44 stands for the folding width, 0.8 stands for the nozzle diameter, and 3 stands for the number of nozzles. And so on.

        1.2 試驗(yàn)方案

        試驗(yàn)場(chǎng)地選在天津市農(nóng)業(yè)水利技術(shù)工程中心試驗(yàn)基地完成。主要開展微噴帶水滴直徑、噴灑寬度試驗(yàn)。主要的試驗(yàn)設(shè)備有水泵、穩(wěn)壓裝置、調(diào)壓閘閥、電磁流量計(jì)、精密壓力表、堵頭、集水桶、量筒、精密天平(精度10-4)、濾紙等。

        1)噴灑寬度的測(cè)量。根據(jù)《農(nóng)業(yè)灌溉設(shè)備非旋轉(zhuǎn)式噴頭技術(shù)要求和試驗(yàn)方法》(GB/T 18687—2012)[16]中規(guī)定,噴灑寬度是指測(cè)出灌水強(qiáng)度為某數(shù)值的那個(gè)點(diǎn)距噴頭中心線的距離。對(duì)于流量等于或小于75 L/h的噴頭,該點(diǎn)的噴灑強(qiáng)度為0.13 mm/h。

        試驗(yàn)中待測(cè)微噴帶樣本長(zhǎng)度選取5 m,有效試驗(yàn)數(shù)據(jù)取中間2.5 m,以保證消除邊界影響。工作壓力在0.03~0.06 MPa分4個(gè)等級(jí)。微噴帶正面向上鋪設(shè),保證微噴帶兩側(cè)噴灑均勻。集水桶布置在微噴帶一側(cè),垂直微噴帶方向布置5條射線,射線間距50 cm,射線上雨量桶布置間距50 cm。測(cè)試時(shí)間15 min,用量筒測(cè)量集水桶中噴灑水量。每個(gè)壓力處理試驗(yàn)重復(fù)3次。

        2)水滴直徑的測(cè)量。采用改進(jìn)濾紙法測(cè)量水滴直徑,首先利用精密天平稱濾紙質(zhì)量,然后用濾紙?jiān)谘匚妿娚渌魇锥?、中部、末端接取水滴[17-19],并迅速利用精密天平再次測(cè)量其質(zhì)量,最后數(shù)出濾紙上的水痕數(shù)量。由于噴灌蒸發(fā)損失較小,所以一般不考慮蒸發(fā)損失,將水滴在運(yùn)動(dòng)過(guò)程中視為球體[20-22],則利用質(zhì)量差與水滴數(shù)求出水滴直徑,并將不同部位接取水滴直徑平均值作為微噴帶水滴直徑。每個(gè)壓力處理試驗(yàn)重復(fù)3次。

        2 薄壁微噴帶噴灑寬度模型建立

        2.1 微噴帶噴灑水滴受力分析

        根據(jù)牛頓萬(wàn)有引力定律,水滴重力1為

        式中為水滴質(zhì)量,kg;為水滴直徑,m;ρ為水的密度,kg/m3;為重力加速度,m/s2。

        由于水滴占一定的體積,在空氣中將受到浮力作用,則浮力2為

        式中ρ為空氣的密度,kg/m3。

        根據(jù)流體力學(xué)理論,當(dāng)運(yùn)動(dòng)物體的雷諾數(shù)很大時(shí),則阻力與速度的2次方成正比[23]。對(duì)于微噴帶噴孔噴出的水流,雷諾數(shù)較大,所以處于阻力平方區(qū),阻力3可以表示為

        式中為水滴摩擦系數(shù);為水滴速度,m/s。

        2.2 水滴運(yùn)動(dòng)模型的建立及求解

        2.2.1 水滴運(yùn)動(dòng)方程建立

        對(duì)水滴在空氣中運(yùn)動(dòng)所受的力進(jìn)行分析,根據(jù)牛頓第二定律,在垂直于微噴帶鋪設(shè)方向的豎直平面內(nèi)建立水滴運(yùn)動(dòng)方程。

        在方向

        在方向

        初始邊界條件

        上升時(shí)初始條件

        下降時(shí)初始條件

        式中為水滴在豎直方向的合加速度,m/s2;vv為分別為水滴在運(yùn)動(dòng)過(guò)程中任一時(shí)間點(diǎn)時(shí)在、軸投影的速度,m/s;0為噴孔出口處水流速度,m/s;為微噴帶任一噴孔與水平地面間夾角,(°);1max為上升最大高度,m。

        2.2.2 水滴位移公式與總時(shí)間求解

        1)水平方向運(yùn)動(dòng)

        將邊界條件式(6)代入式(9),整理并積分可得

        2)豎直方向運(yùn)動(dòng)

        對(duì)水滴進(jìn)行受力分析可知,在豎直向上與豎直向下時(shí)受力不同,引力總是豎直向下,浮力豎直向上,但空氣阻力與運(yùn)動(dòng)方向相反。所以將豎直方向運(yùn)動(dòng)分為豎直向上和豎直向下。

        豎直向上時(shí)運(yùn)動(dòng)方程為

        將邊界條件式(7)代入公式(13),整理并積分可得

        通過(guò)分析可知當(dāng)水滴運(yùn)動(dòng)到最高點(diǎn)時(shí),此時(shí)速度為0,運(yùn)動(dòng)時(shí)間為1,將v=0代入式(14)得

        將1代入式(15)最大上升高度1max為

        豎直向下時(shí)運(yùn)動(dòng)方程為

        同理,將邊界條件式(8)代入得式(18)

        對(duì)于水滴下降時(shí),當(dāng)引力與浮力合力等于阻力時(shí),此時(shí)加速度為0,即達(dá)到極限速度。由于水滴質(zhì)量較小,所以下降時(shí)很快達(dá)到極限速度,此后將以極限速度做勻速運(yùn)動(dòng)[13]。為了簡(jiǎn)化計(jì)算,則下降全過(guò)程認(rèn)為是做勻速運(yùn)動(dòng)。經(jīng)分析,極限速度為

        時(shí)間2可得

        則可知總時(shí)間

        通過(guò)前面計(jì)算分析,將總時(shí)間代入到式(11)即得到微噴帶任一噴孔噴灑寬度公式

        對(duì)于同一條微噴帶有不同噴孔,就有不同噴孔仰角,對(duì)應(yīng)不同噴灑寬度則取最大噴灑寬度作為微噴帶噴灑寬度。則微噴帶噴灑寬度為

        3 薄壁微噴帶噴灑寬度公式參數(shù)確定

        3.1 噴灑水滴直徑的確定

        水滴直徑是指落在地面或者作物葉面上的水滴直徑。水滴直徑沿著噴灑半徑方向呈增加趨勢(shì),噴灑半徑末端一般出現(xiàn)最大水滴直徑[24-27]。試驗(yàn)數(shù)據(jù)見(jiàn)表2。

        表2 微噴帶噴灑水滴直徑試驗(yàn)數(shù)據(jù)

        利用軟件結(jié)合模型利用表2中的數(shù)據(jù)進(jìn)行多元線性回歸處理。結(jié)果顯示,模型相關(guān)系數(shù)平方2=0.962,相伴概率值<0.001,均方根誤差RMSE=0.099。經(jīng)回歸擬合后,通過(guò)計(jì)算推導(dǎo)得出水滴直徑計(jì)算公式

        式中為水滴直徑,mm;為噴孔直徑,mm;為工作壓力,MPa。

        3.2 噴灑水滴摩擦系數(shù)確定

        水滴在空氣中運(yùn)動(dòng)的摩擦系數(shù)的確定公式有很多,本文采用斯托克斯阻力公式得

        式中C為摩擦阻力系數(shù);A為與水滴運(yùn)動(dòng)方向垂直的水滴迎風(fēng)的投影面積,mm2,A=π24;ρ為空氣密度,kg/m3,ρ取1.29 kg/m3。C主要依據(jù)噴孔出口的雷諾數(shù)來(lái)確定,根據(jù)文獻(xiàn)[28]可知,微噴帶噴灑水滴摩擦系數(shù)計(jì)算中C取0.44。

        3.3 噴灑水滴初始流速確定

        薄壁微噴帶在噴孔處可以近似認(rèn)為勢(shì)能全部轉(zhuǎn)化為動(dòng)能[29],利用能量守恒原理可知微噴帶噴孔初始流速

        式中0為噴孔水流初始流速,m/s;為工作壓力,MPa;為流量系數(shù),對(duì)于不同型號(hào)微噴帶流量系數(shù)不同,通過(guò)試驗(yàn)測(cè)得流量系數(shù)取值范圍為0.95~0.99,本文取0.97。

        3.4 噴灑水滴豎直方向合加速度確定

        對(duì)噴灑水滴在豎直方向進(jìn)行受力分析,發(fā)現(xiàn)不管在上升過(guò)程還是下降過(guò)程,重力方向始終向下,浮力始終向上,則合加速度見(jiàn)式(29)。

        經(jīng)計(jì)算分析可知,噴灑水滴在空氣中受到浮力為重力的千分之一,在計(jì)算中可以不考慮空氣浮力[30],合加速度,近似等于重力加速度。

        4 模型驗(yàn)證與結(jié)果分析

        4.1 理論計(jì)算公式驗(yàn)證

        通過(guò)推導(dǎo)得出微噴帶理論噴灑寬度計(jì)算公式,利用理論公式計(jì)算同一微噴帶試樣的不同噴孔仰角噴灑寬度,取最大值作為微噴帶噴灑寬度,然后與試驗(yàn)數(shù)據(jù)進(jìn)行驗(yàn)證,結(jié)果見(jiàn)表3。由表3可知,利用薄壁微噴帶噴灑寬度理論計(jì)算公式獲得結(jié)果較為精確。對(duì)于6種不同型號(hào)微噴帶的24組對(duì)比結(jié)果中,相對(duì)誤差均小于10%。其中相對(duì)誤差在5%以內(nèi)的占比為70.83%,相對(duì)誤差在5%~10%占比為29.17%。

        表3 薄壁微噴帶噴灑寬度理論計(jì)算結(jié)果與試驗(yàn)結(jié)果對(duì)比

        4.2 理論計(jì)算公式分析

        前面對(duì)微噴帶噴灑寬度理論計(jì)算公式進(jìn)行詳細(xì)推導(dǎo),現(xiàn)對(duì)噴灑寬度理論計(jì)算公式進(jìn)行分析。公式適用于任何型號(hào)微噴帶,為了直觀反映微噴帶噴灑寬度影響因素,以NY/T63-0.6-7為例,在同一工作壓力、噴射仰角下分析不同噴孔直徑下的微噴帶噴灑寬度(圖2a);在同一噴射仰角、噴孔直徑下分析不同工作壓力下的微噴帶噴灑寬度(圖2b);在同一工作壓力、噴孔直徑下分析不同噴射仰角下的微噴帶噴灑寬度(圖2c)。通過(guò)分析圖2與表3可知,對(duì)于同一工作壓力、同一噴孔仰角,噴灑寬度隨噴孔直徑增加而增加;對(duì)于同一噴孔直徑、同一噴孔仰角微噴帶,噴灑寬度隨著工作壓力增加而增加,且增加速率逐漸減??;對(duì)于同一工作壓力、噴孔直徑下,微噴帶噴灑寬度隨著噴孔仰角增加呈先增加后減小的變化趨勢(shì),且變化速率先減小后增加,且在40°左右取得最大值。

        注:圖2a中工作壓力為0.05 MPa,噴孔仰角為31.43°;圖2b中噴孔仰角為31.43°,噴孔直徑為0.6 mm;圖2c中工作壓力為0.05 MPa,噴孔直徑為0.6 mm。

        5 結(jié) 論

        本文通過(guò)開展薄壁微噴帶噴灑水滴直徑試驗(yàn)與噴灑寬度試驗(yàn),推導(dǎo)了微噴帶噴灑寬度理論計(jì)算公式,該公式能夠?yàn)槲妿a(chǎn)廠家提供一定設(shè)計(jì)依據(jù),為微噴帶田間布設(shè)提供一定理論依據(jù)。具體結(jié)論如下:

        1)微噴帶噴灑水滴直徑試驗(yàn)表明,微噴帶噴灑水滴直徑與噴孔直徑呈負(fù)相關(guān),與工作壓力呈正相關(guān),工作壓力越大,噴灑水滴直徑越小。

        2)通過(guò)開展微噴帶噴灑寬度試驗(yàn),利用牛頓力學(xué)與流體力學(xué)理論,考慮噴灑水滴在空氣中受到重力、浮力與空氣阻力,建立了微噴帶噴灑水滴運(yùn)動(dòng)模型,推導(dǎo)了微噴帶噴灑寬度理論計(jì)算公式。利用實(shí)測(cè)數(shù)據(jù)對(duì)微噴帶噴灑寬度理論公式進(jìn)行驗(yàn)證,結(jié)果表明理論計(jì)算公式與實(shí)測(cè)值吻合程度較好,誤差均小于10%,可以廣泛應(yīng)用于微噴帶噴灑寬度計(jì)算。

        3)對(duì)噴灑寬度計(jì)算公式進(jìn)行影響因素分析可知,微噴帶噴灑寬度隨噴孔仰角增加呈先增加后減小,且在40°附近時(shí)噴灑寬度取得最大值;在一定工作壓力范圍內(nèi),噴灑寬度與工作壓力呈正相關(guān);在一定噴孔直徑范圍內(nèi),噴灑寬度與噴孔直徑呈正相關(guān)。

        [1] 董志強(qiáng),張麗華,李謙,等. 微噴灌模式下冬小麥產(chǎn)量和水分利用特性[J]. 作物學(xué)報(bào),2016,42(5):725-733. Dong Zhiqiang, Zhang Lihua, Li Qian, et al. Grain yield and water use characteristics of winter wheat under micro-sprinkler irrigation[J]. Acta Agronomica Sinica, 2016, 42(5): 725-733. (in Chinese with English abstract)

        [2] 徐袁博. 不同微噴帶布置間距與灌水量對(duì)冬小麥的影響[D]. 楊凌:西北農(nóng)林科技大學(xué),2017. Xu Yuanbo. The Effect of Different Spacing of Micro-Sprinkling Hose and Irrigation Amount on Winter Wheat[D]. Yangling: Northwest A&F University, 2017. (in Chinese with English abstract)

        [3] 袁壽其,李紅,王新坤. 中國(guó)節(jié)水灌溉裝備發(fā)展現(xiàn)狀、問(wèn)題、趨勢(shì)與建議[J]. 排灌機(jī)械工程學(xué)報(bào),2015,33(1):78-92. Yuan Shouqi, Li Hong, Wang Xinkun. Status, problems, trends and suggestions for water-saving irrigation equipment in China[J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(1): 78-92. (in Chinese with English abstract)

        [4] 李敬庫(kù). 微噴帶灌溉技術(shù)研究及應(yīng)用進(jìn)展[J]. 東北水利水電,2017,35(1):53-56. Li Jingku. Progress in research and application of micro-spray irrigation technology[J]. Water Resources & Hydropower of Northeast China, 2017, 35(1): 53-56. (in Chinese with English abstract)

        [5] 張學(xué)軍,吳政文,丁小明. 微噴帶水量分布特性試驗(yàn)分析[J].農(nóng)業(yè)工程學(xué)報(bào),2009,25(4):66-69. Zhang Xuejun, Wu Zhengwen, Ding Xiaoming, et al. Experimental analysis of water distribution characteristics of micro-sprinkling hose[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(4): 66-69. (in Chinese with English abstract)

        [6] 張碩. 微噴帶水力性能及水量分布試驗(yàn)研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2017. Zhang Shuo. Experimental Study on Hydraulic Performance and Water Distribution of Micro Jet[D]. Yangling: Northwest A&F University, 2017. (in Chinese with English abstract)

        [7] 程維國(guó). 微噴灌技術(shù)在大田作物中的應(yīng)用[J]. 北京農(nóng)業(yè),2013(27):175. Cheng Weiguo. Application of micro sprinkler irrigation technology in field crops[J]. Beijing Agriculture, 2013(27): 175. (in Chinese with English abstract)

        [8] 茍萬(wàn)里,楊路華,邸志剛,等. 薄壁微噴帶沿程水頭損失試驗(yàn)研究[J]. 灌溉排水學(xué)報(bào),2019,38(5):79-83. Gou Wanli, Yang Luhua, Di Zhigang, et al. Experimental study on water head loss along thin-wall spray-irrigation pipe[J]. Journal of Irrigation and Drainage, 2019, 38(5): 79-83. (in Chinese with English abstract)

        [9] 王鳳民,張麗媛. 微噴灌技術(shù)在設(shè)施農(nóng)業(yè)中的應(yīng)用[J]. 地下水,2009,31(6):115-116. Wang Fengmin, Zhang Liyuan. Application of micro sprinkler irrigation technology in facility agriculture[J]. Ground Water, 2009, 31(6): 115-116. (in Chinese with English abstract)

        [10] 中華人民共和國(guó)國(guó)家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局. 微灌工程技術(shù)規(guī)范:GB/T50485-2009[S]. 北京:中國(guó)標(biāo)準(zhǔn)出版社,2009.

        [11] Deboer D W, Monnens M J. Estimation of drop size and kinetic energy from a rotating-plate sprinkler[J]. Transactions of ASAE, 2001, 44(6): 1571-1580.

        [12] Sayyadi H, Gazemi A H, Sadraddini A. Characterising droplets and precipitation profiles of a fixed spray-plate sprinkler[J]. Biosystems Engineering, 2014, 119: 13-24

        [13] 脫云飛,楊路華,柴春嶺,等. 噴頭射程理論公式與試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2006,22(1):23-26. Tuo Yunfei, Yang Luhua, Chai Chunling, et al. Experimental study and theoretical formula of the sprinkler range[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(1): 23-26. (in Chinese with English abstract)

        [14] 王建軍,楊筠晴,蔡九茂,等. 工作壓力及噴射角度對(duì)微噴帶單孔噴水特性影響的試驗(yàn)研究[J]. 節(jié)水灌溉,2018(3):35-38. Wang Jianjun, Yang Yunqing, Cai Jiumao, et al. Experimental study on the influence of working pressure and spraying angle on the single-hole spray characteristics of micro-sprinkling hose[J]. Water Saving Irrigation, 2018(3): 35-38. (in Chinese with English abstract)

        [15] 周斌,封俊,張學(xué)軍,等. 微噴帶單孔噴水量分布的基本特征研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2003,19(4):101-103. Zhou Bin, Feng Jun, Zhang Xuejun, et al. Characteristics and indexes of water distribution of punched thin-soft tape for spray[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(4): 101-103. (in Chinese with English abstract)

        [16] 中華人民共和國(guó)國(guó)家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局. 農(nóng)業(yè)灌溉設(shè)備-非旋轉(zhuǎn)式噴頭技術(shù)要求和試驗(yàn)方法:GB/T 18687—2012[S]. 北京:中國(guó)標(biāo)準(zhǔn)出版社,2013.

        [17] 張林,惠鑫,陳俊英. 坡地噴灌水滴直徑與動(dòng)能強(qiáng)度分布規(guī)律研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(6):263-270. Zhang Lin, Hui Xin, Chen Junying. Droplet diameter and kinetic energy intensity distribution regularities for sprinkler irrigation on sloping land[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(6): 263-270. (in Chinese with English abstract)

        [18] 劉興發(fā). 全射流噴頭水滴分布特性試驗(yàn)研究[D]. 鎮(zhèn)江:江蘇大學(xué),2016. Liu Xingfa. Droplets Distribution Characteristic Study on Complete Fluidic Sprinkler[D]. Zhenjiang: Jiangsu University, 2016. (in Chinese with English abstract)

        [19] 徐紅,龔時(shí)宏,賈瑞卿,等. 新型ZY系列搖臂旋轉(zhuǎn)式噴頭水滴直徑分布規(guī)律的試驗(yàn)研究[J]. 水利學(xué)報(bào),2010,41(12):1416-1422. Xu Hong, Gong Shihon, Jia Ruiqing, et al. Study ondroplet size distribution of ZY sprinkler head[J]. Journal of Hydraulic Engineering, 2010, 41(12): 1416-1422. (in Chinese with English abstract)

        [20] Lima D, Torfs J F, Singh V P. A mathematical model for evaluating the effect of wind on downward spraying rainfall simu-lators[J]. Catena, 2001, 46(4): 221-241.

        [21] Heermann D F, Kohl R A. Fluid Dynamics of Sprinkler Systems[M]∥Jensen M E. Design and Operation of Farm Irrigation Systems. Michigan: ASAE, 1980: 583-618.

        [22] 黃修橋. 有風(fēng)時(shí)的噴灑水滴運(yùn)動(dòng)規(guī)律及風(fēng)對(duì)噴頭射程的影響[J]. 灌溉排水學(xué)報(bào), 1992,11(2):1-7. Huang Xiuqiao. Moving of spray droplet under wind condition and the effect of wind on spray distance of nozzle[J]. Journal of Irrigation and Drainage, 1992, 11(2): 1-7. (in Chinese with English abstract)

        [23] 汪志明. 流體力學(xué)[M]. 北京:石油工業(yè)出版社,2006.

        [24] 劉海軍,龔時(shí)宏. 噴灌水滴的蒸發(fā)研究[J]. 節(jié)水灌溉,2000(2):16-19. Liu Haijun, Gong Shihong. Study on evaporation of sprinkler droplets[J]. Water Saving Irrigation, 2000(2): 16-19. (in Chinese with English abstract)

        [25] 朱興業(yè),劉興發(fā),劉俊萍,等. 基于LPM的搖臂式噴頭水滴分布試驗(yàn)研究[J]. 排灌機(jī)械工程學(xué)報(bào),2015,33(10):908-914. Zhu Xingye, Liu Xingfa, Liu Junping, et al. Droplets distribution research of impact sprinkler based on Laser precipitation monitor[J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(10): 908-914. (in Chinese with English abstract)

        [26] 嚴(yán)海軍,肖建偉,李文穎,等. 圓形噴灌機(jī)低壓阻尼噴頭水滴直徑分布規(guī)律的試驗(yàn)研究[J]. 水利學(xué)報(bào),2014,45(4):467-473. Yan Haijun, Xiao Jianwei, Li Wenying, et al. Droplet size distribution of low-press damping sprinklers used in center-pivot irrigation systems[J]. Journal of Hydraulic Engineering, 2014, 45(4): 467-473. (in Chinese with English abstract)

        [27] 白更,嚴(yán)海軍. 空氣阻力系數(shù)對(duì)水滴運(yùn)動(dòng)及蒸發(fā)的影響[J]. 水利學(xué)報(bào),2011,42(4):448-453. Bai Geng, Yan Haijun. Effect of air drag coefficient on motion and evaporation of water droplet[J]. Journal of Hydraulic Engineering, 2011, 42(4): 448-453. (in Chinese with English abstract)

        [28] 崔謨慎,孫家駿. 高壓水射流技術(shù)[M]. 北京:煤炭工業(yè)出版社,1993.

        [29] 鄭迎春. 微噴帶水力性能試驗(yàn)研究[D]. 保定:河北農(nóng)業(yè)大學(xué),2009. Zheng Yingchun. Experimental Study on Hydraulic Characteristics of Micro-Spraying Hose[D]. Baoding: Agricultural University of Hebei, 2009. (in Chinese with English abstract)

        [30] 王波雷,馬孝義,范嚴(yán)偉,等. 旋轉(zhuǎn)式噴頭射程的理論計(jì)算模型[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2008,39(1):41-45. Wang Bolei, Ma Xiaoyi, Fan Yanwei, et al. Modeling and experiment validation on the rotational sprinkler nozzle range[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(1): 41-45. (in Chinese with English abstract)

        Model establishment of spraying width of thin-walled micro-sprinkling hose

        Di Zhigang1,2, Yang Luhua1※, Gou Wanli1, Wang Jinyi1

        (1.,,300384,; 2.,,100053,)

        China is the biggest agricultural production country in the world and the agriculture is related to its stability and development. With the development in water-saving irrigation technology, micro-sprinkling hose has been widely promoted and applied in China in recent years as an improved equipment duo to its efficiency in water-saving. To facilitate production and upgrading, as well as guide planning and design of the micro-sprinkling hose in irrigation, we experimentally studied the spray width in the hose at Tianjin Agricultural Water Saving Technology Engineering Center (39°N, 116°E). After literature review and market research, we selected six common micro-sprinkling hoses available in the market, and measured and calculated their folding width, nozzle diameter and nozzle elevation angle in the spray width test. The length of the sample in the test was 5 m and the working pressure varied from 0.03 to 0.06 MPa. The micro-sprinkling hose was laid at the upfront to ensure uniform spraying on both sides of the hose. The water collecting bucket was on one side of the hose and five rays spaced 50 cm were arranged in the vertical direction of the hose, with the collecting bucket on the ray spaced 50 cm. At the end of the experiment, the amount of water in the bucket was measured and the spraying width was determined. In the meantime, we also measured the diameter of the spraying droplets using filter paper method. The quality of the paper was measured by a precision balance, and the water droplets were connected to the paper at the head, middle and end of the spray stream along the hose. The quality of the paper was measured again quickly by the precision balance prior to counting the number of water marks on it, which, along with mass balance, was used to calculate the diameter of the water droplets. The average diameter of the water droplets at different locations was taken as the diameter of the water droplets in the hose. Considering the factors such as air resistance, gravity and buoyancy that act on the water droplets, a model for water droplet moving in the hose was proposed based on the Newtonian fluid mechanics. We also derived a formula for the spray width, determined the parameters in the formula, validated them against experimental data, and analyzed the factors that affect the accuracy of the formula. The results show that the derived formula for spray width in the hose agreed well with both analytical values and experiment data, and, compared with the experimental data, its relative error for the six selected hoses was less than 10%. Both the experimental data and theoretical analysis of the formula reveal that the spray width in the hose increases with the elevation angle of the nozzle before declining after it peaked when the nozzle elevation angle was approximately 40°. The spray width increases with both working pressure and nozzle diameter within certain ranges. It was also found that the derived formula was accurate and can be used to calculate the spray width, offering a theoretical tool for planning and designing micro-sprinkling hose irrigation system.

        irrigation; flow; model; micro-sprinkling hose; spray width; working pressure; nozzle diameter; nozzle elevation angle

        2019-04-14

        2019-07-10

        水利部海河水利委員會(huì)資助項(xiàng)目(TNHP2018001)

        邸志剛,研究方向?yàn)楣?jié)水灌溉理論與技術(shù)。Email:562610819@qq.com

        楊路華,博士,教授,研究方向?yàn)檗r(nóng)業(yè)節(jié)水灌溉理論與技術(shù)。Email:yangluhua@tjau.edu.cn

        10.11975/ j.issn.1002-6819.2019.17.004

        S275.5

        A

        1002-6819(2019)-17-0028-07

        邸志剛,楊路華,茍萬(wàn)里,王金毅. 薄壁微噴帶噴灑寬度模型構(gòu)建[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(17):28-34. doi:10.11975/ j.issn.1002-6819.2019.17.004 http://www.tcsae.org

        Di Zhigang, Yang Luhua, Gou Wanli, Wang Jinyi. Model establishment of spraying width of thin-walled micro-sprinkling hose[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(17): 28-34. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.17.004 http://www.tcsae.org

        猜你喜歡
        理論
        堅(jiān)持理論創(chuàng)新
        神秘的混沌理論
        理論創(chuàng)新 引領(lǐng)百年
        相關(guān)于撓理論的Baer模
        多項(xiàng)式理論在矩陣求逆中的應(yīng)用
        基于Popov超穩(wěn)定理論的PMSM轉(zhuǎn)速辨識(shí)
        十八大以來(lái)黨關(guān)于反腐倡廉的理論創(chuàng)新
        “3T”理論與“3S”理論的比較研究
        理論宣講如何答疑解惑
        婦女解放——從理論到實(shí)踐
        98在线视频噜噜噜国产| 337p粉嫩日本欧洲亚洲大胆| 亚洲七久久之综合七久久| 久久精品国产亚洲av瑜伽| 北岛玲精品一区二区三区| 国产性感午夜天堂av| 丰满人妻一区二区三区免费视频| 在线va免费看成| 亚洲公开免费在线视频| 日本高清不卡二区三区| 亚洲熟妇无码久久精品| 337人体做爰大胆视频| 亚洲阿v天堂2018在线观看| 亚洲国产综合精品一区最新| 亚洲av综合av一区二区三区| 国精无码欧精品亚洲一区| 亚洲欧美日韩一区二区在线观看| 亚洲发给我的在线视频| 国产 高潮 抽搐 正在播放| 真人与拘做受免费视频| 日韩欧美在线观看成人| 国产在线一区二区三区不卡| 无码人妻一区二区三区在线| 少妇对白露脸打电话系列| 国产欧美久久久精品影院| 91熟女av一区二区在线| 高潮潮喷奶水飞溅视频无码| 成年人黄视频大全| 亚洲一区二区视频蜜桃| 久久日日躁夜夜躁狠狠躁| 国产卡一卡二卡三| 不卡无毒免费毛片视频观看| av高潮一区二区三区| 亚洲av永久中文无码精品综合| 巨大欧美黑人xxxxbbbb| 久久伊人中文字幕有码久久国产| 亚洲女人毛茸茸粉红大阴户传播| 亚洲一区二区三区中文字幂| 黑人巨大精品欧美在线观看| 视频区一区二在线观看| 国产精品永久免费|