洪永沛 張敬濤
摘 要: 通過改進的非微擾量子電動力學(QED)理論,研究了強激光場中激發(fā)分子產(chǎn)生的高次諧波,并分析了能量低于電離閾值的諧波隨激光波長的變化.研究結(jié)果表明:當激光光強較高時,氧分子產(chǎn)生的諧波極小值是多個分子軌道獨立產(chǎn)生的諧波相互干涉的結(jié)果;隨著入射光波長的改變,單個分子軌道輻射的諧波出現(xiàn)π相位的突變,導致總諧波譜中出現(xiàn)了極小值;當光強較低時,總諧波由最高占據(jù)分子軌道(HOMO)產(chǎn)生的諧波主導,總諧波極小值即為HOMO諧波極小值.另外,隨著激光波長的改變,單個復合通道產(chǎn)生的諧波也會發(fā)生π相位的突變,與不同復合通道產(chǎn)生的諧波相干疊加后造成單個分子軌道諧波的極小值.
關鍵詞: 低閾值諧波; 分子軌道諧波; 諧波干涉
中圖分類號: O 437.1? 文獻標志碼: A? 文章編號: 10005137(2019)04039307
Abstract: In this paper,the nonperturbative quantum electrodynamics(QED) theory was developed to study the highorder harmonic generation from the molecules irradiated by the strong laser field.The relationship between the harmonics with energy below the ionization threshold and the laser wavelength was analyzed.It was found that the minimum of harmonics generation from oxygen molecules by high light intensity laser field is the result of interference of multiple molecular orbitals.As the wavelength of incident laser changed,the harmonic phases of single molecular orbital appeared to be πphase mutations,resulting in minimum among the total harmonic.When the light intensity was lower,the total harmonic was dominated by the harmonics generated by the highest occupied molecular orbit (HOMO).Therefore,the total harmonic minimum was the minimum of the HOMO harmonic.Besides,with the change of laser wavelength,the harmonic generated by a single return channel would also have a πphase mutation.The harmonics generated by different return channels were coherently summed up to produce an interference minimum of a single molecular orbital harmonic.
Key words: belowthreshold harmonic generation; harmonic of molecular orbital; harmonic interference
0 引 言
原子/分子在與強激光相互作用的過程中,可以產(chǎn)生頻率為入射光頻率整數(shù)倍的高次諧波.隨著諧波能量的增加,高次諧波的強度首先快速下降,之后是一個平臺期,最終在截止區(qū)快速下降.截止區(qū)能量為Ip+3.17Up,其中,Ip為原子/分子的電離勢,Up為電子在激光場中的有質(zhì)動力勢.高次諧波具有較寬的頻譜,相鄰階次諧波間的頻率差為2ω.利用高次諧波可以獲得阿秒級脈沖,用于探測在阿秒-埃尺度上的現(xiàn)象,如跟蹤原子/分子中電子的躍遷等超快過程,為探究電子動力學過程提供了有效途徑[1-6],ASEYEV等[7]精準測量了電子的阿秒動力學過程.采用中紅外光場作為驅(qū)動場,可以大大提高截止區(qū)的能量,獲得相干極紫外光[8-15].
高次諧波輻射的機制可以用CORKUM[16]提出的半經(jīng)典三步模型理論解釋.高次諧波的強度取決于電子與母核的復合幾率,而后者又依賴于母核的基態(tài)波函數(shù).高次諧波輻射本質(zhì)是電子在基態(tài)與連續(xù)態(tài)之間躍遷,因此諧波攜帶了原子/分子的基態(tài)波函數(shù)信息,可以作為探究原子/分子/結(jié)構(gòu)的一種手段[17],據(jù)此人們發(fā)展了分子軌道成像技術(shù)[18-22].
最近對高次諧波的研究熱點集中在低閾值諧波.YOST等[23]探究了氙的低閾值諧波譜,發(fā)現(xiàn)低閾值諧波輻射主要由長量子軌道和多光子激發(fā)2個過程產(chǎn)生,并且前者較后者對低閾值諧波輻射的貢獻更多.相較于原子,分子具有更為復雜的能級結(jié)構(gòu)和電子云分布,不同分子軌道輻射的諧波對總諧波譜也會產(chǎn)生影響.SOIFER等[24]對分子的近閾值諧波進行了研究,發(fā)現(xiàn)分子近閾值諧波主要受長量子軌道和短量子軌道影響,其中長量子軌道產(chǎn)生的諧波可以用三步模型理論解釋,并且與分子電離勢相關;而短量子軌道則可以用來探究分子的激發(fā)態(tài).XIONG等[25]觀察了低閾值諧波強度隨激光頻率的變化,由諧波強度峰值位置推斷諧波的產(chǎn)生機制,固定頻率處出現(xiàn)的峰為電子躍遷到激發(fā)態(tài)的共振吸收峰,電子回到激發(fā)態(tài)并輻射的諧波為共振輻射.峰值隨光強和頻率的變化為量子軌道干涉現(xiàn)象,光強越高,電子返回能量越低,長量子軌道對低階諧波的影響越大.上述低閾值諧波的研究僅限于原子,對分子也只研究了總諧波,并未涉及分子內(nèi)部各個軌道產(chǎn)生的諧波,存在一定的局限性.
本文作者發(fā)展了非微擾量子電動力學(QED)理論,并用之來處理分子在強激光場中產(chǎn)生的高次諧波過程[26],重點研究了不同分子軌道低閾值單階次諧波譜隨入射激光波長的變化,探究了低閾值諧波出現(xiàn)極小值的原因.研究結(jié)果表明:隨著入射激光波長的改變,低閾值諧波譜會產(chǎn)生一系列的極小值;總諧波強度極小值在激光強度較高時為分子不同軌道諧波相互干涉的結(jié)果;激光強度較低時,總諧波強度為最高占據(jù)分子軌道(HOMO)主導,極小值即為HOMO諧波強度極小值.另外,單個軌道的諧波譜也會出現(xiàn)極小值的情況,不同復合軌道間的干涉會使單個軌道產(chǎn)生諧波的極小值.
3 結(jié) 論
利用非微擾QED理論計算氧分子的高次諧波譜,加入零勢能點修正與庫侖勢修正得到了低閾值諧波.研究結(jié)果表明:低閾值諧波強度隨著入射光波長的變化會出現(xiàn)極小值,當激光強度較高時,隨著入射激光波長的改變,分子單個軌道諧波相位發(fā)生幅度為π的突變,與其他軌道輻射的諧波干涉導致分子總諧波強度出現(xiàn)極小值;當激光強度較低時,總諧波強度由HOMO產(chǎn)生的諧波主導,諧波強度極小值即為HOMO諧波強度極小值.研究單個軌道輻射的諧波發(fā)現(xiàn):隨著入射光波長的改變,單個復合通道產(chǎn)生的諧波相位也會發(fā)生幅度為π的突變,與其他通道的諧波干涉導致諧波強度出現(xiàn)極小值.
參考文獻:
[1] ZHAI C,ZHU X,LAN P,et al.Diffractive molecularorbital tomography [J].Physical Review A,2017,95(3):033420.
[2] LI Y,ZHU X,LAN P,et al.Molecular orbital tomography beyond the plane wave approximation [J].Physical Review A,2014,89(4):123-127.
[3] HE M,ZHOU Y,LI Y,et al.Revealing the target structure information encoded in strongfield photoelectron hologram [J].Optical & Quantum Electronics,2017,49(6):232.
[4] ZHU X,ZHANG Q,HONG W,et al.Laserpolarizationdependent photoelectron angular distributions from polar molecules [J].Optics Express,2011,19(24):198-209.
[5] XIE H,LI M,LU P,et al.Carrierenvelope phase dependent photoelectron energy spectra in low intensity regime [J].Optics Express,2017,25(10):11233.
[6] LIU X,LI P,ZHU X,et al.Probing the ππ*,transitions in conjugated compounds with an infrared femtosecond laser [J].Physical Review A,2017,95(3):033421.
[7] ASEYEV S A,NI Y,F(xiàn)RASINSKI L J,et al.Attosecond angleresolved photoelectron spectroscopy [J].Physical Review Letters,2003,91(22):223902.
[8] HENTSCHEL M,KIENBERGER R,SPIELMANN C,et al.Attosecond metrology [J].Nature,2001,414(6863):509-513.
[9] GOULIELMAKIS E,SCHULTZE M,HOFSTETTER M,et al.Singlecycle nonlinear optics [J].Science,2008,320(5883):1614-1617.
[10] LI J,REN X,YIN Y,et al.53attosecond Xray pulses reach the carbon Kedge [J].Nature Communications,2017,8(1):794.
[11] KFIR O,GRYCHTOL P,TURGUT E,et al.Generation of bright phasematched circularlypolarized extreme ultraviolet high harmonics [J].Nature Photonics,2014,9(2):99-105.
[12] FAN T,GYCHTOL P,KNUT R,et al.Bright circularly polarized soft xray high harmonics for xray magnetic circular dichroism [J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(46):14206-14211.
[13] ZHANG X,ZHU X,LIU X,et al.Ellipticitytunable attosecond XUV pulse generation with a rotating bichromatic circularly polarized laser field [J].Optics Letters,2017,42(6):1027.
[14] LI L,WANG Z,LI F,et al.Efficient generation of highly elliptically polarized attosecond pulses [J].Optical & Quantum Electronics,2017,49(2):73.
[15] YUAN H,LI F,LONG H.Control of highorder harmonic generation with chirped inhomogeneous fields [J].Journal of the Optical Society of America B:Optical Physics,2017,34(11):2390.
[16] CORKUM P B.Plasma perspective on strong field multiphoton ionization [J].Physical Review Letters,1993,71(13):1994-1997.
[17] ITATANI J,LEVESQUE J,ZEIDLER D,et al.Tomographic imaging of molecular orbitals [J].Nature,2005,432(7019):867-871.
[18] LEIN M.Molecular imaging using recolliding electrons [J].Journal of Physics B:Atomic Molecular & Optical Physics,2007,40(16):R135.
[19] HAESSLER S,CAILLAT J,SALIRES P.Selfprobing of molecules with high harmonic generation [J].Journal of Physics B:Atomic Molecular & Optical Physics,2011,44(20):203001.
[20] SALIRES P,MAQUET A,HAESSLER S,et al.Imaging orbitals with attosecond and ngstrm resolutions:toward attochemistry? [J].Reports on Progress in Physics Physical Society,2012,75(6):062401.
[21] HAESSLER S,CAILLAT J,BOUTU W,et al.Attosecond imaging of molecular electronic wavepackets [J].Nature Physics,2010,6(3):200-206.
[22] VOZZI C,NEGRO M,CALEGARI F,et al.Generalized molecular orbital tomography [J].Nature Physics,2011,7(10):823-827.
[23] YOST D C,SCHIBLI T R,YE J,et al.Vacuumultraviolet frequency combs from belowthreshold harmonics [J].Nature Physics,2009,5(11):815-820.
[24] SOIFER H,BOTHERON P,SHAFIR D,et al.Nearthreshold highorder harmonic spectroscopy with aligned molecules [J].Physical Review Letters,2010,105(14):143904.
[25] XIONG W H,GENG J W,TANG J Y,et al.Mechanisms of belowthreshold harmonic generation in atoms [J].Physical Review Letters,2014,112(23):233001.
[26] GUO D S,BERG T,CRASEMANN B.Scattering theory of multiphoton ionization in strong fields [J].Physical Review A,1989,40(9):4997-5005.
[27] AMMOSOV M V,DELONE N B,KRAINOV V P.Tunnel ionization of complex atoms and atomic ions in electromagnetic field [J].Proceedings of SPIEThe International Society for Optical Engineering,1986,64:1181.
[28] ZHANG J,WU Y,ZENG Z,et al.Intensitydependent multiorbital effect in highorder harmonics generated from aligned O2 molecules [J].Physical Review A,2013,88(3):3156-3161.
(責任編輯:顧浩然)