牟婕 馮文靜 毛擁軍
[摘要] 目的 探討甘露糖醛酸寡糖(M3K)對(duì)過(guò)氧化氫(H2O2)誘導(dǎo)的心肌細(xì)胞衰老的作用及其可能機(jī)制。方法 用100 μmol/L H2O2構(gòu)建H9c2心肌細(xì)胞衰老模型,應(yīng)用不同濃度(10、50、100 mg/L)的M3K干預(yù)衰老心肌細(xì)胞,觀察M3K對(duì)心肌細(xì)胞衰老的影響。實(shí)驗(yàn)分為對(duì)照組、H2O2組、H2O2+M3K低劑量組、H2O2+M3K中劑量組和H2O2+M3K高劑量組。用倒置顯微鏡觀察各組心肌細(xì)胞數(shù)量,Western blot檢測(cè)衰老標(biāo)志蛋白P21和P53的表達(dá),PT-RCR檢測(cè)自噬相關(guān)基因beclin1、Atg7和LC3-Ⅱ的mRNA表達(dá)。結(jié)果 倒置顯微鏡觀察顯示,與對(duì)照組相比,H2O2組心肌細(xì)胞數(shù)量明顯減少;與H2O2組相比,M3K干預(yù)各組心肌細(xì)胞數(shù)量呈劑量依賴(lài)性增多,差異有統(tǒng)計(jì)學(xué)意義(F=8.685,P<0.05)。Western blot檢測(cè)顯示,H2O2組心肌細(xì)胞P21和P53蛋白表達(dá)較對(duì)照組明顯增加,M3K干預(yù)各組心肌細(xì)胞P21和P53蛋白表達(dá)較H2O2組明顯降低,差異有顯著意義(F=31.507、13.111,P<0.05)。PT-RCR檢測(cè)顯示,H2O2組心肌細(xì)胞beclin1、Atg7和LC3-Ⅱ的mRNA表達(dá)較對(duì)照組顯著降低,M3K干預(yù)各組三者的mRNA表達(dá)較H2O2組顯著增加(F=10.134~61.041,P<0.05)。結(jié)論 M3K可以延緩H2O2誘導(dǎo)的心肌細(xì)胞衰老,其機(jī)制可能與自噬的激活有關(guān)。
[關(guān)鍵詞] 甘露糖;寡糖類(lèi);衰老;肌細(xì)胞,心臟;自噬;過(guò)氧化氫
[中圖分類(lèi)號(hào)] R329.25 ?[文獻(xiàn)標(biāo)志碼] A ?[文章編號(hào)] ?2096-5532(2019)04-0411-05
[ABSTRACT] Objective To investigate the effect of mannuronic acid oligosaccharides (M3K) on hydrogen peroxide (H2O2)-induced cardiomyocyte senescence and the possible mechanism. ?Methods H9c2 cardiomyocytes were treated with 100 μmol/L H2O2 to establish a model of senescence, and then the senescent H9c2 cardiomyocytes were treated with different concentrations of M3K (10, 50, and 100 mg/L) to observed the effect of M3K on cardiomyocyte senescence. The cardiomyocytes were divided into control group, H2O2 group, H2O2+low-dose M3K group, H2O2+medium-dose M3K group, and H2O2+high-dose M3K group. Inverted microscopy was used to measure the number of cardiomyocytes, Western blot was used to measure the expression of the senescence marker proteins P21 and P53, and RT-PCR was used to measure the mRNA expression of the auto-phagy-related genes beclin1, Atg7, and LC3-Ⅱ. ?Results Inverted microscopy showed that compared with the control group, the H2O2 group had a significant reduction in the number of cardiomyocytes, and compared with the H2O2 group, the H2O2+low-dose M3K group, the H2O2+medium-dose M3K group, and the H2O2+high-dose M3K group had a significant increase in the number of cardiomyocytes in a dose-dependent manner (F=8.685,P<0.05). Western blot showed that compared with the control group, the H2O2 group had significant increases in the protein expression of P21 and P53 in cardiomyocytes, and compared with the H2O2 group, the H2O2+low-dose M3K group, the H2O2+medium-dose M3K group, and the H2O2+high-dose M3K group had significant reductions in the protein expression of P21 and P53 (F=31.507,13.111;P<0.05). RT-PCR showed that compared with the control group, the H2O2 group had significant reductions in the mRNA expression of beclin1, Atg7, and LC3-Ⅱ, and compared with the H2O2 group, the H2O2+low-dose M3K group, the H2O2+medium-dose M3K group, and the H2O2+high-dose M3K group had significant increases in the mRNA expressions of beclin1, Atg7, and LC3-Ⅱ (F=10.134-61.041,P<0.05). ?Conclusion M3K can delay H2O2-induced cardiomyocyte senescence, possibly by activating autophagy.
[KEY WORDS] mannose; oligosaccharides; aging; myocytes, cardiac; autophagy; hydrogen peroxide
衰老是一個(gè)復(fù)雜的過(guò)程,隨著年齡的增加,機(jī)體發(fā)生退行性改變,進(jìn)而引起各種衰老相關(guān)疾病。目前,世界人口老齡化加劇,隨著老齡人口的增加,衰老相關(guān)疾病逐漸增多,其中心血管疾病是導(dǎo)致老年人死亡的主要原因[1-2]。機(jī)體衰老后心臟會(huì)發(fā)生一系列病理性改變,如心肌纖維化、心肌肥厚、心功能不全等[3]。有研究表明,隨著細(xì)胞衰老P21和P53蛋白表達(dá)增加,二者可作為衰老檢測(cè)的標(biāo)志性蛋白[4-6]。自噬是一種存在于細(xì)胞內(nèi)的降解機(jī)制,可以清除細(xì)胞內(nèi)受損的蛋白和細(xì)胞器,對(duì)細(xì)胞內(nèi)穩(wěn)態(tài)的調(diào)節(jié)至關(guān)重要[7-8]。衰老心肌細(xì)胞自噬調(diào)節(jié)能力降低,導(dǎo)致細(xì)胞內(nèi)錯(cuò)誤折疊蛋白和功能障礙的細(xì)胞器大量累積[9]。研究表明,提高心肌細(xì)胞自噬水平可以延緩心臟衰老[10]。甘露糖醛酸寡糖(M3K)是褐藻膠寡糖的一種,由來(lái)源于海洋褐藻的褐藻膠加工而成,具有抗氧化、抗炎、抗腫瘤等多種生物學(xué)活性,有重要的臨床應(yīng)用價(jià)值[11-13]。過(guò)氧化氫(H2O2)屬于活性氧簇家族,可引起氧化應(yīng)激,誘導(dǎo)細(xì)胞衰老,現(xiàn)已被廣泛用于體外衰老模型的建立[14-15]。本實(shí)驗(yàn)采用H2O2誘導(dǎo)建立心肌細(xì)胞衰老模型,探討M3K對(duì)衰老心肌細(xì)胞的保護(hù)作用及其可能機(jī)制。
1 材料和方法
1.1 實(shí)驗(yàn)材料
M3K由中國(guó)海洋大學(xué)醫(yī)藥學(xué)院實(shí)驗(yàn)室惠贈(zèng)。心肌細(xì)胞H9c2購(gòu)于中國(guó)科學(xué)院上海細(xì)胞庫(kù)。胎牛血清(FBS)購(gòu)于美國(guó)Gibco公司,DMEM培養(yǎng)液購(gòu)于美國(guó)Hyclone公司,P21兔單克隆抗體和P53小鼠單克隆抗體購(gòu)于美國(guó)Cell Signaling Technology公司,山羊抗兔IgG二抗和山羊抗鼠IgG二抗購(gòu)于武漢伊萊瑞特公司,RIPA裂解液和BCA蛋白濃度測(cè)定試劑盒購(gòu)于上海碧云天公司,ECL發(fā)光液購(gòu)于美國(guó)Millipore公司,逆轉(zhuǎn)錄試劑盒和Mix購(gòu)于瑞士Roche公司。
1.2 實(shí)驗(yàn)方法
1.2.1 細(xì)胞培養(yǎng)及處理 將H9c2心肌細(xì)胞接種于6孔板中,用含體積分?jǐn)?shù)0.10 FBS和10 g/L青-鏈霉素的DMEM完全培養(yǎng)液,在37 ℃、含體積分?jǐn)?shù)0.05 CO2的細(xì)胞培養(yǎng)箱中培養(yǎng)。實(shí)驗(yàn)分為5組:對(duì)照組(A組),H2O2組(B組),H2O2+M3K低劑量組(C組),H2O2+M3K中劑量組(D組),H2O2+M3K高劑量組(E組)。當(dāng)細(xì)胞融合度達(dá)50%時(shí),H2O2組、H2O2+M3K低劑量組、H2O2+M3K中劑量組和H2O2+M3K高劑量組細(xì)胞分別加入100 μmol/L的H2O2誘導(dǎo)建立衰老模型,4 h后更換新鮮DMEM完全培養(yǎng)液。H2O2組繼續(xù)培養(yǎng)48 h,M3K干預(yù)各組分別加入10、50、100 mg/L的M3K培養(yǎng)48 h。實(shí)驗(yàn)過(guò)程中對(duì)照組僅進(jìn)行同步換液處理。在倒置顯微鏡下觀察,每孔隨機(jī)選擇3個(gè)區(qū)域進(jìn)行鏡下計(jì)數(shù)。收集細(xì)胞進(jìn)行后續(xù)實(shí)驗(yàn),所有實(shí)驗(yàn)均重復(fù)3次。
1.2.2 Western blot檢測(cè)P21和P53蛋白表達(dá)細(xì)胞中加入RIPA裂解液提取細(xì)胞蛋白,用BCA試劑盒檢測(cè)蛋白濃度。每孔加入等量的蛋白進(jìn)行SDS-PAGE電泳,待溴酚藍(lán)到達(dá)分離膠底部時(shí)轉(zhuǎn)移到PVDF膜上(200 mA,90 min),用含30 g/L BSA和50 g/L脫脂奶粉的TBST溶液室溫封閉2 h,加入P21和P53一抗(均1∶1 000稀釋?zhuān)?,? ℃搖床孵育過(guò)夜;洗脫后分別加二抗(均1∶5 000稀釋?zhuān)┦覝胤跤? h,用ECL發(fā)光液顯影,凝膠成像系統(tǒng)成像后采用Quantity One軟件分析條帶灰度值。
1.2.3 RT-PCR檢測(cè)beclin1、Atg7和LC3-Ⅱ的mRNA表達(dá) 采用Trizol法提取細(xì)胞總RNA,Nanodrop測(cè)定RNA含量和濃度,應(yīng)用逆轉(zhuǎn)錄試劑盒將mRNA逆轉(zhuǎn)錄為cDNA。采用RT-PCR法進(jìn)行擴(kuò)增,擴(kuò)增條件:95 ℃、600 s;95 ℃、10 s,60 ℃、10 s,72 ℃、15 s,共40個(gè)循環(huán);95 ℃、10 s,65 ℃、60 s,97 ℃、1 s。以β-actin作為內(nèi)參,用2-ΔΔCt計(jì)算目的基因相對(duì)表達(dá)量。PCR引物序列見(jiàn)表1。
1.3 統(tǒng)計(jì)學(xué)方法
應(yīng)用SPSS 21.0軟件進(jìn)行統(tǒng)計(jì)學(xué)分析,計(jì)量數(shù)據(jù)以±s表示,多組比較采用One-way ANOVA檢驗(yàn),組間兩兩比較采用LSD法。
2 結(jié) ?果
2.1 各組心肌細(xì)胞數(shù)量比較
培養(yǎng)48 h后,對(duì)照組細(xì)胞數(shù)量較多,融合度達(dá)90%;H2O2組細(xì)胞數(shù)量與對(duì)照組相比明顯減少;M3K干預(yù)各組細(xì)胞數(shù)量與H2O2組相比呈劑量依賴(lài)性增加,差異均有統(tǒng)計(jì)學(xué)意義(F=8.685,P<0.05);H2O2+M3K高劑量組細(xì)胞數(shù)量與對(duì)照組相比差異無(wú)顯著性(P>0.05)。見(jiàn)表2。
4期牟婕,等. 甘露糖醛酸寡糖對(duì)H2O2誘導(dǎo)衰老心肌細(xì)胞的影響413
2.2 各組心肌細(xì)胞P21和P53蛋白表達(dá)比較
與對(duì)照組相比,H2O2組心肌細(xì)胞P21和P53蛋白表達(dá)顯著增加;與H2O2組相比較,M3K干預(yù)48 h后,H2O2+M3K低劑量組、H2O2+M3K中劑量組和H2O2+M3K高劑量組心肌細(xì)胞P21和P53蛋白表達(dá)隨M3K濃度的增加而降低,差異均有顯著性(F=31.507、13.111,P<0.05)。見(jiàn)圖1、表2。
2.3 各組細(xì)胞beclin1、Atg7和LC3-Ⅱ mRNA表達(dá)比較
與對(duì)照組相比,H2O2組心肌細(xì)胞beclin1、Atg7和LC3-Ⅱ mRNA表達(dá)水平顯著降低;與H2O2組相比,M3K干預(yù)48 h后,H2O2+M3K低劑量組、H2O2+M3K中劑量組和H2O2+M3K高劑量組心肌細(xì)胞beclin1、Atg7和LC3-Ⅱ mRNA表達(dá)呈濃度依賴(lài)性增加,差異均有統(tǒng)計(jì)學(xué)意義(F=10.134~61.041,P<0.05)。見(jiàn)表3。
3 討 ?論
衰老是導(dǎo)致老年人慢性疾病發(fā)生發(fā)展的重要危險(xiǎn)因素,并且是心血管疾病發(fā)生的獨(dú)立危險(xiǎn)因素。近年來(lái),隨著老齡人口增加,衰老相關(guān)疾病給社會(huì)帶來(lái)了巨大的醫(yī)療和經(jīng)濟(jì)負(fù)擔(dān)。因此,探討衰老相關(guān)機(jī)制、延緩衰老成為目前的研究熱點(diǎn)[16]。H2O2誘導(dǎo)的氧化損傷可以較好地模擬老年人體內(nèi)氧化應(yīng)激,現(xiàn)已被廣泛用于衰老模型的建立[17-18]。本實(shí)驗(yàn)用H2O2成功誘導(dǎo)了心肌細(xì)胞內(nèi)氧化應(yīng)激,引起細(xì)胞衰老。細(xì)胞衰老后表現(xiàn)為細(xì)胞周期阻滯,增殖減少。M3K屬于海藻寡糖,具有多種生物學(xué)活性[11]。本研究結(jié)果顯示,用M3K干預(yù)衰老心肌細(xì)胞后,細(xì)胞周期阻滯延緩,增殖加快。
P21作為細(xì)胞周期蛋白依賴(lài)性激酶抑制因子在衰老中起重要作用,它通過(guò)與細(xì)胞周期蛋白結(jié)合,導(dǎo)致細(xì)胞周期阻滯,阻斷細(xì)胞增殖過(guò)程。細(xì)胞衰老后,P21蛋白表達(dá)增加,因此,P21可作為衰老標(biāo)志物之一[19-20]。本實(shí)驗(yàn)采用Western blot方法檢測(cè)P21蛋白的表達(dá),觀察M3K對(duì)衰老心肌細(xì)胞的影響。結(jié)果顯示,H2O2誘導(dǎo)心肌細(xì)胞衰老后P21表達(dá)增加,而用M3K干預(yù)衰老細(xì)胞48 h可使P21蛋白表達(dá)下調(diào),緩解衰老心肌細(xì)胞的細(xì)胞周期阻滯,進(jìn)而延緩心肌細(xì)胞衰老。P53是氧化應(yīng)激的關(guān)鍵調(diào)控分子之一[21]。P53作為“基因監(jiān)護(hù)人”,可通過(guò)調(diào)節(jié)細(xì)胞周期阻滯、細(xì)胞凋亡和衰老發(fā)揮腫瘤抑制作用[22]。有研究表明,p53基因過(guò)表達(dá)小鼠可以出現(xiàn)早衰表型[23]。P53的表達(dá)與機(jī)體衰老呈正相關(guān),機(jī)體衰老后,P53表達(dá)增加[24-25]。本研究結(jié)果顯示,P53在H2O2誘導(dǎo)的衰老心肌細(xì)胞中表達(dá)增加,而M3K干預(yù)衰老細(xì)胞可使P53蛋白表達(dá)下調(diào),表明M3K可能延緩了H2O2誘導(dǎo)的心肌細(xì)胞衰老。
自噬可分為巨自噬、微自噬和分子伴侶介導(dǎo)的自噬3種類(lèi)型,其中巨自噬是最常見(jiàn)的一種,其自噬過(guò)程依賴(lài)于溶酶體。LC3-Ⅱ、beclin1和Atg7是自噬溶酶體形成的關(guān)鍵蛋白,參與溶酶體膜的形成,自噬被激活后,三者的表達(dá)增加[7,26]。機(jī)體衰老后自噬調(diào)節(jié)能力也隨之下降,細(xì)胞內(nèi)受損蛋白質(zhì)和細(xì)胞器大量積累,進(jìn)一步加速衰老[27-28]。已有大量的研究表明,激活自噬可能延緩組織和細(xì)胞衰老[29]。為了探討M3K延緩心肌細(xì)胞衰老是否與自噬的激活有關(guān),本研究采用RT-PCR方法檢測(cè)了自噬相關(guān)基因LC3-Ⅱ、beclin1和Atg7 mRNA的表達(dá)。結(jié)果顯示,H2O2誘導(dǎo)的衰老細(xì)胞中LC3-Ⅱ、beclin1和Atg7 mRNA表達(dá)減少,而給予M3K處理后,細(xì)胞中LC3-Ⅱ、beclin1和Atg7 mRNA表達(dá)增加,表明M3K延緩心肌細(xì)胞衰老可能與自噬激活有關(guān)。
綜上所述,M3K可以延緩H2O2誘導(dǎo)的H9c2心肌細(xì)胞衰老,其作用機(jī)制可能與細(xì)胞內(nèi)自噬的激活有關(guān),但其具體的分子機(jī)制還需要進(jìn)一步研究。
[參考文獻(xiàn)]
[1] SKIBSKA B, GORACA A. The protective effect of lipoic acid on selected cardiovascular diseases caused by age-related oxidative stress[J]. Oxidative Medicine and Cellular Longevity, 2015,2015:313021.
[2] EZZATI M, OBERMEYER Z, TZOULAKI I, et al. Contributions of risk factors and medical care to cardiovascular mortality trends[J]. Nature Reviews Cardiology, 2015,12(9):508-530.
[3] ALFARAS I, DI GERMANIO C, BERNIER M, et al. Pharmacological strategies to retard cardiovascular aging[J]. Circulation Research, 2016,118(10):1626-1642.
[4] WANG Ziling, CHEN Linbo, QIU Zhu, et al. Ginsenoside Rg1 ameliorates testicular senescence changes in Dgalinduced aging mice via antiinflammatory and antioxidative mechanisms[J]. Molecular Medicine Reports, 2018,17(5):6269-6276.
[5] CARRASCO G E, MORENO M, MORENO C L, et al. Increased Arf/p53 activity in stem cells, aging and cancer[J]. Aging Cell, 2017,16(2):219-225.
[6] JIANG C, LIU G, LUCKHARDT T, et al. Serpine 1 induces alveolar type Ⅱ cell senescence through activating p53-p21-Rb pathway in fibrotic lung disease[J]. Aging Cell, 2017,16(5):1114-1124.
[7] LAPIERRE L R, KUMSTA C, SANDRI M, et al. Transcriptional and epigenetic regulation of autophagy in aging[J]. Autophagy, 2015,11(6):867-880.
[8] KIM S N, KWON H J, AKINDEHIN S, et al. Effects of epigallocatechin-3-gallate on autophagic lipolysis in adipocytes[J]. Nutrients, 2017,9(7):680-694.
[9] SHIRAKABE A, IKEDA Y, SCIARRETTA S A, et al. Aging and autophagy in the heart[J]. Circulation Research, 2016,118(10):1563-1576.
[10] REN Jun, YANG Lifang, ZHU Li, et al. Akt2 ablation prolongs life span and improves myocardial contractile function with adaptive cardiac remodeling:role of Sirt1-mediated autophagy regulation[J]. Aging Cell, 2017,16(5):976-987.
[11] ZHU Benwei, CHEN Meijuan, YIN Heng, et al. Enzymatic hydrolysis of alginate to produce oligosaccharides by a new purified endo-type alginate lyase[J]. Marine Drugs, 2016,14(6):108-119.
[12] GUO Junjie, MA Leilei, SHI Hongtao, et al. Alginate oligosaccharide prevents acute doxorubicin cardiotoxicity by suppressing oxidative stress and endoplasmic reticulum-mediated apoptosis[J]. Marine Drugs, 2016,14(12):231-244.
[13] Guo Junjie, XU Fengqiang, LI Yonghong, et al. Alginate oligosaccharide alleviates myocardial reperfusion injury by inhibiting nitrative and oxidative stress and endoplasmic reticulum stress-mediated apoptosis[J]. Drug Des Devel Ther, 2017,11:2387-2397.
[14] ZHU Wei, WU Yan, MENG Yifang, et al. Effect of curcumin on aging retinal pigment epithelial cells[J]. Drug Des Devel Ther, 2015,9:5337-5344.
[15] CHEUNG T M, GANATRA M P, FU J J, et al. The effect of stress-induced senescence on aging human cord blood-derived endothelial cells[J]. Cardiovascular Engineering and Technology, 2013,4(2):220-230.
[16] PERRIDON B W, LEUVENINK H G, HILLEBRANDS J L, et al. The role of hydrogen sulfide in aging and age-related pathologies[J]. Aging, 2016,8(10):2264-2289.
[17] LI Ruilin, LU Zhaoyang, HUANG Jingjuan, et al. SRT1720, a SIRT1 specific activator, protected H2O2-induced senescent endothelium[J]. American Journal of Translational Research, 2016,8(7):2876-2888.
[18] SONG Zhiming, LIU Yong, HAO Baoshun, et al. Ginse-noside Rb1 prevents H2O2-induced HUVEC senescence by stimulating sirtuin-1 pathway[J]. PLoS One, 2014,9(11):e112699.
[19] HSU Y M, YIN M C. EPA or DHA enhanced oxidative stress and aging protein expression in brain of D-galactose treated mice[J]. Biomedicine (Taipei), 2016,6(3):23-30.
[20] JI Musi, SU Xiaohua, LIU Jizhen, et al. Comparison of naturally aging and D-galactose induced aging model in beagle dogs[J]. Experimental and Therapeutic Medicine, 2017,14(6):5881-5888.
[21] GAMBINO V, DE MICHELE G, VENEZIA O A, et al. Oxidative stress activates a specific p53 transcriptional response that regulates cellular senescence and aging[J]. Aging Cell, 2013,12(3):435-445.
[22] QIAN Yingjuan, CHEN Xinbin. Senescence regulation by the p53 protein family[J]. Methods Mol Biol, 2013,965:37-61.
[23] GUEST I, ILIC Z, SCRABLE H, et al. Survival of irradiated recipient mice after transplantation of bone marrow from young, old and“early aging”mice[J]. Aging, 2015,7(12):1212-1222.
[24] LESSEL D, WU D Y, TRUJILLO C, et al. Dysfunction of the MDM2/p53 axis is linked to premature aging[J]. Journal of Clinical Investigation, 2017,127(10):3598-3608.
[25] BU H, WEDEL S, CAVINATO M, et al. MicroRNA regulation of oxidative stress-induced cellular senescence[J]. Oxid Med Cell Longev, 2017,2017:1-12.
[26] WU Yingying, CHEN Chao, YU Xiao, et al. Effects of tiaozhi granule on regulation of autophagy levels in HUVECs[J]. Evidence-Based Complementary and Alternative Medicine, 2018,2018:1-10.
[27] GHOSH A K, MAU T, O’BRIEN M, et al. Impaired autophagy activity is linked to elevated ER-stress and inflammation in aging adipose tissue[J]. Aging,?2016,8(10):2525-2537.
[28] CARAMES B, OLMER M, KIOSSES W B, et al. The relationship of autophagy defects to cartilage damage during joint aging in a mouse model[J]. Arthritis Rheumatol, 2015,67(6):1568-1576.
[29] PAPP D, KOVACS T, BILLES V, et al. AUTEN-67, an autophagy-enhancing drug candidate with potent antiaging and neuroprotective effects[J]. Autophagy, 2016,12(2):273-286.
(本文編輯 馬偉平)